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Abstract: This paper is concerned with quadratic-exponential functionals (QEFs) as risk-sensitive
performance criteria for linear quantum stochastic systems driven by multichannel bosonic fields. Such
costs impose an exponential penalty on quadratic functions of the quantum system variables over a
bounded time interval, and their minimization secures a number of robustness properties for the system.
We use an integral operator representation of the QEF, obtained recently, in order to compute its infinite-
horizon asymptotic growth rate in the invariant Gaussian state when the stable system is driven by
vacuum input fields. The resulting frequency-domain formula expresses the QEF growth rate in terms
of two spectral functions associated with the real and imaginary parts of the quantum covariance kernel
of the system variables. We also discuss the computation of the QEF growth rate using homotopy and
contour integration techniques and provide an illustrative numerical example with a two-mode open

quantum harmonic oscillator.
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1. INTRODUCTION

Quantum-mechanical adaptation of quadratic-exponential cost
functionals, originating from classical risk-sensitive control
(BV1985; J1973; W1981), provides a relevant addition to the
mean square optimality criteria for linear quantum stochastic
systems. Such systems, governed by linear quantum stochas-
tic differential equations (QSDEs) in the framework of the
Hudson-Parthasarathy calculus (HP1984; P1992; P2015), are
the main subject of linear quantum systems theory (NY2017;
P2017) which is concerned with tractable models of open quan-
tum dynamics. In particular, quadratic cost functionals and their
minimization provide a natural way to quantify and improve
the performance of observers in filtering problems in terms of
the mean square discrepancy between the system variables and
their estimates (MJ2012).

The quadratic-exponential functional (QEF) (VPJ2018b) (see
also (B1996)), which, similarly to its classical predecessors,
is organized as the averaged exponential of an integral of a
quadratic form of the system variables over a bounded time
interval, pertains to important higher-order properties of the
quantum system. One of them is related to the worst-case values
of mean square costs (VPJ2018b) in the presence of quantum
statistical uncertainty, when the actual system-field state differs
from its nominal model, but not “too much” in the sense of the
quantum relative entropy (OW2010). Another property is con-
cerned with the tail distributions for the quantum system trajec-
tories (VPJ2018a), which corresponds to the classical Cramer
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type large deviations bounds. These properties involve the QEF
in such a way that its minimization makes the behaviour of the
open quantum system more robust and conservative. The result-
ing performance analysis and optimal control problems require
methods for computing and minimizing the QEF, which is dif-
ferent from its time-ordered exponential counterpart in the orig-
inal quantum risk-sensitive control formulation (J2004; J2005).

The development of methods for computing the QEF has been
a subject of several recent publications which have developed
Lie-algebraic techniques (VPJ2019a), parametric randomiza-
tion (VPJ2019e) and quantum Karhunen-Loeve expansions
(VPJ2019b; VIP2019) for this purpose. These results have led
to an integral operator representation of the QEF (VPJ2019c)
for open quantum harmonic oscillators (OQHOs) in Gaussian
quantum states (P2010). In addition to its relevance to quantum
risk-sensitive control, the approach, which has been used in
obtaining this representation, has deep connections with op-
erator exponential structures studied in mathematical physics
and quantum probability (for example, in the context of op-
erator algebras (AB2018), moment-generating functions for
quadratic Hamiltonians (PS2015) and the quantum Lévy area
(CH2013; H2018)).

The present paper employs the integral operator representa-
tion of the QEF, mentioned above, and establishes an infinite-
horizon asymptotic growth rate of the QEF for invariant Gaus-
sian states of stable OQHOs driven by vacuum input fields. We
represent the QEF growth rate in frequency domain through
the Fourier transforms of the real and imaginary parts of the
invariant quantum covariance kernel of the system variables.
One of these matrix-valued spectral functions, coming from
the two-point commutator kernel, enters the frequency-domain
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formula in composition with trigonometric functions (H2008).
This affects the (otherwise meromorphic) structure of the func-
tion (whose logarithm is present in the integrand) in compar-
ison with its classical counterpart in the .77 -entropy integral
(AK1981; MG1990). We take this issue into account when
considering a contour integration technique for evaluating the
QEF growth rate. For general multimode OQHOs, we obtain
a differential equation for the QEF growth rate (as a function
of the risk sensitivity parameter), which leads to a numerical
algorithm for its computation, similar to the homotopy method
(MB1985).

