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Abstract: The solution to a constrained linear-quadratic optimal control problem can be
expressed as a set of active sets. We recently proposed an algorithm that constructs this
set by iteratively increasing the horizon. In the present paper, we improve this algorithm for
problems with point-symmetric constraints. This is done by showing that such problems can
be reformulated as symmetric quadratic programs and by exploiting properties of symmetric
quadratic programs in the algorithm. A considerable reduction of the computational effort can
be achieved, which will be demonstrated with an example.
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1. INTRODUCTION

The solution of a constrained linear-quadratic optimal con-
trol problem (OCP) is a piecewise-affine feedback law (Be-
mporad et al., 2002; Seron et al., 2003). The number of
affine pieces often drastically increases with the problem
order and the horizon. Thus, solving such problems explic-
itly is challenging. Various approaches exist. Geometric
approaches exploit the geometric structure of the solu-
tion (Bemporad et al., 2002; Tøndel et al., 2003; Baotić,
2002). They are competitive and therefore established in
toolboxes (Herceg et al., 2013; Bemporad, 2004). Combi-
natorial approaches (also referred to as implicit enumer-
ation techniques) exploit that every affine piece in the
solution is defined by a unique active set. Combinatorial
algorithms calculate the set of active sets that defines the
solution (Gupta et al., 2011; Feller et al., 2013; Oberdieck
et al., 2017; Ahmadi-Moshkenani et al., 2018; Herceg et al.,
2015). Dynamic programming approaches have been used
to determine the explicit solution by iteratively increasing
the horizon (Muñoz de la Peña et al., 2004; Mare and De
Dona, 2007). An approach that combines the combina-
torial approach with dynamic programming was recently
presented (Mitze and Mönnigmann, 2019). The approach
is based on the relationship between the solutions for
different horizons (Mönnigmann, 2019). Its procedure also
allows to detect when the solution for a finite horizon
equals the solution for the infinite horizon as the finite
horizon is increased iteratively.

Symmetries in linear-quadratic OCPs can be used to
reduce the memory requirements of the explicit solu-
tion (Danielson, 2014). We exploit symmetries to re-
duce the computational effort for determining the explicit
solution. More precisely, we improve the dynamic pro-
gramming algorithm proposed in Mitze and Mönnigmann
(2019) for linear-quadratic OCPs with point-symmetric
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constraints. We show that this problem class can be re-
formulated as symmetric quadratic programs (QPs) and
exploit properties of symmetric QPs (Feller et al., 2013).

Section 2 introduces some facts about linear-quadratic
OCPs, symmetric QPs, and the dynamic programming
algorithm. Sections 3 and 4 propose a new algorithm and
illustrate it with an example, respectively. Conclusions are
given in Sect. 5.

1.1 Notation

Consider a matrix M ∈ R
a×b and an ordered set M ⊆

{1, ..., a}. Let MM ∈ R
|M|×b denote the submatrix of M

containing all rows indicated by M. Furthermore, let ⊕
denote the Minkowski addition.

2. PROBLEM STATEMENT AND PRELIMINARIES

The constrained linear-quadratic OCP treated in the
present paper reads

min
U,X

x(N)TPx(N) +

N−1
∑

k=0

(

x(k)TQx(k) + u(k)TRu(k)
)

(1a)

s.t. x(k + 1) = Ax(k) +Bu(k), k = 0, ..., N − 1 (1b)

x(k) ∈ X , k = 0, ..., N − 1 (1c)

u(k) ∈ U , k = 0, ..., N − 1 (1d)

x(N) ∈ T , (1e)

