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Abstract: The identification of switched systems involves solving a mixed-integer optimization
problem to determine the parameters of each mode dynamics (continuous part) and assign the
data samples to the modes (discrete part), so as to minimize a cost criterion measuring the
quality of the model on a set of input/output data collected from the system. Oftentimes,
some a priori information on the switching mechanism is available, e.g., in the form of a
minimum dwell time. This information can be encoded in a suitable constraint and included in
the optimization problem, but this introduces a coupling between the discrete and continuous
optimization variables that makes the problem harder to solve. In this paper, we propose an
iterative approach to the identification of switched systems that alternates a minimization step
with respect to the continuous parameters of the modes, and a minimization step with respect
to the discrete variables defining the sample-mode mapping. Constraints originating from prior
knowledge on the switching mechanism are taken into account after the (unconstrained) discrete
optimization step through a post-processing phase. These three phases are repeated until a
stopping criterion is met. A comparative numerical analysis of the proposed method shows its
improved performance with respect to competitive approaches in the literature.

Keywords: Model identification, Switched systems, Hybrid systems.

1. INTRODUCTION

Data collected from a dynamical system can be character-
ized by the presence of some heterogeneity that is hard to
match with a single model and can be better described by
using a set of models (modes) and a switching law among
them. In this work, we consider switched systems where
the continuous dynamics of the modes are described by a
set of linear regression models, defining the relationship
between the regression vector x ∈ Rnx and the output
y ∈ R. As for the switching mechanism governing the mode
activation, it can be characterized as an exogenous signal
or alternatively be determined by a polyhedral partition
of the regressor domain mapping each regressor vector to
a mode. We refer to these cases as Switched Affine (SA)
and PieceWise Affine (PWA) systems, respectively. In this
paper, we investigate in particular the identification of
switched systems expressed in input-output form, namely
Switched AutoRegressive with eXogenous inputs (SARX)
and PieceWise ARX (PWARX) systems.

The identification of these classes of systems requires to
jointly classify data (assigning each sample to a mode)
and estimate the model parameters for each mode. This
can be recast as an optimization problem with continuous
and discrete decision variables, which is hard to solve
in practice, see, e.g., (Garulli et al., 2012; Lauer and
Bloch, 2019) for a comprehensive review. Solution methods
for the resulting mixed integer optimization program can
be classified into two categories: methods that carry out
the optimization with respect to continuous and discrete

variables simultaneously, (Roll et al., 2004; Bemporad
et al., 2005; Ma and Vidal, 2005; Bako et al., 2011; Lauer
et al., 2011; Piga and Tóth, 2013; Ohlsson and Ljung,
2013; Breschi et al., 2016; Bemporad et al., 2018; Bianchi
et al., 2020), and methods that address separately data
classification and model parameters estimation, (Ferrari-
Trecate et al., 2003; Juloski et al., 2005; Hartmann et al.,
2015; Pillonetto, 2016). We next briefly review those
methods for switched linear systems identification that
are most relevant to our work and, indeed, represent
competitors to our approach.

In (Bako et al., 2011), a two-step method is proposed that
alternates between discrete state estimation and parame-
ter update via recursive least squares. The clustering cri-
terion used in (Bako et al., 2011), which depends on both
the prediction errors of the local models and the regressor-
centroid distances, has been further refined in (Breschi
et al., 2016), where the authors also proposed to solve
the recursive least squares problems via a QR factorization
algorithm. Both methods are computationally efficient and
accurate, provided that an adequate initialization is used
(e.g., in case of batch model identification, a good ini-
tialization can be be obtained running the method on a
subset of the training data set). However, both approaches
classify data samples sequentially, and once a sample is
assigned to a mode, then, this assignment is not changed
anymore unless the algorithm is restarted.

The RANdom SAmpling Consensus (RANSAC) approach
in (Fischler and Bolles, 1981) is a parameter estimation
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method designed to cope with the presence of outliers in
the observed data. Starting from a random subset of the
data set, the parameters are estimated. Then, other data
points are tested for compliance with the model and, in
case the test is positive, they are added to the subset.
Samples that are not assigned are considered as outliers.
The procedure is repeated starting from different random
subsets, the run resulting in the smallest outlier set is
selected and the corresponding model is returned. The k-
RANSAC algorithm proposed in (Hartmann et al., 2015)
extends this approach to the identification of multiple
models in the data set. The k-RANSAC starts by running
the RANSAC algorithm so as to identify a first model and
the corresponding outlier set. Then, data points assigned
to the first model are discarded and the RANSAC algo-
rithm is applied only to the outlier set. This second run
will return a second model and a second outlier set, and the
procedure is repeated. The rationale is that samples gener-
ated by different modes will be considered as outliers when
tested for compliance with the wrong mode. Unfortunately,
this method is strongly affected by the threshold employed
for testing compliance and, similarly to the previous ones,
by the incremental nature of the procedure, which never
questions the assignment of a sample to a mode again
once it has been decided. Moreover, the greedy approach
adopted by the k-RANSAC is well known to be sub-
optimal.