The paper is organized as follows. Section 2 specifies the class
of linear quantum stochastic systems under consideration. Sec-
tion 3 describes the QEF as a finite-horizon system performance
criterion and revisits its integral operator representation in the
Gaussian case. Section 4 obtains a frequency-domain formula
for the infinite-horizon asymptotic growth rate of the QEF
in terms of the system transfer function. Section 5 discusses
the computation of the QEF growth rate using homotopy and
contour integration techniques. Section 6 provides a numerical
example of computing the QEF growth rate for a two-mode
OQHO. Section 7 makes concluding remarks and outlines fur-
ther directions of research. Proofs are given in the full version
of this paper in (VPJ2019d).

2. OPEN QUANTUM HARMONIC OSCILLATORS

Let Wi(t),...,Wy(t) be an even number of time-varying self-
adjoint operators on a subspace §; of a symmetric Fock space §
(P1992), which form a multichannel quantum Wiener process
W = (Wi)1<k<m and represent bosonic fields (we will often
omit the time argument ¢ for brevity). The increasing family
(F¢)i>0 of these subspaces provides a filtration for the Fock
space § in accordance with its continuous tensor-product struc-
ture (PS1972). The quantum Wiener process W satisfies the
two-point canonical commutation relations (CCRs)

W (s),W ()] := (W;(s), We(0)])1<j ks = 2imin(s,1)J (1)

for all s, > 0, where ()T is the transpose (vectors are organized
as columns unless indicated otherwise), [a,f] := aff — o
is the commutator of linear operators, and i := \/—1 is the
imaginary unit. In (1), use is also made of an orthogonal real
antisymmetric matrix

J::J®Im/2 (2)

(so that JE=— m), where ® is the Kronecker product, I, is

0

the identity matrix of order r, and J := {*1 (])} spans the one-

dimensional subspace of antisymmetric matrices of order 2. In
addition to its relation to the second Pauli matrix —iJ (S1994),
this matrix specifies the CCRs [¢}, 9T] = iJ for the vector © :=

m of the quantum mechanical position and momentum oper-

ators g and p := —id, on the Schwartz space (V2002). More
complicated CCRs between quantum variables are obtained by
using linear combinations of the conjugate position-momentum
pairs as building blocks. Such combinations are present in a
multimode OQHO, which interacts with external bosonic fields
(modelled by the quantum Wiener process W) and is endowed
with an even number of time-varying self-adjoint quantum vari-
ables Xj(t),...,X,(f) on the subspace $; := H @ F; of the
system-field tensor-product space

H:=HROF. 3)

Accordingly, £ is a complex separable Hilbert space for the
action of the initial system variables X; (0),...,X,(0). At every
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moment of time, the vector X := (X;)|<x<n Of system variables
of the OQHO satisfies the CCRs
X,x") =2i® )

as the Heisenberg infinitesimal form of the Weyl CCRs
(F1989), specified by a constant real antisymmetric matrix ® of
order n, which is assumed to be nonsingular for what follows.
The evolution of the system variables is governed by a linear
QSDE

dX = AXdr + BdWw, 5)
driven by the quantum Wiener process W. In accordance with
the structure of the system-field interaction model in the quan-
tum stochastic calculus (HP1984; P1992; P2015), the matrices
A e R™" B e R"™™ are parameterized as

A=20R+M"IM), B=20M" (6)
by the energy and coupling matrices R = RT € R, M € R"™*"
which specify the system Hamiltonian %X TRX and the vector
MX of m system-field coupling operators, with the matrix J

given by (2). Due to the parameterization (6), the matrices A, B
satisfy the physical realizability (PR) condition (JNP2008)

