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Abstract: The development of driving functions for autonomous vehicles in urban environments is still
a challenging task. In comparison with driving on motorways, a wide variety of moving road users,
such as pedestrians or cyclists, but also the strongly varying and sometimes very narrow road layout
pose special challenges. The ability to make fast decisions about exact maneuvers and to execute them
by applying sophisticated control commands is one of the key requirements for autonomous vehicles
in such situations. In this context we present an algorithmic concept of three correlated methods. Its
basis is a novel technique for the automated generation of a free-space polygon, providing a generic
representation of the currently drivable area. We then develop a time-dependent hybrid-state A∗ algorithm
as a model-based planner for the efficient and precise computation of possible driving maneuvers in
arbitrary dynamic environments. While on the one hand its results can be used as a basis for making
short-term decisions, we also show their applicability as an initial guess for a subsequent trajectory
optimization in order to compute applicable control signals. Finally, we provide numerical results for a
variety of simulated situations demonstrating the efficiency and robustness of the proposed methods.

Keywords: Autonomous vehicles, Automated guided vehicles, Path planning, Automotive control,
Optimal control, Nonlinear model predictive control, Vehicle models, Moving objects

1. INTRODUCTION

The vision of driverless cars comes hand in hand with promises
of increased road safety or cost efficiency (Maurer et al., 2016).
While the development of such technologies lasts until today,
it already started with early pioneering demonstrations in the
1990s (Dickmanns, 1997). However, it is still a challenging task
to develop a fully autonomous system that is able to safely drive
in very general and dynamic environments, such as unrestricted
urban areas with other traffic participants. A robust navigation
in such situations relies on the one hand on fast planning of
possible actions and on the other hand on the computation of
corresponding vehicle controls that lead to an efficient and safe
but also comfortable maneuver.

Some approaches for the implementation of such strategies
introduce highly specialized solutions for specific maneuvers
like parking (e.g. Siedentop et al., 2015). More general solu-
tions might be expected by using data-driven concepts. Most
recently, new methods based on deep learning proposed control
policies for tasks like lane following (Bojarski et al., 2016) or
even more generic navigation (Folkers et al., 2019). Although
these algorithms show promising results, their application in
unknown situations strongly depends on the diversity of the
data in the training procedure.

A very general approach to solve arbitrary navigation tasks
is the usage of optimal control techniques for model-based
planning. This method proved to provide very sophisticated
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solutions in various context such as the control of spacecrafts
(e.g. Schattel, 2018) or mobile robots (e.g. Meerpohl et al.,
2019). Most of all it emerged to be well applicable for the real-
time control of autonomous vehicles in the setting of nonlinear
model predictive controllers (e.g Falcone et al., 2007; Paden
et al., 2016; Rick et al., 2019).

Certainly, since optimal control methods are usually based on
local optimization, their efficient application relies heavily on a
well thought out implementation of the corresponding problem.
For autonomous driving this is strongly related to the descrip-
tion of spatial constraints given by e.g. static and moving ob-
stacles or the boundary of the lane. In well structured scenarios,
which is for example the case in highway driving, methods for
obstacle avoidance can be based on geometric considerations
(e.g. Wolf and Burdick, 2008). However, for more general cases
Meerpohl et al. (2019) propose a description of the environ-
ment based on free-space polygons. This, once again, has been
proven to be well suited for solving optimal control problems
in the context of autonomous vehicles (Sommer et al., 2018).
Nevertheless, it should be noted that all solutions proposed so
far must be provided with a set of viewpoints from which the
polygon is then created, which can be a disadvantage in very
general applications.

A further crucial element in solving optimal control problems
is the requirement of a sufficiently good initial estimate of the
solution (Shiller, 2015). Ideally, this would take into account
both the observed spatial restrictions as well as the constraints
on the vehicle’s motion, defined by the considered dynamic
model. The latter condition might be regarded by analytically
computing a shortest path according to Reeds and Shepp (1990)
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Fig. 1. The research vehicle.

as done by Sommer et al. (2018). However, this does not
incorporate any obstacles which might affect the convergence
of a local optimizer. Alternatively, one could utilize a fast
planning algorithm like A∗ for finding a reference path in a
static environment. This could be even further enhanced by
using, e. g., the hybrid-state A∗ method introduced by Dolgov
et al. (2008), which also takes a dynamic model of the vehicle
into account. It is worth pointing out that, even doing so, this
initial guess would still not be able to capture the movement of
dynamic traffic participants.