The general identification framework recently proposed in
(Bemporad et al., 2018) encompasses also the SA and
PWA model classes addressed in this paper. It adopts a
coordinate descent algorithm that alternates between the
estimation of the model parameters and the sample assign-
ment, until convergence. Note that the sample assignment
to the modes is refined at each iteration, as opposed
to the previous methods. The sample assignment phase
amounts to a multi-stage discrete optimization problem,
whose decision variables represent the switching signal,
which is solved via dynamic programming (DP). However,
DP is known to be computationally demanding when the
number of decision variables is large. Besides, it is not
viable – unless by introducing additional decision variables
and thereby falling into the previous issue – in the presence
of hard constraints involving decision variables associated
with different stages, such as dwell time constraints. Less
restrictive time constraints, as, e.g., setting a (low) switch-
ing probability, can be accounted for in the cost function,
through some suitably chosen term penalizing the mode
switchings.

This paper presents a novel iterative method for the batch
identification of SARX and PWARX models, which, unlike
(Bemporad et al., 2018), is able to account for constraints
on the switching mechanism. The method operates by
assuming an initial sample-mode mapping (the available
data set is initially partitioned at random into subsets,
each assigned to a different mode), and iteratively correct-
ing it to improve the switched model performance. At each
iteration, three tasks are performed, namely a parameter
estimation on the partitioned data, a sample assignment
to the modes, and post-processing of the sample assign-
ment. In the first phase, the estimation of the parameters
of each mode is carried out with a least squares approach
on the samples assigned to that mode, according to the

current sample-mode mapping. Then, the one-step-ahead
prediction error is calculated for each identified mode
on the entire data set, and each sample is provisionally
assigned to the mode which exhibits the lowest prediction
error. Finally, in the last phase, misclassified samples are
corrected by taking into account the constraints on the
switching mechanism. This iterative process is carried out
until a stopping criterion is met.

Numerical results show that the post-processing intro-
duced in the last phase leads to superior performance with
respect to competitor algorithms.

The paper is organized as follows. Section 2 introduces
the SARX/PWARX identification problem which is then
tackled with the method proposed in Section 3. Section 4
presents the results obtained by applying the proposed
method on some numerical examples and compares them
with alternative approaches. Finally, some concluding re-
marks and possible work extensions end the paper.

2. PROBLEM STATEMENT

Consider the following Single-Input Single-Output (SISO)
switched linear dynamical system

y(t) = ϑ>λt
x(t) + e(t), (1)

where

x(t) = [1, y(t− 1), . . . , y(t− ny), u(t− 1), . . . , u(t− nu)],

is the regression vector (containing also the constant 1,
to account for different offsets of the modes), y(t) ∈ R is
the output, u(t) ∈ R is the input, λt ∈ M = {1, . . . ,m}
represents the active mode at time t ∈ N, ϑi ∈ Rnx is
the parameter vector defining the i-th mode, i ∈ M, and
e(t) is an additive white noise process. Integers ny and nu
denote the system orders and nx = ny + nu + 1. If λt is
an exogenous signal, then (1) is referred to as a SARX
system. Instead, if the value of λt encodes x(t) belonging
to the i-th set Xi of a given polyhedral partition {Xi}i∈M
of Rnx , i.e.,

λt = i ⇐⇒ x(t) ∈ Xi, (2)

then (1) is a PWARX model.

In the rest of the paper we consider the following assump-
tion, which is fairly common in the literature.

Assumption 1. The number of modes m and the orders ny
and nu are known. 2

Under Assumption 1, the identification problem for the
switched system in (1) can be formalized as follows.