A®+OAT+BJBT =0, (7
which is equivalent to the conservation of the CCR matrix ®
in (4) in time. For what follows, the OQHO is assumed to be

stable in the sense that A is Hurwitz. In this case, ® is a unique
solution of (7) as an algebraic Lyapunov equation (ALE) and is

given by © = [;F e BIBTe " d1.
3. QUADRATIC-EXPONENTIAL COST FUNCTIONAL

Feedback connections of linear quantum stochastic systems,
arising in quantum control and filtering settings (NJP2009;
MIJ2012; ZJ2012), are also organized as OQHOs. For a given
but otherwise arbitrary time horizon 7 > 0, the performance of
such a system over the time interval [0, 7] can be described in
the risk-sensitive framework in terms of the QEF (VPJ2018a)
Zos :=Ee?0r ®)
as a cost functional to be minimized. Here, E¢ :=Tr(p{) is the
quantum expectation over an underlying density operator p on
the system-field space §) in (3). The risk sensitivity parameter
6 > 0 in (8) specifies the severity of exponential penalty im-

posed on the positive semi-definite self-adjoint quantum vari-
able

Qr = /OTX(t)THX(t)dz: /OTZ(t)TZ(t)dz, )

which depends quadratically on the system variables in (5) over
the time interval [0,T]. This dependence is parameterized by
a real positive definite symmetric matrix IT of order n which
relates an auxiliary quantum process Z to the system variables

by

z:=5Xx, S§:=VIL (10)
In fact, Z consists of n system variables of an OQHO with ap-
propriately transformed matrices S®S, S “IRS—1, MS~!, SAS!,
SB in (4)—(6) in view of the symmetry S = ST. This transfor-
mation preserves the nonsingularity of the CCR matrix ® and
the Hurwitz property of the dynamics matrix A. The process Z
satisfies the two-point CCRs (VPJ2018a)

[Z(s),Z2(t)"] = 2iA(s —1), 5,620, (11
with )
) setes ifr=0 1
A7) = {see“‘Ts itrco = AT (12)

from which the one-point CCR matrix of Z is recovered
as SOS = A(0). The two-point CCR kernel (12) specifies a
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skew self-adjoint integral operator .27 : f — g on the Hilbert
space L*([0,T],C") of square integrable C"-valued functions
on [0,T):

T
g(s) ::/0 Als—Df(O)d,  0<s<T.

The commutation structure of the process Z in (11), (12) (and
the related operator (13)) do not depend on a particular system-
field state p.

13)

In what follows, it is assumed that the stable OQHO under
consideration is driven by vacuum fields. In this case, the
system variables have a unique invariant multipoint zero-mean
Gaussian quantum state (VPJ2018a). This property is inherited
by the process Z in (10). The corresponding two-point quantum
covariance function

E(Z(5)Z()Y) =P(s—1)+iA(s—1),  s:>0, (14)
has the real part
| se™ss ifr>0 T
P(1)= {SEeTATS dro0= P(—1)", TeR. (15)

The positive semi-definite symmetric matrix £ := ReE(XXT) of
order n describes the invariant one-point statistical correlations
of the system variables and satisfies the ALE AY + XAT +
BBT = 0. The kernel (15) specifies a positive semi-definite self-
adjoint integral operator 27 : f + g on L*([0,T],C") as

T
g(s) = /0 P(s—1)f(t)dr, 0<s<T.