1.1 Paper Subjects

The contribution of this work is threefold. On the one hand,
we will develop an extension of the hybrid-state A∗ algorithm
to allow fast path planning and decision making in dynamic
environments. On the other hand, we show how to use its results
as a reference for a consecutive trajectory optimization step
which is, in turn, the basis for a model predictive controller.
The foundation of both, planning and optimization, lies in the
description of the vehicles (arbitrary) static surrounding by a
free-space polygon. Therefore, our third contribution is the
introduction of a method for its automated generation, which
makes this technique applicable as a preliminary step without
further knowledge.

1.2 Research Vehicle

The methods presented in this paper represent a general ap-
proach to motion planning and the computation of control
commands for self-driving cars in urban environments. How-
ever, it should be mentioned that specific vehicle parameters
used for the evaluation - like control constraints, signal delays,
sizes, etc. - refer to our research vehicle shown in Fig. 1. It
allows the execution of autonomous driving maneuvers, for
example, by providing corresponding acceleration values and
steering angles. See Rick et al. (2019) for more details.

2. AUTOMATED FREE-SPACE POLYGON GENERATION

In this section, we describe how a free-space polygon can be
generated for the static components of an arbitrary environ-
ment. Even if we take the example of autonomous driving in
this work, we would like to emphasize that this method is appli-
cable to general planning problems in the plane. Thereby, per-
ception might be based on both, measured sensor data as well as
a-priori knowledge about fixed parts of the current surrounding
(e. g. the position of lanes). The union of these informations
will in the following be denoted as D and is assumed to be a
point cloud to facilitate general applicability.

The algorithm itself can be understood as an iterative process,
that increases the size of the free-space polygon in every step.
At each stage the polygon is expanded according to selected
viewpoints. Afterwards new viewpoints are identified based on
the latest expansion. Compared to, e. g., flood filling algorithms,
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Fig. 2. Automated free-space polygon generation algorithm on
real data from a parking lot (black). Orange lines show the
first three polygons from top left to bottom right. Red dots
illustrate the computed viewpoints to be used for the next
iteration. Light red dots show previously used viewpoints.
Green lines correspond to the respective Voronoi paths R .

this approach focuses on the generation of the local free-space
boundary only and is therefore very efficient and due to its
iterative character easily adjustable in search direction or depth.

The method is initialized with the systems’s current state s0
(position and orientation) being the starting viewpoint. An
illustration of the first three steps of an exemplary situation of
the whole procedure is given in Fig. 2. The complete method is
presented in Algorithm 1.

2.1 Generation of Polygons

For each given viewpoint υ a free-space polygon is created and
afterwards united with the polygons from previous steps of the
automated generation process. The creation of a single polygon
is based on the entries of the obstacle point cloud in the vicinity
of the corresponding viewpoint and can be implemented by
various methods, e. g. the one intro duced by Meerpohl et al.
(2019). Therein, the vertices of a free-space polygon are defined
by emitting circles on rays and testing them for collisions
with obstacle points. However, depending on the number of
point cloud entries, other approaches may be more efficient.
For example, the amount of necessary evaluations could be
reduced by assigning the obstacle points to circular sectors. In
this paper we apply such a circular sector-approach which also
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Fig. 3. Free-Space Polygon Generation. Grey circles represent
obstacles points with their specific size and the black dots
mark their centers. The dashed lines show the direct con-
nection between obstacle point and viewpoint. Considered
obstacles are marked by red dots. Empty circular sectors
are colored red, otherwise green. The resulting free-space
polygon is given by the orange line.
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Fig. 4. Potential function GP ,V ∗ for finding new viewpoints
(represented as red dots) after the second stage of the
polygon generation shown in Fig. 2. The light red ellipses
indicate the position of previous viewpoints.

considers the obstacle point sizes. For this purpose, the position
of the nearest point cloud entry in each sector is reduced to its
closest point to the viewpoint, as illustrated in Fig. 3a. In case
of no occupancy, a point is selected according to the maximal
predefined expansion ξ . However, it is possible that an obstacle
point extends across more than one sector. In this case, it is
considered in each of them and hence might be marked more
than once. Because of this reason, for instance, obstacle point
B is assigned to sectors II and III and obstacle point C to sector
IV in Fig. 3a. If obstacle sizes were not taken into account like
this, it could happen that a sector would be classified as free,
leading to undesired results, as shown in Fig. 3b.

