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Abstract:
In this work, we design an algorithm for a group of higher-order integrators aiming to track
the average of multiple time-varying and possibly unbounded reference signals. The existing
literature has studied distributed average tracking (DAT) for higher-order systems in the
presence of bounded or Lipschitz-type reference signals. In such DAT algorithms, each agent
requires the knowledge of global bounds on signals for bounded references and state-dependent
control gains for unbounded references. Addressing these issues, we propose a DAT algorithm for
a group of higher-order integrators in the presence of time-varying references that can possibly
be unbounded. The highest derivative of references become equal, asymptotically. Agents use
neighbors’ data obtained from the local communication framework that makes the current
algorithm distributed in nature. In contrast to existing work, our DAT algorithm uses constant
gains to reduce high control effort, which may be caused due to state-dependent gains. Using
numerical example, the performance of the current algorithm is compared with the existing
state-of-the-art. This reveals the superiority of the proposed algorithm.

Keywords: Cooperative control, distributed average tracking, linear control theory, multi-agent.

1. INTRODUCTION

In a multi-agent system (MAS) with each agent having
different reference signals, a distributed average tracking
(DAT) algorithm makes the agents to track the average of
all reference signals. Applications of DAT algorithms have
got immense attention in the area of distributed estimation
techniques, such as Kalman filtering (Olfati-Saber, 2007;
Bai et al., 2011), sensor fusion (Spanos et al., 2005),
merging of feature-based maps (Aragues et al., 2012). In
an MAS, different physical states of the agents also need to
track the time-varying references to ensure consensus (Sen
et al., 2019b; Singh et al., 2020), distributed optimization
(Gharesifard and Cortés, 2013; Rahili and Ren, 2016),
formation control(Sen et al., 2019a), cooperative tracking
(Sen et al., 2018), distributed state coordination (Song
et al., 2015), containment control Sen et al. (2020). Solving
a DAT problem is more challenging than a consensus
or distributed tracking problem due to the presence of
multiple time-varying references. In this work, we propose
a DAT algorithm for multiple higher-order integrators with
different time-varying, possibly unbounded references.

Various DAT algorithms are designed for multiple agents
with the motion model described by single integrators
(Freeman et al., 2006; Nosrati et al., 2012; Chen et al.,
2012), double integrators (Chen et al., 2014; Ghapani
et al., 2017), and second-order nonlinear systems (Zhao
et al., 2018a). To achieve DAT, the reference signals in
these mentioned works need to satisfy different constraints,

such as signals with constant amplitude (Freeman et al.,
2006), bounded magnitude (Nosrati et al., 2012; Ghapani
et al., 2017), bounded acceleration (Chen et al., 2014; Zhao
et al., 2018a), bounded time derivative (Chen et al., 2012).
Recently, the DAT algorithms for a group of single integra-
tors relaxed the assumptions regarding the bounds on each
reference signal (Sun et al., 2019; George and Freeman,
2019). In these works, deviations among the references
must be bounded throughout the time to guarantee the
ultimate boundedness of the tracking error. The algorithm
in (Ghapani et al., 2018) uses discontinuous structure to
achieve DAT for second-order nonlinear systems irrespec-
tive of any constraints on reference signals.

The aforementioned works consider either first or second-
order agent dynamics. As mentioned in (Zhao et al., 2017,
2018b), there are various events where the motion models
need to be expressed by using higher-order dynamics
rather than a first or second-order system. For example, a
higher-order integrator can express the sudden change of
heading angles during flocking of birds or swarm-on-swarm
scenarios (Ren et al., 2007), and maneuvering motion
of mobile robots or unmanned helicopters (Rezaee and
Abdollahi, 2015). Since agents need to track the average
of multiple time-varying references generated by different
dynamical systems, it is difficult to extend a first or second-
order DAT algorithm to higher-order agents.