Moreover, the self-adjoint operator 21 +i.%r on L*([0,T],C")
is positive semi-definite. Also, both & and .47 are compact
operators (RS1980). By applying the results of (VPJ2019c) to
the OQHO in the invariant multipoint Gaussian quantum state,
the QEF (8) is represented as

InEg7 = —3Tr(Incos(0.%7) +In(S — 0 Pr Ao r)). (17)
Here,

(16)

Heo.r = tanhc(i0.2Z7) = tanc(6.27) (18)

is a positive definite self-adjoint operator on L?([0,7],C"),
where tanhcz := tanc(—iz) is a hyperbolic version of the func-
tion tancz := ¥ with tancO := 1 by continuity. The opera-
tor g r is nonexpanding: %y r < &, with .# the identity
operator on L*([0,7],C"). With 7%, 1 being compact (and
isospectral to the positive semi-definite self-adjoint operator
\/Ho. 1P/ Ho 1), the representation (17) is valid under the
condition

ez'max(ng%,T) < la (19)
where Amax (+) is the largest eigenvalue. The representation (17)
is obtained by applying the results of (VPJ2019c) to the process
Z in (9), (10) using its quantum Karhunen-Loeve expansion
over an orthonormal eigenbasis of the operator %7 in (13),
provided it has no zero eigenvalues. The latter property is
inherited by Z from the system variables under the sufficient
condition (VPJ2019¢, Theorem 1)

det(BJBT) #0, (20)

with J, B given by (2), (6). Indeed, the corresponding condition
det(SBJB'S) # 0 for the process Z is equivalent to (20) since
the matrix S in (10) is nonsingular.

4. QEF GROWTH RATE IN THE FREQUENCY DOMAIN
The representation (17) has a trace-analytic structure (VP2010)

in the sense that InEg 7 = —1Tr(9(0 Pr Ao 1) + W(0.%7)),
where ¢(z) :=1In(1 —z) and y(z) := Incosz are holomorphic
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functions of z € C whose domains contain the spectra of the
operators 0 P %y r (under the condition (19)) and 6.7 given
by (13), (16), (18). This structure plays an important role in
the following theorem on the asymptotic behaviour of (17), as
T — +o0, which uses the Fourier transforms

D) := /]R e~ M P(1)dt = F(il)F(id)", @1

W) = /R e MA()dr = F(A)JF(iA),  AER, (22)

of the covariance and commutator kernels (15), (12), see also

(VPJ2019a, Eq. (5.8)). Here, ()" := (TT is the complex conju-
gate transpose, and

F(v):=S(I,—A)"'B, veC, (23)
is the transfer function from the incremented input quantum
Wiener process W of the OQHO (5) to the process Z in (10).
Note that ®(A) is a complex positive semi-definite Hermitian
matrix, while W(4) is skew Hermitian for any A € R, with
& + ;¥ being the Fourier transform of the quantum covariance
kernel P+ iA from (14).

Theorem 1. Suppose the OQHO (5) is driven by vacuum input

fields, the matrix A in (6) is Hurwitz, and the matrix B satisfies

(20). Also, let the risk sensitivity parameter 8 > 0 in (8) satisfy
0 sup Amax (P(A)tanc(6¥(1))) < 1, (24)

A€ER

where the functions @, ¥ are given by (21)—(23). Then the QEF

Eg,1, defined by (8)—(10), has the following infinite-horizon

growth rate:

Y(6) := lim (%111391):—ﬁ/Rlndeth(A)dz, 25)

where
Dg(A) :=cos(O¥(A)) — 0P (A)sinc(6¥(1)), (26)

and sincz := % (with sinc0 := 1 by continuity). |

Under the condition (24), —IndetDg(A) is a symmetric func-
tion of the frequency A with nonnegative values. From (22),
(23), it follows that the Hurwitz property of the matrix A, the
nonsingularity of the matrix § in (10) and the condition (20)

: detITdet(BJBT .
imply that det¥(1) = %(—A)Iz) # 0 for all A € R, which

makes the extension sincO = 1 irrelevant for the evaluation
of sinc(6¥(1)). However, this extension (and also tancO = 1)
plays its role in the limiting classical case, when (5) is an SDE
driven by a standard Wiener process W (formally with J =0
in (1)), and Z in (10) is a stationary Gaussian diffusion process
(GS2004) with zero mean and the spectral density ® in (21). In
this case, the function ¥ vanishes, the condition (24) takes the
form