2.2 Generation of Viewpoints

The selection of valuable new viewpoints has to regard the fol-
lowing two conflicting criteria. On the one hand, they should be
close to the boundary of the current-stage polygon to promote
further expansion. However, on the other hand, if a viewpoint
is too close to the boundary, its expansion might be strongly
hindered by obstacles directly next to it.

We propose the following procedure to find a good trade-off
between both aspects. First, local maximizers of the potential
function GP ,V ∗ : R2→ [−∞,0) defined by

GP ,V ∗(p) =

{− 1
1+dP (p) − ∑

υ∈V ∗
1

1+d(υ ,p) , if p is inside P

−∞, else
are considered as candidates. Here, d(·, ·) and dP (·) define the
distances of a point to another one or to the polygon’s border,
respectively. V ∗ denotes the set of previous viewpoints. The
benefit of this potential is that its maximizers are placed in the
center of areas that are far away from old reference points.

However, it is still possible that there are local maximizers of
GP ,V ∗ that are rather close to each other or, alternatively, be-
tween old viewpoints. In artificially created examples without a
road-like structure, solutions might even be represented by line
segments. Therefore, to avoid accumulations of viewpoints, a
subset of the new candidates is selected that complies with a
predefined clearance γ in a second step. This selection may,
for instance, be based on the corresponding values of GP ,V ∗ , a
given target route or the current direction of travel. The result
is illustrated for an exemplary situation in Fig. 4 which shows
the potential field of the polygon from Fig. 2 (bottom left). Here
two new viewpoints are determined.

3. TIME-DEPENDENT HYBRID-STATE A∗

An essential feature of self-driving cars is the ability to rapidly
plan a set of executable actions even in complex situations. A

Algorithm 1: Automated free-space polygon generation.
Input: sytem state s0, data D
Parameter: refinements τ,clearance γ, expansion ξ

Set polygon P := {} and viewpoints V := {s0},V ∗ := {};
for k← 0 to τ do

Set i := 0;
foreach υ ∈V do

i← i+1;
Pi := GeneratePolygonFrom(υ ,D );

P ← unite(P ,P1, . . . ,Pi);
if k 6= τ then

V ∗←V ∗
⋃

V ;
V ← GetViewpoints(P ,V ∗);

return P ;
Function GeneratePolygonFrom(υ ,D)

P = {};
foreach S ∈ Sectors do

Set pnearest := nan, dnearest := ∞;
foreach p ∈D do

if p ∈ S and d(p,υ)< dnearest then
pnearest← p, dnearest← d(p,υ);

if pnearest 6= nan then
Add pnearest to P ;

else
Add midpoint at end of sector to P ;

return P ;
Function GetViewpoints(P ,V ∗)

Set V ←{p ∈ R2 | p local maximizer of GP ,V ∗};
while M := { p ∈V | d(p,V ∗

⋃
[V \{p}])< γ} 6= /0 do

V ←V \{p} for one p ∈M ; // no accumulations

return V ;

well-known approach that fulfills these requirements in static
settings is the hybrid-state A∗ algorithm by Dolgov et al. (2008).
Building upon its idea of hybrid nodes, we present details of an
extension that is able to also capture time-varying parts of the
vehicles environment.

3.1 Kinematics

To consider the movement of objects O in the planned path of
the ego-vehicle, it is necessary to take its speed into account
and to allow changes to it. The simplest kinematic description
incorporating this is the single-track model (e.g. Luca et al.,
1998) given as(

ẋ, ẏ, φ̇ , v̇
)>

= (vcos(φ),vsin(φ), v/L tan(β ),a)> . (1)

Therein, the car’s state consists of the (x,y)-position (defined
as the center of the rear axle), the orientation φ as well as the
speed v. The wheelbase L denotes a vehicle-specific parameter.
The motion of the car may be influenced by the acceleration a
or by the steering angle β .