DAT algorithms for higher-order systems are studied for
linear (Liu et al., 2017; Zhao et al., 2017) and nonlinear
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agents (Zhao et al., 2018b). Under the constraints of input
saturations, DAT problem is solved for multiple agents
with stable open-loop dynamics (Liu et al., 2017). Later,
the assumption on agents’ open-loop dynamics is relaxed
where the algorithms use non-smooth function and solve
respective algebraic Riccati equations (ARE) to guarantee
DAT in the presence of bounded (Zhao et al., 2017)
and Lipschitz-like (Zhao et al., 2018b) reference inputs.
Although the algorithm in (Zhao et al., 2018b) ensures
DAT with unbounded and Lipschitz-like references, the
control effort may become significant due to the presence
of state-dependent control gains. In addition, solving an
ARE becomes complex as the order of agents increases.

Therefore, motivated by these, we propose an algorithm
with constant control gains for a group of higher-order
integrators to track the average of different time-varying
references. This algorithm comprises a distributed averag-
ing filter and a decentralized control law. Each agent uses
an undirected communication framework for information
exchange. As compared to the existing literature, the take-
away points of our proposed DAT algorithm are:

• There is no bound on the different time-varying
references. However, the highest derivative of each
reference becomes equal asymptotically.

• The proposed distributed averaging filter is formed by
using single integrator models to ease the setting of
the convergence rate with the choice of suitable gains.

• Unlike the earlier works (Zhao et al., 2017, 2018b),
the proposed DAT does not require any additional
adaptive update laws to remove the requirements of
global information.

• Contrary to the DAT algorithms in (Zhao et al.,
2018b), the gains in our algorithm are positive con-
stants and independent of agents’ states. For this,
the control inputs can not become very large due to
increasing magnitudes of agents’ states.

The rest of this paper’s structure is stated as follows: we
formally introduce the problem in Section 2, along with
some key aspects of graph theory. Section 3 presents the
DAT algorithm for a group of higher-order integrators.
We show that the tracking errors converge to zeros if
the highest derivative of reference time-varying signal
for all agents become equal asymptotically. We compare
the performance of the current and existing protocol
through numerical simulations in Section 4. In Section 5,
we conclude the current work.

2. FORMULATION OF THE PROBLEM WITH
NECESSARY PRELIMINARIES

This work assumes that each agent of the MAS follows the
dynamics of a dth-order integrator

ẋ1i(t)= x2i(t)

ẋ2i(t)= x3i(t)

...

ẋdi(t)= ui(t), i = 1, 2, . . . , N

(1)

where the control input is ui(t) ∈ R and internal states
are x1i(t), x2i(t), . . . , xdi(t) ∈ R for agent i.

We suppose that every agent has a time-varying reference
signal generated by the following dynamics:

ṗ1i(t)= p2i(t)

ṗ2i(t)= p3i(t)

...

ṗdi(t)= ri(t), i = 1, 2, . . . , N

(2)

where p1i(t), p2i(t), . . . , pdi(t) ∈ R are reference states and
ri(t) ∈ R is input to the reference dynamics (2).

The objective of the current work is to develop a dis-
tributed algorithm for the MAS consisting of agents with
dynamics (1) to guarantee average tracking of the refer-
ence signals generated by (2). Thus, the objective of the
problem statement can be mathematically expressed as

lim
t→∞

|xki(t)− (1/N)
N∑

i=1

pki(t)| = 0, (3)

∀ k = 1, 2, . . . , d, and ∀ i = 1, 2, . . . , N. For convenience, t
is removed from the variable in the rest of this paper.

An information flow framework among N -agents can be
emulated by a graph. This makes it important to state
certain notions of graph theory which will be used later.