._ 1 _ 1
0 <60 = S T @) ~ TFIE @7
in terms of the #.-norm of the transfer function (23), and

the right-hand side of (25) reduces to the JZ.-entropy integral
(AK1981; MG1990)

V(0) ::fﬁ/Rlndet(Infetb(l))dk. (28)

In contrast to its classical counterpart, the QEF growth rate
(25) in the quantum case depends on both functions &, ¥
which constitute the “quantum spectral density” & + /¥ of
the process Z in (10). Furthermore, the condition (24) is sub-
stantially nonlinear with respect to 6 and, unlike (27), does
not admit a closed-form representation. However, since tanc
on the imaginary axis (that is, tanhc on the real axis) takes
values in the interval (0,1], then A (P(A)tanc(6W(1))) =

Amax(1/1anc(0P(A))®(A)/tanc(0F(1))) < Amax(P(A)) for




Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

any A € R, whereby the fulfillment of the classical constraint
(27) implies (24).

As a function of 0, the QEF growth rate (25) plays an important
role in quantifying the large deviations of quantum trajectories
(VPJ2018a) and for robustness of the OQHO with respect
to state uncertainties described in terms of quantum relative
entropy (see (VPJ2018b, Section IV) and references therein).
More precisely,

limsup (#InP7([2aT,+))) < inf (Y(6) — a6)

T— oo 620
for any o > 0, where Pr is the probability distribution of the
self-adjoint quantum variable Qr in (9) (H2001). Therefore,
(29) provides asymptotic upper bounds for the tail probability
distribution of Qr in terms of the QEF growth rate (25).
Furthermore,

lim sup (% sup EGQT) < 2912%(%(84—1'(9))),

T—+oo [ASSrY)

(29)

(30)

where EcQr := Tr(oQr) is the expectation of the $7-adapted
quantum variable Q7 in (9) over a density operator ¢ on the
system-field subspace $H7. Here, the supremum is taken over
the set

Ser:={0: D(ollpr) <eT}, (31
where the parameter € > 0 limits the growth rate of the quantum
relative entropy (OW2010)

D(o|lpr) := —H(c) —Eslnpr (32)
of ¢ with respect to pr := PrpPr, with P the orthogonal
projection onto $7, and H(o) := —E In o is the von Neumann
entropy of o; cf. (YB2009, Eq. (7)). The density operator
o is interpreted as the actual quantum state, about which
it is only known that it belongs to the class (31) of states
being not “too far” from the reference state pr as a nominal
model. In the framework of this quantum statistical uncertainty
description, specified by € in terms of (32), the left-hand side
of (30) is the worst-case quadratic cost growth rate, similar
to the robust performance criteria of minimax LQG control
(DJP2000; P2006; PID2000). Therefore, for a suitably chosen
0 > 0, the minimization of Y(0) over an admissible range
of parameters of the OQHO in the context of risk-sensitive
control and filtering problems enhances the large deviations
and robust performance bounds (29), (30). The computation of
these bounds and the QEF minimization demand techniques for
evaluating the functional (25).

5. EVALUATION OF THE QEF GROWTH RATE

The following technique for computing the QEF growth rate
(25) resembles the homotopy method for numerical solution
of parameter dependent algebraic equations (MB1985) and
exploits the specific dependence of Y(6) on the risk sensitivity
parameter 6. To this end, with the function Dg in (26), we
associate a function Uy : R — C™*" by

Up(A) := —Dp(A) ' 9eDp (1) (33)
for all @ > 0 satisfying (24) (which ensures that detDg(A) # 0
for all A € R).