Like in the ordinary hybrid-state A∗ algorithm, the motion of
the car is regarded by applying discrete controls, in our case
A := {a1, . . . ,aNa} and B := {β1, . . . ,βNβ

}. This results in a
continuous state representation (t,x,y,φ ,v), with t denoting
the time (in order to take varying locations of obstacles into
account). The A∗ search space is then formed by discretization
of these state variables, whereby the continuous representation
and its corresponding discrete cell are stored jointly. After
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Fig. 5. (Unfiltered) Voronoi diagram (green lines) for the sec-
ond free-space polygon (orange lines) from Fig. 2.

termination of the search algorithm, a feasible path in the
sense of the kinematic model (1) is available by following the
continuous representation of the corresponding nodes.

3.2 Dynamic Voronoi Field

As proposed in the original hybrid-state A∗ method, our ap-
proach is guided by a cost function based on a Voronoi dia-
gram. During planning, its edges serve as a reference path to
avoid collisions. Moreover, a Voronoi diagram for a free-space
polygon can be computed very efficiently by the Sweepline
algorithm (e.g. Sydorchuk, 2012), which allows the input sites
to be solely in the form of segments. The resulting set of
edges, which come typically in the form of curves, are then
approximated by straight lines to enable the fast computation
of distances to them.

The resulting Voronoi diagram usually contains edges that are
not suitable as references for path planning., e.g., those that
lie outside or close to the border of the polygon, as shown in
Fig. 5. However, the corresponding vertices can be eliminated
easily, so that the Voronoi reference paths R presented in Fig. 2
remain. Note that the small branch-offs shown could be filtered
out further, but have almost no influence on the planning result
in practice, as they usually do not comply with the vehicles
kinematics (1).

In cases where other dynamic objects O are within the current
free-space polygon (at least partially), Voronoi reference paths
R t are computed for a number of discrete times to take their
movement into account as well. This is easy to parallelize and
can therefore be conducted very efficiently. The result is then
used to define the time-dependent Voronoi field

ρR t ,P ,Ot (st) :=

(
α

α +d3
P ,Ot (st)

)(
d2

Rt (st)

d3
P ,Ot (st)+d2

R t (st)

)
(

d3
P ,Ot (st)−dmax

dmax

)2 (2)

for the vehicle state st at the discrete time t and with α,dmax ∈
R>0. Further, d2

R t (·) denotes the distance from the vehicle’s
reference point (xt ,yt) to the Voronoi path. Moreover, d3

P ,Ot (·)
represents the minimal distance of the ego-vehicle to the poly-
gon P and all dynamic obstacles Ot , dependent on (xt ,yt ,φt).

The definition in (2) has similar characteristics as the potential
introduced by Dolgov et al. (2008), i.e. ρR t ,P ,Ot ∈ [0,1] and its
property to support the navigation in narrow areas. However,
it is a generalization in the sense that it considers time-varying
information and performs full collision checks. An example of
a maneuver based on this is given in Fig. 6.
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Fig. 6. Avoiding moving obstacles (represented as pale red
circles) using the dynamic Voronoi path (green lines). The
planning result is shown by the sequences of colored dots
at two different times. The orange lines show the free-
space polygon and the three gray circles are used to check
for collisions of the ego-vehicle.

3.3 Costs and Heuristics

Given a desired goal state sT , the movement cost g to a node st
in our proposed A∗ search penalizes three things:

(i) Deviations from a desired speed vset:

gv :=
(vt − vset)

2

max(v2
set,v2

set, min)
.

(ii) Discounted proximity to obstacles:

go := ρR t ,P ,Ot (st)
p}
p⊕

.

(iii) Making a step:
gp := 1.

The lower limit vset, min for the reference speed is introduced
to avoid singularities at small values (e.g. when stopping the
car). The Voronoi field ρR t ,P ,Ot is discounted based on the
expected remaining relative path length. This is obtained as the
ratio of p} and p⊕, which represent estimates of the absolute
path lengths to the goal node sT from the current state st and
from the initial node, respectively. To approximate these two
quantities, we employ the obstacle-free shortest path proposed
by Dubins (1957) (for the case of driving forward) or Reeds
and Shepp (1990) (if driving backwards is also allowed, e.g.
during parking). Finally, all three components are normalized
with the relative stepsize p	/p⊕, which can be assumed fixed for
a constant discretization of the A∗ search space. Altogether, the
costs g are then defined as the weighted sum

g := (wvgv +wogo +wpgp)
p	
p⊕

, wv,wo,wp ∈ R≥0.