where x(0) ∈ R
n is given, U =

(

uT (0), ..., uT (N − 1)
)T

∈

R
Nm and X =

(

xT (1), ..., xT (N)
)T

∈ R
Nn collect the

inputs u(k) ∈ R
m and states x(k) ∈ R

n, respectively,
Q ∈ R

n×n, Q � 0 and R ∈ R
m×m, R ≻ 0 are the weighting

matrices for states and inputs, respectively, N ∈ N is the
horizon, A ∈ R

n×n and B ∈ R
n×m define the discrete-

time time-invariant system, (A,B) is stabilizable, U and
X are compact full-dimensional polytopes that are point-
symmetric with respect to the origin (−u ∈ U ⇔ u ∈ U ,
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−x ∈ X ⇔ x ∈ X ) and that contain the origin in their
interiors, and P and K are the optimal cost function
matrix and optimal feedback matrix, respectively, of the
unconstrained infinite-horizon problem which implies P ≻
0. The terminal set T is chosen to be the largest possible
set with the properties T ⊆ X , Kx ∈ U and (A +
BK)x ∈ T for all x ∈ T .

We assume the constraints to be ordered by increasing
stage

u(0) ∈ U , x(0) ∈ X ,
...

u(N − 1) ∈ U , x(N − 1) ∈ X ,
x(N) ∈ T

(2)

with k = 0, . . . , N . Let qUX and qT denote the number
of input and state constraints and the number of terminal
constraints, respectively. This implies the total number of
constraints amounts to q = NqUX + qT for horizon N . We
define the sets Q = {1, ..., q} and Q0 = {1, ..., qUX}.

By substituting (1b), (1) can be reformulated as the QP

min
U

1

2
x(0)TY x(0) + x(0)TFU +

1

2
UTHU

s.t. GU ≤ Ex(0) + w,
(3)

with Y ∈ R
n×n, F ∈ R

n×Nm, H ∈ R
Nm×Nm, G ∈

R
q×Nm, E ∈ R

q×n, w ∈ R
q, and where (3) inherits

the constraint order (2). The assumptions on (1) imply
H ≻ 0 (Bemporad et al., 2002).

For any x(0) such that (1) has a solution, let A(x(0)) =
{i ∈ Q|G{i}U = w{i} + E{i}x(0)} and I(x(0)) =
Q\A(x(0)) refer to the optimal active set and its corre-
sponding inactive set, respectively. We call A(x(0)) an
optimal active set to distinguish it more clearly from
candidate active sets introduced in Sect. 2.1.

When solving (3) as a parametric program with parameter
x(0), the resulting optimal control law is a continuous
piecewise affine function of x(0) on a polytopic parti-
tion (Bemporad et al., 2002, Sect. 4.1). Let MN refer to
the set of all optimal active sets A such that GA has full
row rank and such that A defines a full-dimensional poly-
tope. Let SN refer to all optimal active sets including those
that define lower-dimensional polytopes such as facets and
vertices (SN ⊇ MN ).

2.1 Symmetric QP

We call a QP (3) symmetric, if GM = −GN , EM = −EN

and wM = wN holds for some sets M and N such that
M∪N = Q, M∩N = ∅. In the same sense we call two
constraints i and j symmetric, if Gi = −Gj , Ei = −Ej

and wi = wj , and we call two active sets Ai and Aj

symmetric, if GAi
= −GAj

, EAi
= −EAj

and wAi
= wAj

.
All definitions stated here are compatible with those stated
by Feller et al. (2013), who proved the following lemma.

Lemma 1. (Feller et al. (2013, Lem. 9)). Consider a sym-
metric QP. An active set is optimal if and only if its
associated symmetric active set is optimal.

2.2 Iterative construction of MN for non-symmetric
problems

The dynamic programming algorithm presented in Mitze
and Mönnigmann (2019) solves constrained linear-quadra-
tic OCPs by iteratively increasing the horizon. The essen-
tial relationship between the solutions for successive hori-
zonsN andN+1 is stated in Lem. 2 (see also Mönnigmann
(2019)). Let P(Q0) refer to the power set of Q0.

