
Comparison of optimal actuation patterns
for flagellar magnetic micro-swimmers

Yacine E. Faris ∗,∗∗ Jean-Baptiste Pomet ∗ Stéphane Régnier ∗∗
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Abstract: In this article, we present a simplified model of a flagellar micro-swimmer actuated
by external magnetic fields that is based on shape discretization and an approximation of
the hydrodynamical forces. We numerically solve the optimal control problem of finding the
actuating magnetic fields that maximizes its horizontal propulsion speed over a fixed time under
different constraints on the magnetic field amplitudes and compare the optimal solutions. All
the simulated magnetic fields out-perform the standard sinusoidal actuation method that is
prevalent in the literature and in experiments. Moreover, non-planar constraints on the control
leads to novel optimal trajectories for flagellar low-Reynolds swimmers and perform significantly
better than planar actuation.
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1. INTRODUCTION

Robotic micro-swimmers have the potential to conduct
small-scale operations such as targeted drug delivery (Qiu
et al. (2015); Patra et al. (2013)), and minimally invasive
medical diagnosis and surgery (Mack (2001); Fusco et al.
(2014)). The design and way of locomotion of these devices
is based on biological swimming micro-organisms, and
wireless actuation methods are often chosen over built-in
energy sources because of the difficulties of miniaturizing
the latter. In particular, the actuation of partially magne-
tized micro-swimmers via external time-varying magnetic
fields has proven to be an effective way to induce propul-
sion at the micro-scale (Dreyfus et al. (2005); Ye et al.
(2014); Qiu et al. (2015)).
In this paper, we focus on flexible magnetic micro-
swimmers that are based on flagellar cells in their design.
By magnetizing the tail (Dreyfus et al. (2005)) or the head
(Khalil et al. (2014); Oulmas et al. (2017)) of the swimmer,
the propulsion of the swimmer in a straight line is obtained
in experimental settings by applying the superposition of
a static magnetic field to orient the swimmer in the desired
direction and an oscillating magnetic field perpendicular
to the swimmer, which leads to a planar beat of its
tail. Dynamic models of flexible microswimmers (whether
robotic or biological) are often based on hydrodynamics
and continuum mechanics (elasticity), and expressed with
partial differential equations that are numerically expen-
sive and thus often reduced to the planar case (Lowe
(2003); Tornberg and Shelley (2004)). This complexity
makes such models ill suited for the numerical resolution
of optimal control problems related to the actuation of
flexible micro-swimming robots such as minimal-cost tra-
jectory planning.
We present a simple and numerically cheap dynamical

model of a flagellar micro-swimmer in 3D and use it to
investigate optimal magnetic actuation patterns for hori-
zontal propulsion. After discretizing the shape of the tail
of the swimmer, we use Resistive Force Theory (Gray and
Hancock (1955)) to approximate the hydrodynamics of the
system , generalizing the planar ’N-link Swimmer’ models
from Moreau et al. (2018) and Alouges et al. (2013, 2015).
We numericaly solve the optimal control problem of finding
the actuating magnetic field that maximizes the horizontal
displacement of the swimmer during a fixed time. We
investigate four different types of constraints on the control
: firstly, we consider the feasible controls to be the su-
perposition of static orientating field along the prescribed
swimming direction and a time-varying orthogonal actu-
ating field, which leads to a single-input optimal control
problem. Secondly, we consider the control to be a two-
dimensional magnetic field where both components are
time-varying. Lastly, we consider two three-dimensional
magnetic fields that leads to out-of-plane optimal trajec-
tories: one with a static orientating component and two
orthogonal time-varying fields, and one where all three
components are time-varying.
One of the main conclusions that stems from the nu-
merical solutions of these optimal control problems is
the periodicity of the optimal magnetic fields in the all
cases (modulo edge effects) and the periodicity of the
deformation undergone by the tail of the swimmer when
actuated by these magnetic fields. Furthermore, we show
that all the solutions out-perform by large the standard
sinusoidal fields used in experiments, especially the non-
planar solutions. Another result shown by the simulations
is that static orientating magnetic fields are not necessary
for horizontal propulsion, and that propulsion speed is
significantly improved where all the magnetic field com-
ponents are free to be optimized.
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This paper is organized as follows : first, we describe our
swimmer model and derive its dynamics then, we formu-
late the maximum-displacement optimal control problems,
assuming that we want the micro-robot to swim in the
x-direction and present the numerical solutions of the
problems. Lastly, we discuss influence of the number of
links of the tail of the swimmer on the solutions of the
optimal control problems.