The A∗ heuristic h, on the other hand, should estimate the
total costs to reach the goal sT from a given node. A very
optimistic and certainly admissible lower bound for this would
be the expected remaining (obstacle-free) path length p}/p⊕ for
the assumption of having no further deviations from both the
reference speed and the Voronoi path. Nevertheless, we propose
a more pessimistic approach by expecting the current deviations
to persist, hence resulting in the heuristic

h := (wvgv +wogo +wpgp)
p}
p⊕

.

In practice, using h typically provides good approximations of
the true costs and thus results in fast convergence of the planner.
However, this A∗ algorithm is not admissible.

4. OPTIMIZATION & OPTIMAL CONTROL

The preceding sections describe how model-based trajectories
can be planned in complex and dynamic environments. How-
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ever, when it comes to the actual control of an autonomous ve-
hicle, additional constraints and optimality criteria may need to
be applied to determine appropriate control signals. For exam-
ple, it makes sense to consider continuous controls whose rate
of change is bounded, to meet the comfort requirements of a
passenger. In addition, physical aspects, such as the propagation
time of signals, should be considered to achieve high precision
in the maneuvers performed.

Model predictive control represent a framework for meeting
the above-mentioned demands (e.g. Rick et al., 2019). Therein,
optimal control problems of the form

min
z,u,T

J(z,u,T )

s.t. ż(t) = f (z(t),u(t)),
zmin ≤ z(t)≤ zmax,

umin ≤ u(t)≤ umax,

Ψ(z(0)) = 0,
C(z(t),u(t), t)≤ 0 for all t ∈ [0,T ]

(OCP)

are solved to find states z ∈ C 1([0,T ],Rnz), controls u ∈
C 0([0,T ],Rnu) and the process time T ∈ R>0, that optimize an
objective function J, at high frequency. Furthermore, the sys-
tem’s dynamic f is considered and the optimization variables
are subject to box constraints, initial conditions Ψ and path
constraints C. The main advantage of this problem formulation
lies in its universality, which allows the application for various
different driving maneuvers.

In the following, we provide details of an optimal control
problem formulation which allows to compute sophisticated
trajectories, based on the planning results of the time-dependent
hybrid-state A∗ algorithm, with the goal of controlling a real-
world vehicle (see also Sect. 1.2).

4.1 Delayed Single-Track Model

To be applicable to our research car, the dynamic vehicle
model f should include the propagation time for applying the
steering angle β and the acceleration signal a, which are ap-
proximately 120 ms and 500 ms respectively. Furthermore, the
representation of the dynamics should be kept simple, to enable
fast updates in the context of model predictive control. There-
fore, we propose the following single-track model

ẋ = vcos(φ), v̇ = ã, ˙̃
β = (β−β̃ )/∆tβ ,

ẏ = vsin(φ), β̇ = ωβ , ˙̃a = (a−ã)/∆ta,

φ̇ = v/L tan(β̃ ), ȧ = j,

(3)

which extends the kinematics in Sect. 3.1 by introducing
a delayed acceleration ã and steering angle β̃ modeled as
PT1-elements. The signal propagation time is then incorporated
(indirectly) by means of the time lags ∆ta and ∆tβ . Moreover,
changes in the control values can be bounded by considering
the jerk j and the steering angle velocity ωβ , respectively.

4.2 Objective Function

In order to take safety and comfort aspects into account in the
solution of (OCP), the objective function J weights different
terms against each other. First, large changes in the acceleration
and steering angle are avoided by

Jcontrols := w0

∫ T

0
j(t)dt +w1

∫ T

0
ωβ (t)dt, w0,w1 ∈ R>0.

In addition, deviations from the goal speed vset is penalized by

Jstates := w2

∫ T

0
(v(t)− vset)dt, w2 ∈ R>0.

Finally, the goal position is also incorporated within the objec-
tive function instead of considering it as a hard constraint. This
enhances the flexibility of the optimization and results in

Jgoal := w3
(
(x(T )− xgoal)

2 +(y(T )− ygoal)
2) , w3 ∈ R>0.

Altogether, the objective function is defined as
J := Jcontrols + Jstates + Jgoal.

The choice of weighting does not only influence the driving
behavior but also has a great impact on the convergence rate
and robustness of the optimization.

4.3 Constraints & Initial Guess

The latest estimated state of the vehicle defines the initial condi-
tion considered in Ψ of (OCP). Because the final state is already
regarded by the objective function, no further conditions for the
final state at time T are required.