Lemma 2. (Mitze and Mönnigmann (2019, Cor. 1)). Con-
sider an OCP (1) and assume its constraints are ordered
as in (2). Assume we know SN . Then

SN+1 = R(1) ∪R(2), (4)

with

R(1) = {A ∈ SN |A ⊆ {1, ..., NqUX}}, (5a)

R(2) ⊆
{

Aj ∪ (Al ⊕ {qUX})|Aj ∈ P(Q0), Al ∈ S̃N

}

,

(5b)

where S̃N contains all elements of SN that have at least
one active constraint in stage k = N − 1 or k = N , i.e.,

S̃N = {A ∈ SN |A 6⊆ {1, ..., (N − 1)qUX}}. (6)

An algorithm that implements Lem. 2 is given in Alg. 2
in Mitze and Mönnigmann (2019). It results from Alg. 2
in the present paper, if the superscript ”red.” is omitted.
Specifically, (5a) is implemented in lines 4,5 and the
superset in (5b) is implemented in lines 8,9 of Alg. 2. The
superset is reduced to R(2) by testing all its elements for
optimality. For clarity, we call these elements candidate
active sets, since they are not known to be optimal. A
candidate active set A is optimal, if the linear program
(LP)

min
U,x(0),λA,sI ,t

− t (7a)

s.t. FTx(0) +HU + (GA)
TλA = 0, (7b)

te2 ≤ λA, (7c)

GAU − EAx(0)− wA = 0, (7d)

GIU − EIx(0)− wI + sI = 0, (7e)

te1 ≤ sI , (7f)

t ≥ 0, (7g)

with column vectors ei = (1 · · · 1)T , i = 1, 2 of appropriate
sizes, Lagrangian multipliers λA, and slack variables sI ,
has a solution (Gupta et al., 2011, Sect. 3.1). Since all
elements in SN+1 and therefore all elements in R(2)

are optimal by definition of SN , only optimal candidate
active sets are added to SN+1 (lines 12,13). Furthermore,
candidates that result in t = 0 in (7) are collected in the

set Sdegen.
N . Sdegen.

N+1 then consists of those A ∈ Sdegen.
N that

are copied with (5a) (lines 6,7) and candidate active sets
such that the solution to (7) is t = 0 (lines 14,15). We
call an active set A feasible (resp. infeasible), if the LP
(7) without (7b) and (7c) has a solution (resp. has no
solution) (Gupta et al., 2011, Sect. 3.2). If a candidate
active set A is infeasible, every A′ ⊃ A is also infeasible
(Gupta et al., 2011, Thm. 1). Since (7) without (7b)
and (7c) involves a subset of the constraints of (7), an
A that is infeasible is not optimal. Hence, any candidate
active set that is a superset of a known infeasible active
set can be disregarded (line 10). This is referred to as
pruning in the remainder of the paper. Candidate active
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sets that are not optimal are tested for feasibility (line 17).

Infeasible active sets are stored in Spruned
N (lines 18,19) in

order to be able to dismiss supersets that appear later.
Pruning has the greatest impact if candidates are tested
in the order of increasing cardinality. The algorithm for
determining S1 is given in Mitze and Mönnigmann (2019,
Alg. 3).

The overall dynamic programming algorithm for deter-
mining the solution MN for a horizon Nmax for non-
symmetric QP is given in Mitze and Mönnigmann (2019,
Alg. 4). It results from Alg. 3 in the present paper when the
superscript ”red.” and lines 13,14 and 17,18 are omitted.
The approach terminates if Nmax has been reached or if
an N such that the solution SN equals the infinite-horizon
solution limN→∞ SN has been found. This is the case if
S̃N+1 = ∅ (lines 5,6) (Mitze and Mönnigmann, 2019, Prop.
1). Algorithm 3 reduces SN to MN by discarding those
active sets A that define lower-dimensional polytopes and
those such that GA does not have full row rank. Polytopes
of active sets such that GA is not of full row rank are
covered by the polytopes defined by the active sets in
MN (Ahmadi-Moshkenani et al., 2018, Sect. 3), therefore
these active sets are not required (line 9). An optimal
active set A that defines a lower dimensional polytope
either has GA that is not of full row rank or GIU < wI +
EIx(0) or λA > 0 does not hold (Tøndel et al., 2003, Thm.
2). Active sets such that G{i}U = w{i} + E{i}x(0) holds
for an i ∈ I or λ{j} = 0 holds for a j ∈ A are collected

in Sdegen.
N . These active sets are only added to MN if the

polytope defined by them (see e.g. Jost et al. (2015, Lem.
2)) is full-dimensional (lines 10-12).