2.1 Graph theory

An undirected graph GN = (VN , EN) represents the in-
formation flow framework in an MAS. The sets VN

and EN denote the node set and edge set, respec-
tively. The existence of a directed edge eij ∈ EN im-
plies that agent i has the information of agent j. If
eij ∈ Ni, agent j is a neighbor of agent i where Ni

is the neighbor set of agent i. The adjacency AN

and Laplacian LN matrices associated with GN are:

AN := [aij ]N×N , for aij

{
> 0, if j ∈ Ni

= 0, otherwise,
and LN := [lij ]N×N ,

for lij =





N∑

j=1

aij , for i = j

−aij, otherwise.

The graph GN being undirected,

eji ∈ EN ⇔ eij ∈ EN , ∀ i, j ∈ VN . Thus, AN and LN are sym-
metric. When GN is connected, LN is positive semi-definite
satisfying LN1N = 0N and 1⊤

NLN = 0⊤
N (Olfati-Saber and

Murray, 2004), where 1N = [1, . . . , 1]⊤,0N = [0, . . . , 0]⊤ ∈ R
N .

The assumption on GN is stated next.

Assumption 1. The graph GN is fixed, undirected, and
connected.

Having the preliminary knowledge of graph theory, we are
now prepared to present the DAT algorithm.

3. DAT ALGORITHM FOR HIGHER-ORDER
INTEGRATORS

The proposed DAT algorithm has two parts. In the first
part, we design a distributed filter to estimate the average
of the reference signals. The second part comes up with
the control input ui to guarantee average tracking. For
i-th agent, proposed distributed filter is

ṡ1i= s2i − c1
∑

j∈Ni

aij (s1i − s1j)

ṡ2i= s3i − c2
∑

j∈Ni

aij (s2i − s2j)

...

ṡdi= −cd
∑

j∈Ni

aij (sdi − sdj) + ri,

(4)
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where ck ∈ R
+ are filter gains, and ski ∈ R are the filter

states satisfying ski(0) = pki(0), ∀ k = 1, . . . , d. Since GN is
undirected, aij = aji ∀ i, j ∈ VN .

Assumption 2. The reference signals ri for all agents be-
come equal asymptotically, that implies, limt→∞ ‖ri(t) −
rj(t)‖ = 0, ∀ i, j ∈ VN .

Lemma 1. For an MAS with N agents, the distributed

filter (4) ensures limt→∞ ‖ski −
1
N

∑N

i=1 pki‖ = 0, under
Assumptions 1-2, and ski(0) = pki(0), ∀ k = 1, . . . , d and
∀ i ∈ VN .

Proof. Proof is provided in Appendix A. 2

Next, we use the states of (4) to design the following
control input for i-th agent to establish DAT in higher-
order systems:

ui = −
d∑

k=1

µk (xki − ski) + ri, (5)

where µ1, µ2, . . . , µd are the gains such that [λd + µdλ
d−1 + · · ·

+µ2λ+ µ1] is a Hurwitz polynomial. We discuss the stabil-
ity under the control law (5) with distributed filter (4) in
the next theorem.

Theorem 1. For an MAS with agents having dynamics
(1) and their respective reference dynamics (2), the DAT
algorithm comprising (4) and (5) ensures limt→∞ ‖xki −
1
N

∑N

i=1 pki‖ = 0, in the presence of Assumptions 1-2 when
ski(0) = pki(0), ∀ k = 1, . . . , d and ∀ i ∈ VN .

Proof. Lemma 1 establishes limt→∞ ‖ski−
1
N

∑N

i=1 pki‖ =
0, ∀ k = 1, . . . , d, and ∀ i ∈ VN . Next, we show DAT
of higher-order integrators using the control law (5). The
proof is done for agent i. Same holds for others as well.

Higher-order agents (1) under the control law (5) become

ẋ1i= x2i

ẋ2i= x3i

...

ẋdi = −
d∑

k=1

µk (xki − ski) + ri.

(6)

For k = 1, . . . , d, we define eki :=
(
xki −

1
N

∑N

i=1 pki

)
and

ǫki :=
(
ski −

1
N

∑N

i=1 pki

)
, to obtain the error dynamics

ė1i= e2i

ė2i= e3i

...