2. 3D FLAGELLAR MAGNETIC MICRO-SWIMMER
MODEL

The micro-swimmer model used in this study is a 3D
generalization of the planar swimmer models of Moreau
et al. (2018) and Alouges et al. (2013, 2015). We consider
a swimmer of the form of a magnetized spherical head
attached to an articulated chain ofN slender rods of length
l that can rotate with respect to each other with elastic
torques that tend to keep them aligned. We assume that
the swimmer is immersed in an unbounded domain of a
viscous fluid and that it swims at a low Reynolds number.
Under these assumptions, we neglect the inertial effects
on the swimmer in favor of the viscous effects and use
the Resistive Force Theory (RFT) framework (Gray and
Hancock (1955)) to simplify the fluid-structure interaction.

2.1 Kinematics of the swimmer

Fig. 1. Reference and local frames of the discrete-shape
model. The swimmer’s head frame is oriented relative
to the reference frame. For each link i, the correspond-
ing local frame Ri is oriented relative to Rh.

We associate to the head of the swimmer the moving
frame Rhead = (Oh, e

h
x, e

h
y , e

h
z ), where Oh is the center

of the head. The orientation of each link i is represented
by the moving frame Ri = (Oi, e

i
x, e

i
y, e

i
z), where Oi is

the extremity of the i-th link. We define Rhead ∈ SO(3)
as the rotation matrix that allows the transformation of
coordinates from the fixed reference frame to Rhead and
the matrices Ri ∈ SO(3), for i = 1 · · ·N , as the relative
rotation matrix that transforms coordinates from Rhead

to Ri. Rhead is parametrized by a (X − Y − Z) rotation
sequence (θx, θy, θz) and each relative rotation matrix Ri

is parametrized by a Y − Z rotation sequence : (φiy, φ
i
z)

relative to the head’s frame. Using these notations, the
swimmer is represented by two sets of variables : The
Position variables: (X,Θ) where

X = (xh, yh, zh) ∈ R3 and

Θ = (θx, θy, θz) ∈ [0, 2π]3,
(1)

and the 2N Shape variables, denoted by

Φ = (φ1y, φ
1
z, · · · , φNy , φNz ) ∈ [0, 2π]2N . (2)

2.2 Dynamics of the swimmer

The RFT framework neglects the global interactions be-
tween the swimmer and the surrounding fluid in favor of
the local anisotropic friction of the slender body with the
surrounding fluid. This results in explicit expressions of
the density of force applied by the fluid to the swimmer
that are linear with respect to (Ẋ, Θ̇, Φ̇). More precisely,

We consider a hydrodynamical drag force F h
head acting

on the head of the swimmer that is proportional to its
velocity in each of the direction of the head’s frame’s
vectors Rhead and a hydrodynamical torque on the head
that is proportional to its angular velocity :

F h
head = −RheadDHR

T
headẊ

T h
head = −kRΩhead.

(3)

where kH,‖, k
1
H,⊥, and k2H,⊥ are positive real numbers that

represents the hydrodynamic drag coefficients of the head
along the ehx, e

h
y and ehz direction, DH is the matrixkH,‖ 0 0

0 k1H,⊥ 0
0 0 k2H,⊥

,kR is the rotational drag coefficient

of the head and Ωhead is the angular velocity vector of the
head of the swimmer.

To compute the hydrodynamic effects on each link i ∈
(1, · · · , N) of the tail, we consider the hydrodynamic force
density fi(s) acting on a point xi(s) parametrized by
its arclength s. Following Resistive Force Theory, the
expression of fi(s) reads :

f i(s) = −k‖(V i(s).e
i
x)eix − k⊥(V i(s).e

i
y)eiy

− k⊥(V i(s).e
i
z)eiz

(4)

where k‖ and k⊥ are respectively the parallel and perpen-
dicular drag coefficients of the swimmer and V i(s) is the
velocity of xi(s).