3. ITERATIVE CONSTRUCTION OF MN FOR
SYMMETRIC PROBLEMS

We will show in Cor. 4 that a linear-quadratic OCP (1)
where U and X are point-symmetric with respect to the
origin can be reformulated as a symmetric QP. We need
Lem. 3 as a preparation.

Lemma 3. If U and X in (1) are point-symmetric with
respect to the origin, then T is point-symmetric with
respect to the origin.

Proof. The terminal set T introduced in Sect. 2 is for-
mally defined by

T = {x ∈ X|(A+BK)kx ∈ XU , k ≥ 0}, (8)

where XU = {x ∈ X|Kx ∈ U} (see, e.g., Sznaier and
Damborg (1987)). First note XU is point-symmetric with
respect to the origin (pso), which can be seen as follows.
For any x ∈ XU we have x ∈ X and Kx ∈ U by definition
of XU . Since X and U are pso, it follows that −x ∈ X and
−Kx = K(−x) ∈ U , which yields −x ∈ XU . The point-
symmetry of (8) can be established in the same fashion.
For any x ∈ T , we have x ∈ X and (A + BK)kx ∈ XU

for all k ≥ 0 by (8). This implies −x ∈ X and (A +
BK)k(−x) ∈ XU since X and XU are pso. The last two
relations imply −x respects the conditions that define T
in (8). Since x ∈ T was arbitrary, the claim follows. �

Corollary 4. If U and X in (1) are point-symmetric with
respect to the origin, then the associated QP in (3) is
symmetric.

Proof. We need to show that for every constraint i in (3)
there exists a constraint j such that Gi = −Gj , Ei = −Ej

and wi = wj . Since X , U and T are polytopes, they are
defined by an intersection of a finite number of halfspaces.
Since X and U are symmetric by assumption and T
is symmetric according to Lem. 3, there exist defining
halfspaces that are symmetric. More precisely, there exist
T U , TX , T T and dU , dX , dT such that

U =

{

u ∈ R
m|

(

T U

−T U

)

u ≤

(

dU

dU

)}

,

X =

{

x ∈ R
n|

(

TX

−TX

)

x ≤

(

dX

dX

)}

,

T =

{

x ∈ R
n|

(

T T

−T T

)

x ≤

(

dT

dT

)}

.

(9)

Substituting (1b) into the remaining constraints of (1)
yields

(

0m×km Im 0m×(N−k−1)m
)

U ∈ U ,

x(0) ∈ X ,
(

Ak−1B · · · B 0n×(N−k)n
)

U +Akx(0) ∈ X ,
(

AN−1B · · · B
)

U +ANx(0) ∈ T ,

(10)

for all k = 0, . . . , N−1, where I and 0 are the identity and
zero matrices, respectively, with the obvious dimensions.
Substituting (10) into (9) yields

(

T U

−T U

)

(

0m×km Im 0m×(N−k−1)m
)

U ≤

(

dU

dU

)

,

(

TX

−TX

)

x(0) ≤

(

dX

dX

)

,

(

TX

−TX

)

[(

Ak−1B · · · B 0n×(N−k)n
)

U +Akx(0)
]

≤

(

dX

dX

)

,

(

T T

−T T

)

[(

AN−1B · · · B
)

U +ANx(0)
]

≤

(

dT

dT

)

,

(11)

for all k = 0, . . . , N − 1. By moving all terms that
depend on x(0) to the right hand side in (11), the form
GU ≤ Ex(0) + w can be obtained. Because (11) and
GU ≤ Ex(0) + w inherit the alternating rows from (9),
there exists, for every constraint i, a constraint j such that
Gi = −Gj , Ei = −Ej and wi = wj . �

The dynamic programming algorithm for the construction
of all active sets can be simplified for symmetric QPs.
Essentially, we only need to construct one active set for
each pair of two symmetric active sets. Let the reduced
solution Sred.

N contain all A ∈ SN , but only one of two
symmetric active sets. Corollary 5 results from applying
Lem. 2 to the symmetric case.