ėdi = −
d∑

k=1

µkeki +
d∑

k=1

µkǫki +

(
ri −

1

N

N∑

i=1

ri

)
.

(7)

Supposing ei := [e1i, e2i, . . . , edi]
⊤, (7) is rewritten as

ėi = Bei + H(ǫ1i, ǫ2i, . . . , ǫdi, r, t), (8)

where B =




0 1 · · · 0
0 0 · · · 0
...

...
. . .

...
−µ1 −µ2 · · · −µd


 and H =




0
0
...
1



{∑d

k=1 µkǫki

+
(
ri −

1
N

∑N

i=1 ri

)}
.With H as the input to (8), we show

the stability of the zero input system

ėi = Bei. (9)

Characteristics equation of B is

λd + µdλ
d−1 + · · ·+ µ2λ+ µ1 = 0. (10)

Using Routh-Hurwitz criteria (Chapter 6.3, Shinners
(1998)), gains µi’s can be chosen such that the character-
istic polynomial in (10) is Hurwitz. Therefore, zero input
dynamics (9) becomes globally exponentially stable.

The error dynamics (8) is input-to-state stable as its zero
input dynamics (9) is exponentially stable (Lemma 4.6,
Khalil (2002)). Thus, in the presence of a bounded H(t),

‖ei(t)‖ ≤ Φ (‖ei(T)‖, (t− T)) + Ψ

(
sup

T≤τ≤t

‖H(τ)‖

)
,

for t ≥ T ≥ 0, where Φ(.) and Ψ(.) are class KL and class
K functions, respectively (Definition 4.7, Khalil (2002)).
Let ς > 0 be any arbitrary constant. For this ς , we can
always find a σ > 0 satisfying Ψ(σ) ≤ ς

2 . From Lemma 1
and Assumption 2, we have limt→∞ ‖H(t)‖ = 0. Therefore,
there exists a γ1 > 0 corresponding to this σ, such that
‖H(t)‖ ≤ σ, ∀ t ≥ γ1. Hence, ∀ t ≥ T ≥ γ1, we have

‖ei(t)‖≤ Φ (‖ei(T)‖, (t− T)) + Ψ

(
sup

T≤τ≤t

‖H(τ)‖

)

≤ Φ (‖ei(T)‖, (t− T)) + Ψ (σ)

⇒ ‖ei(t)‖≤ Φ (e, (t− γ1)) + ς/2,

where ‖ei(T)‖ ≤ e. As limt→∞ Φ (e, (t− T)) = 0, there exists
a γ2 > 0 such that

Φ (e, (t− T)) ≤ ς/2, ∀ t ≥ γ2.

Therefore, for any given ς , there always be a γ :=
max{γ1, γ2} > 0 such that

‖ei(t)‖ ≤ ς, ∀ t ≥ γ > 0.

Since limt→∞ Φ (e, (t− T)) = 0 and limt→∞ ‖H(t)‖ = 0, the
given constant ς → 0 as γ → ∞. Hence, for the error
dynamics (8), limt→∞ ‖ei(t)‖ = 0. Therefore, under As-
sumptions 1-2, the proposed DAT algorithm (4)-(5) guar-

antees limt→∞ ‖xki−
1
N

∑N

i=1 pki‖ = 0 with ski(0) = pki(0)
∀ k = 1, . . . , d and ∀ i ∈ VN . 2

Remark 1. If difference among the reference signals are
always bounded, the tracking errors become ultimately
bounded. A similar proof can be found in (Sun et al., 2019).

Remark 2. If ri(t) are same for all agents, F = 0N (defined
in (A.2)) and H = 0d. Thus, the higher-order integrators
under the proposed DAT algorithm become exponentially
stable with minimum convergence rate κ = max{λmax

B
, −

mink{ck}λ2(LN)} where λmax
B

is the maximum eigenvalue
of B and λ2(LN) is minimum positive eigenvalue of LN .