To prevent the vehicle from colliding with obstacles in terms of
the path constraints C, the car is approximated by overlapping
circles, see also Fig. 6. In particular, static obstacles are taken
into account by enforcing to stay within a free-space polygon.
Note that the latter can be reused from the motion planner.
Furthermore, in contrast to the results presented by Sommer
et al. (2018), moving road users are considered in the path
constraints as well.

Since the methods for solving optimal control problems usually
only find local minima, a good initial guess is required. In the
setting of model predictive control, typically the last solution
can be used for this. However, if there is a strong change in the
goal state provided by the decision making, a complete reopti-
mization might be necessary. In this case there are several ways
to obtain an initial estimate, e.g. by linear interpolation, com-
puting a Reeds-Shepp path or by using the trajectory provided
by the time-dependent hybrid-state A∗ algorithm. We compare
the last two options in Sect. 5.2.

5. NUMERICAL RESULTS

We provide numerical results for model-based planning and op-
timal control in simulated situations, which should exemplarily
cover a wide range of requirements on the solver. Thereby, the
environment will be represented as a noisy point cloud. Moving
obstacles are assumed to be approximated by circles. We re-
strict their motion to be linear in all cases to allow comparability
between different situations. However, all methods are applica-
ble to arbitrary estimates of their movement. The experiments
are conducted on a Intel i7-4790 with 3.6 GHz. A summary of
all hyperparameters used can be found in Appendix A.

5.1 Path Planning

Given a certain situation, the motion planner performs two pre-
liminary steps: it generates a free-space polygon (see Sect. 2)
and precomputes the corresponding Voronoi reference paths for
the next 10 s (see Sect. 3.2). A goal is then determined based on
the static Voronoi path in accordance with the requirements of a
superordinate planner (e.g. turn left or park). During planning,
the costs and heuristics of the time-dependent hybrid-state A∗
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Fig. 7. Solutions of the time-dependent hybrid-state A∗ for
exemplary situations. The vehicle’s speed is represented
by the color gradient of the trajectory. The text boxes
show the desired speed vset. Gray circles: ego-vehicle.
Red circles: Moving objects. Green lines: Voronoi path.
Orange lines: Free-space polygon. Light blue lines: Ex-
panded Nodes. The axis coordinates are in meters.

algorithm are evaluated very efficiently by precalculating the
Reeds-Shepp or Dubins paths between discrete states. In addi-
tion, the distances to the polygon and reference path are memo-
rized when evaluating the Voronoi potential ρR t ,P ,Ot . On the one
hand, this typically reduces the computation time for individual
problems by half. On the other hand, these intermediate results
can also be used for efficient decision making, which requires
multiple evaluations of the same scene with different goal nodes
in order to analyze possible actions. Collision checking in the
vicinity of obstacles is based on the continuous state repre-
sentation to reduce discretization errors. Finally, the specific
implementation of the A∗’s open set combines the advantages of
a hashmap and a priority queue, providing fast content checking
and access.

Solutions for exemplary static and dynamic scenarios are illus-
trated in Fig. 7. The corresponding number of expanded nodes
and computation times are presented in Table 1. In general, the
A∗ expansion is strongly oriented towards the Voronoi reference
path. This leads to very safe maneuvers on the one hand and to a
small number of expansions away from the final solution on the
other. This also applies to complicated tasks such as parking
into a narrow parking space or turning with several moving
objects.

The overall computation time results from three components.
While the calculation of the free-space polygon is approxi-
mately constant for all situations, the creation of the Voronoi
path depends on the presence of moving obstacles. If this is
the case, dynamic reference paths are generated based on the
time discretization. Note that these two auxiliary quantities only
have to be determined once for a common scene with different
goals. Finally, the execution of the time-dependent hybrid-state
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Fig. 8. Solution of (OCP) for the scenario given in Fig. 7c.
Left: Resulting optimal path in dark blue. For comparison:
The dotted cyan line shows the Reeds-Shepp path and the
dashed blue line shows the A∗ path. Right: Control values
- acceleration (black) and steering angle (red). The A∗
control is represented by the respective pale dashed lines.

A∗ then terminates for simple situations in less than 5 ms. Its
computation time, however, increases with more distant goals,
such as when turning right, or when more expansion is required
in difficult scenarios. Even in the most demanding cases, so-
lutions are found in less than 40 ms, which makes this method
a fast, accurate and robust basis for tactical decisions in urban
environments.