Given a data set of N time-ordered and consecutive
regressor-output samples D = {y(t),x(t)}Nt=1, find the
values of ϑi, i ∈ M, and λt ∈ M, t = 1, . . . , N , which
solve the following optimization problem

min
{ϑi}i∈M,

{λt}Nt=1

∑
i∈M

∑
t:λt=i

(
y(t)− ϑ>i x(t)

)2
(3)

subject to: ϑi ∈ Rnx , i ∈M
λt ∈M, t = 1, . . . , N

(λ1, . . . , λN ) ∈ Λ,

where Λ encodes additional constraints on the sample
assignment variables λ1, . . . , λN , which are specific for
SARX/PWARX models.
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For a fixed mode i, the inner sum of the cost function in
(3) measures the fitness (in terms of the overall Squared
Prediction Error (SPE)) of ϑi for all the samples assigned
to mode i by λt. The outer summation then adds the
SPE of all modes to get an overall identification error of
the switched model. Problem (3) thus aims at finding the
partition of the data set D among modes, that minimizes
the sum of the SPEs over all the modes, compatibly with
the assignment constraints in Λ.

Concerning the latter, for SARX models Λ may encode
dwell time constraints like, e.g.,

Λ =
{

(λ1, . . . , λN ) ∈MN :

λt+1 6= λt =⇒ λt+1 = · · · = λmin{t+D,N}, t = 1, . . . , N
}
,

for a minimum dwell time of D time instants. In the
case of a PWARX, Λ should be chosen so that the sets
of data samples {(y(t),x(t)) : λt = i}, i ∈ M, are
pairwise linearly separable, since the switching mechanism
originates from a polyhedral partition {Xi}i∈M of the
regression vector space. Given that the optimal solution
to (3) returns a mapping of the samples into the modes,
finding the polyhedral partition {Xi}i∈M becomes a linear
supervised classification problem with m classes. The
interested reader is referred to, e.g., (Paoletti, 2004),
for a comprehensive review on two-class and multi-class
classification methods.

Note that problem (3) is a mixed-integer optimization
program as it contains both continuous (ϑi ∈ Rnx , i ∈M)
and discrete (λt ∈ M, t = 1, . . . , N) variables, and is
therefore hard to solve in practice. In the next section we
propose an iterative algorithm to approximately solve it.

3. THE PROPOSED METHOD

We start by observing that problem (3) has two sets of
decision variables: the model parameters ϑi, i ∈ M, and
the assignment variables λt. We then propose to alterna-
tively minimize the cost function with respect to ϑi with
λt fixed (parameter estimation phase), then with respect
to λt while keeping ϑi fixed (sample assignment phase),
and finally we seek to enforce the Λ constraints (post-
processing phase). The overall procedure is summarized
in Algorithm 1 and discussed next.

The algorithm requires an initialization of the sample-
mode mapping. In the absence of a priori knowledge on
the switching mechanism, a randomly chosen mode in M
can be assigned to each sample (y(t),x(t)), for all t =
1, . . . , N , as done in Step 1 of Algorithm 1. Alternatively,
unsupervised classification algorithms can be employed to
look for patterns in D. Then, the generic k-th iteration of
the proposed procedure unfolds as follows.

In the parameter estimation phase, given the current
sample assignment λt(k), we minimize the cost function
of (3) with respect to ϑi, i ∈ M. Since λt is fixed and
equal to λt(k), problem (3) becomes

min
{ϑi}i∈M

∑
i∈M

∑
t:λt(k)=i

(
y(t)− ϑ>i x(t)

)2
(4)

subject to: ϑi ∈ Rnx , i ∈M,

Algorithm 1 SARX/PWARX identification

1: λt(0)← random element from M, t = 1, . . . , N
2: k = 0
3: repeat
4: % Parameter estimation phase
5: for i ∈M do

6: ϑi(k) = arg min
ϑi∈Rnx

∑
t:λt(k)=i

(
y(t)− ϑ>i x(t)

)2
7: end for
8: % Sample assignment phase
9: for t = 1 to N do

10: λ̂t(k + 1) = arg min
λt∈M

(
y(t)− ϑ>λt

(k)x(t)
)2

11: end for
12: % Post-processing phase

13: {λt(k + 1)}Nt=1 ← F({λ̂t(k + 1)}Nt=1)
14: k ← k + 1
15: until stopping criterion is met

which is separable over i and thus reducible to m Least
Squares (LS) problems, one per mode (cf. Step 6 in
Algorithm 1).

In the sample assignment phase, given the current model
parameters ϑi(k) for each mode i ∈ M, we minimize
the cost function of (3) with respect to λt, t = 1, . . . , N .
Setting ϑi = ϑi(k) and swapping the two summation in
the cost function, (3) becomes

min
{λt}Nt=1

N∑
t=1

∑
i:λt=i

(
y(t)− ϑ>i (k)x(t)

)2
subject to: λt ∈M, t = 1, . . . , N

(λ1, . . . , λN ) ∈ Λ,

which is equivalent to

min
{λt}Nt=1

N∑
t=1

(
y(t)− ϑ>λt

(k)x(t)
)2

(5)

subject to: λt ∈M, t = 1, . . . , N

(λ1, . . . , λN ) ∈ Λ.