In the following section, we compare the efficacy of the
proposed DAT algorithm with existing algorithm in (Zhao
et al., 2018b) through numerical examples.

4. NUMERICAL SIMULATIONS

For simulation, we take an MAS with 5 agents, each being
3rd-order integrator, that is N = 5 and d = 3. The
information flow framework G5 is shown in Fig. 1. Weights
of all non-zero aij are equal to 1. The chosen initial values
of the agents’ states and reference signals are tabulated in
Table 1. The reference signals are ri = i × e−(10×t×i) +
sin
(
π
2 t
)
for i = 1, 2, . . . , 5.

The gains of the distributed filter (4) and control law (5)
are c1 = 1, c2 = 2, c3 = 3, and µ1 = 16

9 , µ2 = 44
9 , µ3 = 4.
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5 42 31

Fig. 1. Information exchage framework G5.
Agent (i) x1i(0) x2i(0) x3i(0) p1i(0) p2i(0) p3i(0)

1 10 −1.5 0.2 −0.5 0.35 −0.04

2 12 −2.2 −0.6 1.4 −0.24 −0.075

3 −15 3 1 −1.5 0.3 0.1

4 14 −2.4 −0.75 1.2 0.22 −0.06

5 −5 3.5 −0.4 1 −0.15 0.2

Table 1. Values of the states at t = 0.

Asymptotic convergence of ski to 1
5

∑5
i=1 pki is shown

in Fig. 2 for k = 1, 2, 3, and ∀ i ∈ G5. The estimates
s1i, s2i, and s3i’s merge with the respective average signals
approximately at t = 8 s, 4.5 s, and 0.8 s, respectively
(within ±2% tolerance band). As we set c3 > c2 > c1,
the filter states s3i’s converge first, followed by s2i’s and
s1i’s. Figure 3 depicts the trajectories of states xki for
all agents. We observe that the state trajectories of all
agents converge to average of respective reference states
(within ±2% tolerance band) at t ≈ 10 s. In these figures,

pka := 1
5

∑5
i=1 pki, for k = 1, 2, 3. The control efforts for

the agents are shown in Fig. 4. Due to the presence of
constant control gains, the control efforts are bounded for
chosen reference r(t).

Therefore, agents’ states and filtered variables converge
asymptotically to the average of the respective reference
states under assumptions 1 and 2. Next, we will compare
the performance of DAT algorithm in (Zhao et al., 2018b)
with the discussed numerical results.
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Fig. 2. Evolution of si(t)’s under proposed filter (4). Note

that pka := 1
5

∑5
i=1 pki for k = 1, 2, 3.

Performance comparison with (Zhao et al., 2018b)

For the same set of agents with identical initial conditions
and reference input ri(t), we check the performance of the
DAT algorithm for higher-order agents proposed in (Zhao
et al., 2018b). We consider the maximum control input as
the benchmark to compare the performance while keeping
the time of convergence to approximately 10 s (within 2%
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Fig. 3. Convergence of agents’ states under algorithm (4)-

(5). Note that pka := 1
5

∑5
i=1 pki for k = 1, 2, 3.
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Fig. 4. Agents’ control input under DAT algorithm (4)-(5).

tolerance band) for both DAT algorithms. From Fig. 5, we
notice that the states of all agents track their respective
average approximate at t = 10 s. However, the magnitude
of control inputs under existing protocol from (Zhao et al.,
2018b) are very large as observed from Fig. 6.

Hence, from Fig. 4 and 6, it is observed that the same
agents with identical references and initial conditions
require much lesser control effort to obtain DAT under
proposed algorithm (4)-(5) as compared to the existing
one in (Zhao et al., 2018b).

In addition, Fig. 6 also shows that magnitude of the
control input are growing with increasing values of agents’
states. The presence of state-dependent gains causes such
behaviour in control trajectory. Since our proposed DAT
algorithm (4)-(5) contains constant gains, the control
input ui will not grow with for increasing state values.