Theorem 2. Under the conditions of Theorem 1, the QEF
growth rate Y(0) in (25) satisfies the differential equation

Y'(6) = ﬁ/RTrUg(l)dl,

with the initial condition Y(0) = 0. Here, the function (33) takes
values in the subspace of Hermitian matrices and satisfies a
Riccati equation

doUp(A) =P(A)* +Us(A)*,

(34)

2 €R, (35)
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with the initial condition Uy = & given by (21). |

The proof of Theorem 2 uses, as one of its intermediate steps, a
linear second-order ODE

D}y = —¥?cos(0F) + PWsin(0W) = —Dg¥? (36)
for (26) with the initial conditions Doy = I,, D), = —®, where
() := dg(-). The relation (33), which links the quadratically
nonlinear ODE (35) with the linear ODE (36), can be regarded
as a matrix-valued analogue of the Hopf-Cole transformation
(C1951; H1950) converting the viscous Burgers equation to the
heat (or diffusion) equation. We also mention an analogy be-
tween (33) and the logarithmic transformation in the context of
dynamic programming equations for stochastic control (F1982)
(see also (VP2010)).

The right-hand side of (34) can be evaluated by numerical
integration over the frequency axis and used for computing (25)
as

[?]
Y(6) = / Y'(Wdv= L / T, (A)dAdv.  (37)
0 Rx[0,6]
In particular, (34) yields
Y(0) = & [ Tr@(A)dn = LIFI3 = JEZ(0)Z(0)), (38)
R

which, in accordance with (8), reproduces the LQG cost for
the process Z in (10) for the stable OQHO in the invariant
Gaussian state. In (38), we have also used the .7%-norm of the
transfer function (23) which factorizes the spectral density (21).
In addition to its role for the computation of Y, the function
Y’ admits the following representation (see also (VPJ2018a,
Theorem 1)):

Y'(6) =3 lim (+E¢70r), (39)

Y s
where Eg 7 := Tr(pg r{) is the quantum expectation over a
modified density operator pg 1 := E;?G%QT pe%QT. Therefore,
(39) relates Y’ to the asymptotic growth rate of the weighted
average of the quantum variable Q7 in (9) rather than its

exponential moment.

Another approach to evaluating the QEF growth rate (25) is
provided by contour integration. More precisely, consider the
C"™"-valued function

Eg(s) :=cos(0U(s)) — OI'(s)sinc(0U(s)), (40)
which is defined in terms of the rational (and hence, meromor-
phic) functions

[(s) := F(s)F(=s)", (41)
O(s) :=F(s)JF(—s)T,  seC, (42)
associated with the transfer function (23). Since (40)—(42) are
related to (26), (21), (22) as Dg(A) = Eg(id), ®(A) =T'(id),
Y(1)=0(id) forall A € R, then (25) admits the representation

Y(0)= —ﬁ/ﬂglndetEg(s)ds

L lim ]{ Indet Eg (s)ds, (43)
G

= r—>+oo

where the last integral is over the counterclockwise oriented
contour in Fig. 1. Here, use is made of the asymptotic behaviour
Eg(s) =I,+ $SBB"S+o(s™?) (44)

of the function (40), as s — oo, due to the transfer function F' in
(23) being strictly proper. Therefore, the contribution from the
semicircular part C,(Cy = {s € C; : |s| = r} of the contour C,
in (43) indeed vanishes asymptotically: [ ¢, IndetEq(s)ds ~

2i0Tr(TIBBT)1, as r — +oo, where C, := {s € C: Res >0}
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ImA

Fig. 1. The counterclockwise oriented contour C, in (43) con-
sisting of an arc of radius r (centered at the origin) and a
line segment of the imaginary axis with the endpoints +ir.

is the open right half-plane, and the relation det(l, + N) =
1+ TrN 4 o(N), as N — 0, is used together with the identity
Tr(SBBTS) = Tr(S>BBT) = Tr(IIBBT) which follows from the
structure of the matrix S in (10). However, application of the
residue theorem (S1992) to (43) is complicated by the nature
of singularities of the function det Eg (considered in C.). Note
that the corresponding function det(f, — 6®) in the classical
counterpart (28) is rational, thus simplifying the evaluation
of the integral. This observation can be combined with the
Maclaurin series expansions of the trigonometric functions,
which allows (26) to be approximated as