Corollary 5. Consider a symmetric OCP (1) and assume
its constraints are ordered as in (2). Assume we know Sred.

N .
Then

Sred.
N+1 = R(1),red. ∪R(2),red.,

with

R(1),red. = {A ∈ Sred.
N |A ⊆ {1, ..., NqUX}}, (12a)

R(2),red. ⊆
{

Aj ∪ (Al ⊕ {qUX}|Aj ∈ P(Q0), Al ∈ S̃red.
N

}

,

(12b)
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where S̃red.
N contains all elements of Sred.

N that have at least
one active constraint in stage k = N − 1 or k = N , i.e.,

S̃red.
N = {A ∈ Sred.

N |A 6⊆ {1, ..., (N − 1)qUX }}.

Proof. SN+1 is the union of the sets R(1) and R(2) (4),
where all A ∈ R(1) have inactive constraints in stages N
and N + 1 (5a) and all A ∈ R(2) have at least one active
constraint in stages N or N + 1 (5b). By definition of the
reduced solution, Sred.

N+1 contains all elements from SN+1,
but only one of two symmetric active sets.

Symmetric constraints appear within the constraints of
one stage, see (11). Hence, symmetric active sets are either
both part of R(1) or both part of R(2). Let F (1) and
F (2) contain all elements of R(1) and R(2), respectively,
but only one of two symmetric active sets. It follows that
Sred.
N+1 = F (1) ∪ F (2).

It remains to show that F (1) = R(1),red. and F (1) =
R(2),red.. F (1) contains all elements of

R(1) = {A|A ⊆ {1, ..., NqUX},A ∈ SN},

but only one of two symmetric active sets. Removing one
of two symmetric active sets from SN , i.e., replacing SN

by Sred.
N , yields

F (1) = {A|A ⊆ {1, ..., NqUX},A ∈ Sred.
N }

= R(1),red..

Accordingly, F (2) results from replacing SN by Sred.
N in

R(2) = {A|A = Aj ∪ (Al ⊕ {qUX }),Aj ∈ P(Q0),

Al 6⊆ {1, ..., (N − 1)qUX },Al ∈ SN},

which yields

F (2) = {A|A = Aj ∪ (Al ⊕ {qUX}),Aj ∈ P(Q0),

Al 6⊆ {1, ..., (N − 1)qUX },Al ∈ Sred.
N }.

Introducing S̃red.
N = {A ∈ Sred.

N |A 6⊆ {1, ..., (N − 1)qUX }},
this becomes

F (2) = {A|A = Aj ∪ (Al ⊕ {qUX }),Aj ∈ P(Q0),

Al ∈ S̃red.
N }

= R(2),red..

�

3.1 Implementational aspects

The algorithm presented in this paper proceeds analo-
gously to the algorithm presented in Sect. 2.2 from Mitze
and Mönnigmann (2019), but determines and stores only
one out of each pair of optimal active sets. The set of all
optimal active sets is then constructed in the last step only.

In order to compute the reduced solution for the initial
horizon Sred.

1 , let the reduced power set Pred.({1, ..., qUX +
qT }) contain all A ∈ P({1, ..., qUX + qT }), but only
one of two symmetric active sets. Clearly, Sred.

1 ⊆
Pred.({1, ..., qUX + qT }) and hence, the elements of

Pred.({1, . . . , qUX + qT })

are the candidate active sets for the initial horizon (line
2 in Alg. 1). The procedure to test these candidates and
develop the reduced solution for the initial horizon is not
changed. It is shown in Alg. 1.

Algorithm 1: Determination of Sred.
1

Initialization: set Sred.
1 = ∅, Sdegen.

1 = ∅ and

Spruned
1 = ∅

for every Ai ∈ Pred.({1, ..., qUX + qT }) by incr.
cardinality do

if Ai 6⊇ Ã for all Ã ∈ Spruned
1 then

solve (7) for QP with horizon 1
if solution exists then

add Ai to Sred.
1

if solution t = 0 then

add Ai to Sdegen.
1

else
solve (7) without (7b) and (7c) for QP
with horizon 1

if no solution exists then

add Ai to Spruned
1

Output: Sred.
1 , Sdegen.