5. CONCLUSION

We have presented a DAT algorithm for a group of higher-
order integrators. The algorithm consists of a distributed
averaging filter and a control input to track the average
of the time-varying references which are generated from a
higher-order dynamical model. This algorithm also relaxes
the need for knowledge about global information with-
out using additional update equations for adaptive gains.
We have established the asymptotic stability of the MAS
under the proposed DAT algorithm using the notions of
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Fig. 5. Convergence of agents’ states under the DAT
algorithm proposed in (Zhao et al., 2018b). Note that

pka := 1
5

∑5
i=1 pki for k = 1, 2, 3.
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Fig. 6. Agents’ control input under proposed DAT algo-
rithm proposed in (Zhao et al., 2018b).

input-to-state stability. Instead of state-dependent-gains,
we have taken constant positive gains to avoid the mag-
nitude growth of the control effort with increasing state
values. The numerical example has presented to show the
efficacy of the proposed algorithm. A comparison with
an existing DAT algorithm demonstrates a better perfor-
mance of our DAT algorithm.

Appendix A. PROOF OF LEMMA 1

Define the error variables ǫki :=
(
ski −

1
N

∑N

i=1 pki

)
, ∀ k =

1, . . . , d. Thus, the error dynamics for (4) is written as

ǫ̇1i= ǫ2i − c1
∑

j∈Ni

aij (ǫ1i − ǫ1j)

ǫ̇2i= ǫ3i − c2
∑

j∈Ni

aij (ǫ2i − ǫ2j)

...

ǫ̇di= −cd
∑

j∈Ni

aij (ǫdi − ǫdj) +

(
ri −

1

N

N∑

i=1

ri

)
.

(A.1)

Let ǫk := [ǫk1, ǫk2, . . . , ǫkN ]
⊤

∈ R
N , ∀ k = 1, . . . , d, ǫ =[

ǫ⊤1 , ǫ
⊤
2 , . . . , ǫ

⊤
d

]⊤
∈ R

dN , and r = [r1, r2, . . . , rN ]⊤ ∈ R
N .

Thus, the matrix representation of (A.1) is

ǫ̇1= −c1LN ǫ1 + ǫ2

ǫ̇2= −c2LN ǫ2 + ǫ3

...

ǫ̇d= −cdLNǫd + F(t),

(A.2)

where F(t) =
(
r − 1

N
1⊤
Nr1N

)
. For the following system:

ǫ̇d = −cdLN ǫd + F(t), (A.3)

and the disagreement variable ǫ̃d :=
(
ǫd −

1
N
1⊤
N ǫd(0)1N

)
,

we get
˙̃ǫd = −cdLN ǫ̃d + F(t), (A.4)

with zero input error dynamics for (A.4) as
˙̃ǫd = −cdLN ǫ̃d. (A.5)

The zero input disagreement dynamics (A.5) is glob-
ally exponentially stable with minimum convergence rate,
−cdλ2(LN ) (Theorem 8, Olfati-Saber and Murray (2004)).
Note that λ2(LN ) is the minimum positive eigenvalue of
LN for an undirected and connected graph GN .

As the zero input system (A.5) is globally exponentially
stable, the system (A.4) is input-to-state stable (Lemma
4.6, Khalil (2002). Hence, there exists a class KL function
Θ and a class K function Ω such that ∀ t ≥ T ≥ 0

‖ǫ̃d(t)‖ ≤ Θ(‖ǫ̃d(T)‖, (t− T)) + Ω

(
sup

T≤τ≤t

‖F(τ)‖

)

where F is bounded (Definition 4.7, Khalil (2002)). For
any given ̺ > 0, there always exists a ϕ > 0 for which the
class K function Ω(.) satisfies Ω(ϕ) ≤ ̺