The drag force on link i, F h
i , and hydrodynamic torques

on each link i (about the extremity Oj of link j derive
from the force densities as follows:

F h
i =

∫ l

0

f i(s)ds , (5)

and

∀j ∈ (1 · · ·N) T h
i,Oj

=

∫ l

0

(xi(s)−Oj)× f i(s)ds , (6)

where l is the length of each link.

We consider that the head of the swimmer is magnetized
along the ehx axis. Denoting by M the magnetization vec-
tor of the head and considering an external homogeneous
time-varying field B(t), the following torque is applied to
the swimmer

Tmag = M ×B(t). (7)

The acceleration terms in the dynamics are neglected due
to the Low Reynolds assumption (Yates (1986)), thus, the
balance of forces and torques applied on the swimmer
gives:
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F h
head +

N∑
i=1

F h
i =03 ,

T h
head +

N∑
i=1

T h
i,H =− Tmag ,

(8)

which leads to 6 independent equations. In addition to
these equations, we take the internal contributions of the
tail and its elasticity into account by adding the balance of
torque on each subsystem consisting of the chain formed by
the links i to N for i = 1 · · ·N . These 3N equations reduce
to 2N non-trivial equations by taking only the components
perpendicular to the link k when calculating the sum of the
torques from k to N . The elasticity of the tail is discretized
by considering a restoring elastic moment T el

i at each joint
Oi that tends to align each pair (i, i+ 1) of adjacent links
with each other:

T el
i = kele

i
x × ei−1

x . (9)

Thus, the dynamics of the swimmer are described the
following system of 2N + 6 equations :



F h
head +

N∑
i=1

F h
i = O3 ,

T h
head +

N∑
i=1

T h
i,H = −Tmag ,

N∑
i=1

T h
i,1.e

1
y = −T el

1 .e1y ,

N∑
i=1

T h
i,1.e

1
z = −T el

1 .e1z ,

...

...

T h
N,N .e

n
y = −T el

n .eny ,

T h
N,N .e

n
z = −T el

n .enz .

(10)

Following Resistive Force Theory, and the definition of the
drag densities, the hydrodynamic contributions (left-hand
side of the previous system) are linear with respect to
the angular and translational velocities, thus, the previous
equation can be rewritten matricially in the form :

Mh(Θ,Φ)

Ẋ

Θ̇

Φ̇

 = B(X,Θ,Φ). (11)

, where Mh(Θ,Φ) ∈ R(2N+6)×(2N+6 represents the hydro-
dynamical effects on the swimmer and the right-hand side
B(X,Θ,Φ) ∈ R2N+6 corresponds to the magnetic and
elastic contributions on the swimmer.

The previous equation can be rewritten as a control
system, where the dynamics of the swimmer are affine with
respect to the components of the actuating magnetic field
viewed as a control:

Ẋ

Θ̇

Φ̇

 = F0(Θ,Φ) + (Bx(t) By(t) Bz(t))

(
F1(Θ,Φ)
F2(Θ,Φ)
F3(Θ,Φ)

)
(12)

where the vector fields F0, · · · , F3 are functions of the
columns of (Mh)−1 and of the magnetic and elastic con-
stants.

3. SWIMMING WITH SINUSOIDAL FIELDS

The most commonly used actuating strategy for straight
swimming in experiments is to apply the superposition
of a static magnetic field to orient the swimmer in the
desired direction and a perpendicular sinusoidal field to
actuate the swimmer. This induces a planar symmetric
beating of the tail of the swimmer, allowing a horizontal
displacement. This actuation strategy will be used as a
benchmark to compare with the optimal solutions. The
hydrodynamical and elastic parameters of the model were
fitted on experimental data (El Alaoui-Faris et al. (2020))
.for the characterization of the swimmer. Using these
parameters, we are able to simulate the velocity-frequency
response curve of the swimmer (Fig. 3), using a magnetic
field of the form :

B(t) = (Bx, By sin(2πft), 0) . (13)

The velocity-frequency response curve of the swimmer
shows a behaviour typical of flagellar low Reynolds swim-
mers, as it shows an increase of the swimming velocity until
a cut-off frequency (1.5 Hz) where the velocity decreases
slowly beyond this value.
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Fig. 2. Simulated velocity-frequency response curve of the
swimmer.