1

We illustrate the power set and the reduced power set
with the combinatorial tree in Fig. 1 for an artificial
symmetric QP with 4 constraints. The combinatorial tree
shown here contains all active sets in P({1, ..., 4}). The
constraints are ordered in symmetric pairs such that
symmetric constraints are next to each other. The active
sets {}, {1, 2}, {3, 4} and {1, 2, 3, 4} are special in the sense
that all symmetric constraints are either both active or
both inactive therefore they are equal to their symmetric
active set. Pred.({1, ..., 4}) can be constructed if every
second branch that emanates from an active set that is
equal to its symmetric set is omitted. Pred.({1, ..., 4}) then
contains all active sets that are shown in black.

Fig. 1. Combinatorial tree for q = 4 constraints. The
constraints are ordered in symmetric pairs, hence,
constraints 1 and 2 and constraints 3 and 4 are
symmetric, respectively.

Corollary 5 describes how the reduced solution for the
increased horizon Sred.

N+1 is related to the reduced solution

for the current horizon Sred.
N . This relationship is used in

Alg. 2 to construct Sred.
N+1 from Sred.

N .

The overall algorithm is stated in Alg. 3. In proceeds
analogously to Alg. 4 in Mitze and Mönnigmann (2019),
but adds the symmetric active set whenever an active set
is added to MN (lines 14,18).

Note that active sets such that all symmetric constraints
are either both active or both inactive are equal to their
symmetric active set. However, these candidate active sets
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Algorithm 2: Determination of Sred.
N+1 from Sred.

N

Input: Sred.
N , Sdegen.

N

Initialization: set Sred.
N+1 = ∅, Sdegen.

N+1 and Spruned
N+1 = ∅

for every Al ∈ Sred.
N do

if Al ⊆ {1, ..., NqUX} then

add Al to Sred.
N+1

if Al ∈ Sdegen.
N then

add Al to Sdegen.
N+1

if Al 6⊆ {1, ..., (N − 1)qUX } then
for every Ai = Aj ∪ (Al ⊕ {qUX}) with
Aj ∈ P(Q0) by increasing cardinality do

if Ai 6⊇ Ã for all Ã ∈ Spruned
N+1 then

solve (7) for QP for horizon N + 1
if solution exists then

add Ai to Sred.
N+1

if solution t = 0 then

add Ai to Sdegen.
N+1

else
solve (7) without (7b) and (7c) for
QP for horizon N + 1

if no solution exists then

add Ai to Spruned
N+1

Output: Sred.
N+1, S

degen.
N+1

are never part of MN , because GA does not have full row
rank. The special case A = {} need not be added. It is
treated in lines 13 and 17.

Algorithm 3: Dynamic programming approach to
solving constrained linear-quadratic OCPs

Input: Sred.
1 , Sdegen.

1 (from Alg. 1), Nmax ≥ 1
Initialization: set MN = ∅
for N = 1 to Nmax − 1 do

determine Sred.
N+1 and Sdegen.

N+1 with Alg. 2

if Sred.
N+1 ⊆ P({1, ..., NqUX}) then
break

N = N + 1
for every Ak ∈ Sred.

N do
if rowrank(GAk

) = |Ak| then

if Ak ∈ Sdegen.
N then

if polytope def. by Ak full-dim. then
add Ak to MN

if Ak 6= {} then
add A′

k that is symmetric to Ak to
MN

else
add Ak to MN

if Ak 6= {} then
add A′

k that is symmetric to Ak to MN

Output: MN

4. EXAMPLE

We illustrate how the new approach proceeds and analyze
its computational effort with an example. We use the
double integrator from Gutman and Cwikel (1987)

x(k + 1) =

(

1 1
0 1

)

x(k) +

(

0.5
1

)

u(k)

with symmetric input constraints |u(k)| ≤ 1, symmetric
state constraints |x1(k)| ≤ 25, |x2(k)| ≤ 5 and cost
function matrices Q = 1 ∈ R

2×2, R = 0.1 as an example.
The terminal cost P and set T are as described in Sect. 2.