Problem (5) is, however, hard to solve due to the presence
of the constraints encoded by Λ, which couple the λt’s
decision variables. We then propose to neglect the Λ
constraint, thus making problem (5) separable into N sub-
problems, one per sample (cf. Step 10 in Algorithm 1),
with the following interpretation: each data point y(t) is
provisionally assigned to the mode that best explains it,
or, equivalently, to the model with the smallest prediction
error at t.

Finally, we seek to enforce the assignment variable con-
straint Λ via an ad hoc post-processing phase (cf. Step 13
in Algorithm 1), which depends on the assumed system
class and is discussed in the next subsections. The heuris-
tic procedure F(·) is directly applied to the assignment
returned by the previous phase and implements the post-
processing phase.

The algorithm iteratively performs the three described
tasks and terminates whenever the data partition does
not change across two subsequent iterations, the change in
the cost function across iterations is below a user-defined
threshold, or a maximum number of iterations is reached.
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3.1 Switched affine systems with dwell time

Suppose that (1) is a SARX system and let D be the
largest odd integer smaller than or equal to the system
dwell time. Then, the heuristic procedure (coded by F(·)
in Algorithm 1) attempts to correct wrong assignments

λ̂t(k) by reassigning the mode of isolated samples. This
indirectly favors the obtainment of the dwell time con-
straint. Let w = D − 1 and consider the following vector
of assignment variables

Lt(k) =
(
λ̂t−w(k), . . . , λ̂t+w(k)

)
∈M2D−1

of size 2D− 1 and centered at t, for iteration k. Then, for

each t = w+ 1, . . . , N −w, the map F({λ̂t(k)}Nt=1) assigns
to λt(k) the most frequent mode value within Lt(k). In
case of a tie, we set λt(k) equal to the mode with the best
fitting at t, among the most frequent modes in Lt(k). For

t < w and t > N − w, we set λt(k) = λ̂t(k).

3.2 Piecewise affine systems

Suppose now that (1) belongs to the PWARX class of
models. In this case, data points should be clustered in
linearly separable regions, each associated to a different
mode. To take this constraint on the assignment variables
into account, if a sample is surrounded by data belonging
to the same mode, then we assume that it belongs to the
same mode. This is implemented in the following heuristic
procedure (coded by F(·) in Algorithm 1). Let p be a
positive integer and Np,t the set of the p nearest neighbors
of (y(t),x(t)) in the R × Rnx space, where the distance
between two data points (y(t1),x(t1)) and (y(t2),x(t2))
space is given by ‖(y(t1),x(t1))− (y(t2),x(t2))‖. Let

Lt(k) =
(
λ̂t1(k), . . . , λ̂tp(k)

)
∈Mp

be the vector of mode indices associated to the data
points (y(t1),x(t1)), . . . , (y(tp),x(tp)) in Np,t. Then, for

each t = 1, . . . , N , the map F({λ̂t(k)}Nt=1) assigns to λt(k)
the most frequent mode index in Lt(k). As for the SARX
model class, in case of a tie, we set λt(k) equal to the mode
with the best fitting at t, among the most frequent modes
in Lt(k).

Notice that the distance measure employed above is de-
fined in the joint regressor-output space as opposed to the
plain regressor space. Indeed, this often facilitates the clas-
sification of samples near the boundaries of the polyhedral
regions, especially in case of discontinuities among modes,
where data points that are close in the regressor space
actually belong to different modes. It is important to stress
that here we are addressing the sample assignment, as
opposed to the reconstruction of the polyhedral partition
{X}i∈M, which can be carried out on the regressor space
only once the identification procedure ends.

4. NUMERICAL EXAMPLES

In this section the effectiveness of the proposed method
is shown with reference to some numerical examples in-
volving both SARX and PWARX model identification.
Furthermore, the method is compared with the recursive
techniques presented in (Bako et al., 2011; Breschi et al.,
2016), the k-RANSAC (Hartmann et al., 2015), and the

approach in (Bemporad et al., 2018). To allow a fair
comparison of all the methods in the offline setting dis-
cussed in this work, online recursive methods are executed
as follows: starting from a user-defined initialization, the
identification is first performed on half the data set and
then the algorithm is run again 10 times on the whole data
set by initializing it each time according to the output of
the previous run. As suggested in Bemporad et al. (2018),
the method is run 5 times from different random initial
sample assignments and the best result is selected. Table 1
lists the parameter settings used for the different methods.
The methods are evaluated in terms of the classification
error rate, i.e. the percentage of misclassified data points,
and the fitting error, which is measured as in (Bako et al.,
2011) according to

FIT =

(
1− ‖ŷ − y‖2
‖y − ȳ1N‖2

)
, (6)

where ŷ denotes the estimated model output sequence, ȳ is
the average of the true output sequence y, and 1N denotes
an N -dimensional vector of ones. For each example, a
Monte Carlo analysis is carried out with 1000 different
data realizations of length 2000 each and the evaluation
indices are averaged over all runs. All tests have been
performed in a MATLAB 2017a environment, on an i7
2.20-GHz Intel Core processor with 8 GB of RAM.