4. OPTIMAL CONTROL PROBLEMS

The purpose of this paper is to find the time-varying mag-

netic field B =

(
Bx(t)
By(t)
Bz(t)

)
that maximizes the horizontal

displacement of the swimmer at a fixed time tf . Denoting

by Z(t) the state vector

(
X(t)
Θ(t)
Φ(t)

)
and rewriting equation

(12) as Ż(t) = f(Z(t),B(t)), this optimal control prob-
lem is written as :
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maxx(tf )

˙Z(t) = f(Z(t),B(t))

Z(0) = 0

B(t) ∈ C

, (14)

where C is the set of constraints on the magnetic field and
tf is the final time fixed at 3s . We investigate four optimal
control problems depending on the types of constraints on
the actuating magnetic field, taking in each case the same
bounds on the magnetic field intensities.

(1) In the first optimal control problem (OCP1), we
consider the admissible controls as the superposition
of a static orientating field along the x axis and a
time-varying field along the y axis :

C1 = {B(t), Bx(t) = 2.5mT, |By| ≤ 10mT,Bz(t) = 0}
(2) In the second optimal control problem (OCP2), both

the x and y components of the magnetic field are
time-varying.

C2 = {B(t), Bz(t) = 0, ||(Bx(t), By(t))|| ≤ 10mT}
(3) In the third problem (OCP3), we consider the ad-

missible controls to be the superposition of a static
orientating field along the x axis and a time-varying
actuating field in the y − z plane.

C3 = {B(t), Bx = 10mT ||(Bz(t), By(t))|| ≤ 10mT}
(4) In the last optimal control problem (OCP4), we

consider the general case where all components of the
magnetic field are time-varying.

C4 = {B(t), ||(Bx(t), Bz(t), By(t))|| ≤ 10mT}

5. NUMERICAL SOLUTIONS

We use a direct method for solving the aforementioned
optimal control problems. The optimal control solver
ICLOCS (Falugi et al. (2010)) is used for the resolution.
It discretizes the problem into a non-linear programming
problem which is then solved by the interior-point solver
IPOPT (Wächter and Biegler (2006)). Fig. 3 shows the
displacements of the swimmer under each optimal solution,
and under the sinusoidal field at the optimal frequency
(1.5 Hz). We see that non-planar solutions largely out-
performs planar solutions. None of the optimal solutions
display singular arcs. Accordingly, and following Pontrya-
gin’s maximum principle, the solution of the single input
problem OCP1 is a sequence of bang arcs and the solutions
of the other problems are continuous.

0 0.5 1 1.5 2 2.5 3 3.5
t (s)

-2

0

2

4

6

8

10

12

Solution - OCP4

Solution - OCP3

Solution - OCP2

Solution - OCP1

Sinusoidal Field

Fig. 3. Comparison of x-displacements associated with the
solutions of OCP1-4 and with the sinusoidal actuation

5.1 Planar Solutions

For OCP1 and OCP2, the dimension of the dynamic
system reduces to N+3 because of the fact that the con-
straints on the controls leads to a planar trajectory in the
x − y plane. The numerical solution for OCP1 takes the
form of a sequence of Bang arcs, as seen in Fig. (4, (a)
) whereas the solution of OCP2 is continuous ((b), (c)).
In both cases, the optimal actuation patterns lead to a
trajectory where swimmer oscillates around the x axis
while moving in the x-direction (see Fig. 5).
The shape of both optimal trajectories is similar to the
trajectory of the swimmer under the sinusoidal field. Inter-
estingly enough, the optimal magnetic fields are periodic
in both cases, and induce a periodic deformation of the
swimmer, as seen in Fig. 6. Both solutions out-perform
the reference sinusoidal actuation in terms of horizontal
speed.
In practice, the solution of OCP-1 shows that having
an orthogonal actuating field (in addition to the static
orientating field) in the form of a square signal is more
efficient than an actuating sinusoidal field. The solution
of the second planar problem (OCP-2) shows that ori-
entating fields are not necessary for straight swimming
and that actuating a flagellar magnetic swimmer with two
time-varying components leads to a substantial increase in
swimming speed.
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Fig. 4. Solution of the planar optimal control problems.
(a) : y-component of the solution of OCP-1 compared
with the sinusoidal field at optimal frequency (1.5Hz).
(b): x-component of the solution of OCP-2. (c) : y-
component of the solution of OCP-3.
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Fig. 5. Optimal planar trajectories associated with OCP-
1 and OCP-2 compared with the trajectory of the
swimmer actuated by the sinusoidal field.
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Fig. 6. Shape angles of the swimmer for the solutions of
both planar problems OCP-1 and OCP-2.