2 . From Assumption
2, limt→∞ ‖F(t)‖ = 0. Therefore, there is a η1 > 0 for this
ϕ satisfying ‖F(t)‖ ≤ ϕ, ∀ t ≥ η1. Thus, we set T ≥ η1 to
obtain the bound on ‖ǫ̃d(t)‖, ∀ t ≥ T ≥ η1 as follows:

‖ǫ̃d(t)‖≤ Θ(‖ǫ̃d(T)‖, (t− T)) + Ω

(
sup

T≤τ≤t

‖F(τ)‖

)

≤ Θ(‖ǫ̃d(T)‖, (t− T)) + Ω (ϕ)

⇒ ‖ǫ̃d(t)‖≤ Θ(ǫ, (t− T)) + ̺/2,

where ǫ > 0 is a finite constant such that ǫ ≥ ‖ǫ̃d(T)‖. Since
limt→∞ Θ(ǫ, (t− T)) = 0, there exists a η2 > 0, such that

Θ(ǫ, (t− T)) ≤ ̺/2, ∀ t ≥ η2.

Hence, for any arbitrary ̺, there exists a η := max{η1, η2}
satisfying

‖ǫ̃d(t)‖ ≤ ̺, ∀ t ≥ η > 0.

Since, limt→∞ Θ(ǫ, (t− T)) = 0 and limt→∞ ‖F(t)‖ = 0,
the value of the arbitrary constant ̺ will become 0 as η →
∞. Therefore, for the system (A.4), ‖ǫ̃d(t)‖ converges to 0
asymptotically. Hence, limt→∞ ‖ǫd −

1
N
1⊤
N ǫd(0)1N‖ = 0.

From (A.1), since GN is undirected, we have ∀ t ≥ 0∑

i∈VN

ǫ̇ki(t) =
∑

i∈VN

ǫk+1,i(t), if k 6= d, and
∑

i∈VN

ǫ̇di(t) = 0.

For the choice of initial filter states, ski(0) = pki(0),∑

i∈VN

ǫki(0) =
∑

i∈VN

ski(0)−
∑

i∈VN

pki(0) = 0

for k = 1, . . . , d, ∀ i ∈ VN . Hence, ∀ t ≥ 0∑

i∈VN

ǫ̇di(t) = 0 ⇒
∑

i∈VN

ǫdi(t) =
∑

i∈VN

ǫdi(0) = 0.

As
∑

i∈VN
ǫ̇ki(t) =

∑
i∈VN

ǫk+1,i(t) for k 6= d, so
∑

i∈VN

ǫ̇d−1,i(t) =
∑

i∈VN

ǫd,i(t) = 0

⇒
∑

i∈VN

ǫd−1,i(t) =
∑

i∈VN

ǫd−1,i(0) = 0.
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Therefore, in a similar way, it can be shown that
∑

i∈VN

ǫki(t) = 0, ∀ k = 1, . . . , d, ∀ t ≥ 0.

Since, limt→∞ ‖ǫd−
1
N
1⊤
N ǫd(0)1N‖ = 0, we get limt→∞ ‖ǫd‖

= 0. As the separation principle holds, dynamics of ǫd−1

associated with (A.2) asymptotically becomes

ǫ̇d−1 = −cd−1LN ǫd−1.

Using same analysis, we can conclude that limt→∞ ‖ǫd−1−
1
N
1⊤
N ǫd−1(0)1N‖ = 0. Since

∑
i∈VN

ǫd−1,i(t) = 0, ∀ t ≥ 0,

we have limt→∞ ‖ǫd−1‖ = 0. Similarly, convergence of
limt→∞ ‖ǫk‖ = 0 for k = 1, 2, . . . , d − 2, can also be
obtained. This concludes that under Assumption 1-2, and
ski(0) = pki(0), k = 1, . . . , d, ∀i ∈ VN , limt→∞ ‖ski −
1
N

∑N

i=1 pki‖ = 0. 2
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