We show how the solution develops when the horizon is
increased iteratively (Fig. 2) to illustrate how the proposed
approach proceeds. We choose Nmax = 5.

First, we determine the reduced solution for the initial
horizonN = 1 with Alg. 1. Because the approach considers
the reduced power set as candidate active sets, only a
subset of the solution, the reduced solution, is determined
(Fig. 2a). Then, we apply Alg. 2 to get the reduced
solutions for the increased horizons N = 2, ..., 5 (Figs. 2b
and 2c). Once the target horizon N = Nmax has been
reached, all symmetric active sets are added with Alg. 3
(Fig. 2d).

(a) reduced solution for N = 1 (b) reduced solution for N = 2

(c) reduced solution for N = 5 (d) solution for N = 5

Fig. 2. Polytopes defined by active sets that are elements
of the reduced solution are shown in gray, polytopes
defined by their symmetric active sets are shown in
white in Fig. 2d.

4.1 Computational effort

In order to compare the proposed approach to the one
fromMitze and Mönnigmann (2019), we compare the num-
bers of executed optimality tests with (7) and feasibility
tests with (7) without (7b) and (7c). The computational
effort of solving the LPs is relatively high, therefore these
numbers dominate the computational effort of both ap-
proaches. Figure 3 shows the numbers for the example
stated in Sect. 4 as a function of the horizon N . It is
evident that the numbers of optimality and feasibility tests
decrease by roughly a factor of 1/2.

The number of candidate active sets when solving an
OCP (1) for a horizon Nmax equals the number of candi-
dates when determining the solution for the initial horizon
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(a) optimality tests (b) feasibility tests

Fig. 3. Number of optimality and feasibility tests for the
dynamic programming algorithm presented in Mitze
and Mönnigmann (2019) (circles) and for Alg. 3
(crosses) as a function of the horizon N .

(line 2 in Alg. 1) plus the number of candidates when
determining the solution for the increased horizons N =
1, ..., Nmax − 1 (line 9 in Alg. 2). When determining the
solution for the initial horizon, the algorithm in Mitze and
Mönnigmann (2019) treats all elements in P({1, ..., qUX +
qT }) whereas the approach proposed in this paper treats
all elements in Pred.({1, ..., qUX + qT }). The number of
elements in P({1, ..., qUX + qT }) is 2qUX+qT , the number
of elements in Pred.({1, ..., qUX + qT }) is 1

2 (2
qUX+qT +

2(qUX+qT )/2). Note that the number of elements is not
exactly reduced by a factor 1/2, because candidate active
sets such that symmetric constraints are both active are
equal to their symmetric active sets. When determin-
ing the solution for an increased horizon, the algorithm
in Mitze and Mönnigmann (2019) treats all elements in
the superset (5b) whereas the approach proposed in this
paper treats all elements in the superset (12b). The num-

ber of elements in the superset (5b) is 2qUX · |S̃N |, the

number of elements in the superset (12b) is 2qUX · |S̃red.
N |.

By definition, S̃N does not contain A = {}. Active sets
with symmetric constraints that are both active are in-
feasible and therefore not part of S̃N . Because S̃N only
consists of active sets that have a symmetric active set,
|S̃red.

N | = 1
2 |S̃N | and hence, the number of candidates for

the increased horizon is exactly reduced by a factor of
1/2. Therefore, the number of candidate active sets for the
approach presented in this paper is reduced by a factor of
1/2 up to 1

22
(qUX+qT )/2. This is illustrated in Fig. 4.

Fig. 4. Number of candidate active sets for the dy-
namic programming algorithm presented in Mitze and
Mönnigmann (2019) (circles) and for Alg. 3 (crosses)
over the horizon.

5. CONCLUSION

We improved a recently proposed dynamic programming
algorithm solving constrained linear-quadratic OCP with

input and state constraints that are point-symmetric with
respect to the origin. We showed that the computational
effort is almost reduced by a factor of 1/2.
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