5.2 Optimal Control

Based on the result of the path planning, the optimal control
problem from Sect. 4 is solved to compute executable control
signals for a self-driving car. In general, this can be done effi-
ciently by transcribing the formulation (OCP) into a nonlinear
optimization problem (NLP) (e.g. Knauer and Büskens, 2019).
The resulting task is, in turn, typically characterized by very
sparse Jacobian and Hessian matrices which are exploited by
highly advanced NLP solvers like WORHP (Büskens and Was-
sel, 2012).

Fig. 8 illustrates the results of this optimization step for the
turning maneuver with obstacles shown in Fig. 7c. For its
computation, the existing free-space polygon is reused and
WORHP’s sequential quadratic programming method (SQP)
is applied. One can see, that the optimized turning maneuver
deviates from the planned reference solution in its path and
being a few seconds shorter. The control values are smooth and
especially the steering commands are very targeted if necessary
and minimal otherwise.

Although this optimization task is rather complex, the solution
shown can be found after 8 SQP steps within 290 ms on the
basis of its sophisticated initial estimate. Looking at the same
problem without the moving obstacles, as when turning left in

Table 1. Number of expanded nodes and computa-
tion times to solve the situations shown in Fig. 7.
[·]-brackets: coarser discretization of 1 m for com-
parison (instead of 0.5 m). †: 3 steps for polygon

creation (instead of 2).

Exp. Nodes Computation Time [ms]
Task Opened Closed Polygon Voronoi Hybrid A∗

Turn 5106 472
3.0 0.96

4.4
Left [4019] [323] [2.9]
Turn 22282 2618

2.5† 0.81
20.2

Right [12284] [1319] [10.4]Fi
g.

7a

Parking 21989 2531 3.1 1.1 38.5
Fig. 7b 3604 335 2.9 15.5 3.5
Fig. 7c 24918 2847 2.9 21.4 28.6
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Fig. 7a, even only 4 SQP steps and 60 ms are necessary. The
benefit of reusing the path planning result as an approximation
for the solution of the optimization step becomes particularly
clear when comparing it with the Reeds-Shepp path (see Fig. 8).
If the latter is used as an initial guess, the computation effort
increases to 6 SQP steps and 120 ms for the case without
moving obstacles. In the corresponding dynamic scenario, at
best insufficient local minima can be identified. Thus, the
proposed method leads not only to reduced processing times,
but most importantly to an improved robustness.

6. SUMMARY

In this work, we have proposed algorithms for correlated mo-
tion planning and control of autonomous vehicles in dynamic
urban environments. As a basis for both, an algorithm for the
automated generation of free-space polygons in arbitrary sit-
uations has been presented. In particular, we have shown that
this allows an efficient and generic representation of lane infor-
mation and static obstacles. Subsequently, the time-dependent
hybrid-state A∗ algorithm for model-based motion planning in
non-static environments has been introduced - based on free-
space polygons and dynamic Voronoi paths. We have demon-
strated that it can provide short-term maneuvers in a few mil-
liseconds even for complex scenarios, which qualifies it as a
basis for making tactical decisions. Furthermore, it has been
illustrated how the motion planning solution can be applied as
an initial guess within a trajectory optimization step for the cal-
culation of actual vehicle controls. Here, the comparison with
Reeds-Shepp paths has shown that not only a strong reduction
of the computation time is achieved, but in particular also the
robustness of the optimization method for difficult situations is
increased. The scope of our future work is to apply and evaluate
the presented concept for decision making and control with the
research vehicle from Sect. 1.2 in a real urban environment.
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Appendix A. HYPERPARAMETERS

TIME-SENSITIVE HYBRID-STATE A∗ FREE-SPACE POLYGON

Descript. Var. Value Descript. Var. Value

Weights
wv 1 Refinements τ 2
wo 2 Clearance γ 10 m
wp 1 Expansion ξ 20 m

Voronoi
α 1000

dmax 4 m OPTIMAL CONTROL

Controls
A {0,±1.2} m2/s Descript. Var. Value

B
{0,±0.275,

Weights

w0 0.3
±0.55} rad w1 0.3

Discretiz.

spatial 0.5 m w2 0.1
yaw 0.1 rad w3 2.5

speed 0.5 m/s # Discrete
– 31

time 0.3 s Points
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