5.2 Non-planar solutions

The non-planar optimal magnetic fields solutions of OCP3
and OCP4 leads to trajectories ,shown in Fig. 8, where the
swimmer revolves around the horizontal axis.
As seen in Fig. 3, the non-planar actuation patterns largely
out-performs the planar ones, which shows the necessity
of allowing flagellar swimmers to go out-of-plane in order
to swim at a maximal propulsion speed. Similarly to the
planar case, the optimal solution is periodic apart from
transient states near the initial and final times (see Fig.
7) and induce a periodic 3D deformation of the tail of the
swimmers, as shown in the phase planes of Fig. 9.
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Fig. 7. Solution of the non-planar optimal control prob-
lems. (a) : y-component of the solution of OCP-
3. (b): z-component of the solution of OCP-2. (c)
: x-component of the solution of OCP-4. (d) :
y-component of the solution of OCP-4. (e) : z-
component of the solution of OCP-4.
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Fig. 8. Trajectories of the swimmer associated with the
solutions of OCP-3 and OCP-4.
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Fig. 9. Shape variables of the swimmer when actuated by
the non-planar optimal magnetic fields (OCP3 and
OCP4). Phase portrait of the relative angles in the
(φiy − φiz) for each link i of the tail.

5.3 Influence of the number of links on the trajectory and
shape of the swimmer

An analysis of the influence of the number of links of the
model on the optimal trajectories and magnetic fields have
been made for OCP4. We define the relative trajectory
error Etr as :

Etr =
||XN −XN−1||∞

||XN ||∞
, (15)

where XN is the optimal trajectory using N links for the
tail. Similarly, we define the relative solution error Esol as
:

Esol =
||BN −BN−1||∞

||BN ||∞
, (16)

where BN is the optimal magnetic field using N links for
the tail.

Fig. 10 shows the evolution of the relative trajectory and
solution errors for N = (1 · · · 9). We notice that the
optimal magnetic field and the optimal trajectory only
marginally changes when increasing the number of links
beyond 3. This shows that a 3-linked tail is enough for the
optimization of the actuation of flagellar magnetic swim-
mers, which further emphasizes the low computational cost
of our model.

Fig. 10. Relative optimal trajectories and solution errors
for an increasing number of links of the tail of the
swimmer.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9254



6. CONCLUSION AND PERSPECTIVES

In this paper, we have presented a simplified 3D dynamical
model for flagellar micro-swimmers based on Resistive
Force Theory and shape discretization, which circumvents
the numerical drawbacks of continuum mechanics-based
models. This model was used to investigate different planar
and non-planar optimal actuation strategies for magnetic
micro-swimmers that out-perform the commonly used si-
nusoidal actuation. In particular, the non-planar actuation
strategies lead to a novel 3D trajectory and are signifi-
cantly more efficient than the planar ones.
Another result stemming from the numerical simulations
is the investigation of optimal actuation strategies that do
not rely on a static orientating magnetic field, as allowing
all the components of the magnetic field to be time-varying
leads to an increase in swimming speed. However, these
actuation methods lead to larger oscillations of the swim-
mer around the swimming direction, which could be an
inconvenient for some experimental settings such as path
following.
Beyond the present study, the simplified model presented
in our model allows for easy numerical optimization studies
for micro-swimmers such as parameter fitting or optimal
motion planning for magnetic swimmers. It has been suc-
cessfully used to optimize the displacements of an ex-
perimental swimmer in (El Alaoui-Faris et al. (2020)).
It can also be easily adapted to model biological flagel-
lar micro-swimmers. Ongoing work includes optimization
of the swimming speed for more complex cost functions
(maximization of efficiency, path following ..) and adapting
the model for swimming in complex environments (for
example in a narrow channel or in presence of a wall).
Theoretical study of the optimal control problems is also
a perspective of this work.
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