Do =1, — $6%%? — 00(I, — 167¥?) +0(6%)
=1,— 0D — 0%, — $0)¥* +0(6°) (45)

as 8 — 0. Substitution of (45) into (25) leads to the approximate
computation of the QEF growth rate as a perturbation of its
classical counterpart (28):

Y(0)=V(6)
T % /]%Tr((ln —00(A)) (1, - (1)) ¥(1)?)dA
+0(0%), as6—0. 46)

Since the integrand in (46) is a rational function of the fre-
quency A, whose continuation to the closed right half-plane
(iR)UC has no poles on the imaginary axis under the con-
dition (27), the correction term is amenable to calculation via
its residues in C. In view of W(1)? < 0 for all A € R, the
relation (46) also implies that Y(0) < V() for all sufficiently
small 8 > 0.

6. NUMERICAL EXAMPLE WITH A TWO-MODE OQHO

Consider a two-mode OQHO, whose n = 4 system variables
consist of two position-momentum pairs, which have the CCR
matrix @ := %J ® I and are driven by m = 6 quantum Wiener
processes. The state-space matrices A, B in (6) and the weight-
ing matrix IT in (9) are given by

[—5.8100 —1.6357 0.2062 —3.1331
4.0006 0.1377 5.3578 —0.5514
A= 1.1223 —3.0351 —5.7830 4.4308 |’ @7
L 2.7957 —0.8671 —2.2443 —0.0737
[—0.4698 0.5026 19107 -1.0020 1.8676 —1.0523
B.— 0.8036 —0.0727 —1.9520 2.4997 —1.2066 —0.7074
7 | =0.1061 —0.1776 09175 —0.3621 —0.2116 2.3771 |’
| —2.2158 —1.3753 —1.2109 —0.8576 0.3423 1.1991
[3.2123 35111 1.3912 —1.8097
= 35111 10.6258 3.7561 —3.7850
| 13912 3.7561  3.3244  —0.5456|
L—1.8097 —3.7850 —0.5456 1.9349
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In this example, the threshold (27) is 8y = 0.0908. The graph of
the function — Indet Dy from (25), (26) for 6 = 0.96y = 0.0817
is shown in Fig. 2 along with its high-frequency asymptote.
The results of numerical computation of the QEF growth rate

IndetD,(3)

107 10° 10 102
A

Fig. 2. The graph of the function —IndetDg(A) for positive
frequencies A > 0 (solid line). The dashed line represents
the high-frequency asymptote %Tr(HBBT), as A — oo,
following from (44).

using (37) and Theorem 2 are shown in Fig. 3. The numerical

25

Fig. 3. The graph of the QEF growth rate (25) as a function of
the risk sensitivity parameter 6.

integration (over positive frequencies in view of the symmetry
of the integrand) employed a combination of a mesh of step size
0.005 for a low-frequency range [0, 100] and the high-frequency
asymptote for A > 100. The choice of the cutoff frequency
was based on the spectrum {—3.4734 +2.6849i,—2.2911 +
4.1584i} and the operator norm ||A|| = 9.4475 of the matrix
(47). The integration over 6 was carried out with step size
0.016p =9.08 x 107*.

7. CONCLUSION

We have established a frequency-domain formula for the
infinite-horizon QEF growth rate at the invariant Gaussian state
of a stable multimode OQHO driven by multichannel vacuum
fields. This representation involves the quantum spectral den-
sity, whose parts are expressed in terms of the transfer function
of the system. We have obtained a differential equation for the
QEF growth rate as a function of the risk sensitivity parameter
and outlined its computation using a homotopy technique. A
contour integration approach has also been discussed for this
purpose along with a more complicated nature of singularities
in compositions of trigonometric and matrix-valued rational
functions. The latter requires the development of novel spec-
tral factorization techniques (and state-space equations) for this
class of computational problems which go beyond the standard
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application of the residue theorem to rational functions. The
results of the paper provide a solution of the risk-sensitive ro-
bust performance analysis problem for linear quantum stochas-
tic systems, which will be applied in future publications to
coherent and measurement-based control and filtering settings
for such systems.
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