4.1 SARX identification

In this study, the following system has been consid-
ered (Bako et al., 2011):

mode 1: y(t) =− 0.0322y(t− 1) + 0.8017y(t− 2)

− 1.2878u(t− 1)− 1.1252u(t− 2) + e(t)

mode 2: y(t) =− 0.1921y(t− 1) + 0.5917y(t− 2)

+ 1.1050u(t− 1) + 0.0316u(t− 2) + e(t)

mode 3: y(t) = + 1.4746y(t− 1)− 0.5286y(t− 2)

− 0.4055u(t− 1) + 0.2547u(t− 2) + e(t)

Table 1. Parameter settings for each method
(please, refer to the cited papers for the pa-

rameters definition and notations).

Method SARX PWARX

Proposed method w = 9 p = 15

Bako et al. (2011)

γ = 0.9 γ = 0.9

Lj(0) = 100Inx Lj(0) = 100Inx

fitting error: prior fitting error: prior

α = 0 α = 0.3

c(0): not used c(0): random

Breschi et al. (2016)

T i,j(0) = 1000Inx T i,j(0) = 100Inx

Λe = var(y) Λe = var(y)

κ = 1 κ = 1

Ai set equal to best
linear model

Ai set equal to best
linear model

c(0): not used c(0): random

Ri(0): not used Ri(0) = Inx

k-RANSAC
ε = 0.1 ε = 0.1

|Sk| = 10 |Sk| = 10

Bemporad et al. (2018)

`(x(t), y(t),ϑst) =

‖y(t)− ϑ>stx(t)‖2

`(x(t), y(t),ϑst) =

‖y(t)− ϑ>y,stx(t)‖2+

0.01‖x(t)− ϑx,st‖2
r(ϑk) = 0 r(ϑk) = 0

L(S) see Section 4.4 in
Bemporad et al. (2018)

L(S) = 0
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where e(t) is a zero mean white Gaussian noise chosen so
as to have 25 dB of Signal to Noise Ratio, and u(t) is a
zero mean white Gaussian noise with variance equal to 1.

The system switches randomly 20 times in the inter-
val (1, 2000), with a minimum dwell time D of 10 time
instants. Figure 1 shows the estimated discrete state
sequence (bottom) obtained by applying the proposed
method on the generated data set (top). The triangular
markers denote the switching time instants. The method
solved efficiently the sample-mode mapping on the consid-
ered data realization, as it is also evident from the com-
puted classification error rate, 0.3003%, and FIT criterion,
94.3227%. The identified local model parameters are:

ϑ1 = [−0.0377, 0.8058, −1.2924, −1.1378]

ϑ2 = [−0.1934, 0.5889, 1.1046, 0.0312]

ϑ3 = [ 1.4873, −0.5434, −0.4047, 0.2606]

Table 2 reports the aggregated results of the comparative
analysis carried out on the methods reported in Table 1.
The proposed method significantly outperformed all the
compared methods on the considered example when the
assignment constraints are taken into account in the post-
processing phase, while similar performance with that
of (Bako et al., 2011) and (Breschi et al., 2016) were
experienced without applying the heuristic procedure F(·).
Furthermore, the comparatively low standard deviation
values of the accuracy indicators imply that the proposed
approach is more robust than the competitors.

Table 2. SARX Identification. Comparative
analysis: aggregated mean ± standard devia-

tion values.

Method Cl. error [%] FIT [%] CPU time [s]

Bako et al. (2011) 8.04 ± 2.79 91.11 ± 5.72 0.33 ± 0.02

Breschi et al. (2016) 7.33 ± 1.88 93.92 ± 2.18 0.31 ± 0.01

k-RANSAC 18.14 ± 7.77 76.77 ± 9.91 0.92 ± 0.03

Bemporad et al. (2018) 1.20 ± 3.38 92.57 ± 3.08 0.88 ± 0.12

Proposed method

(no post-processing)
6.66 ± 0.70 94.82 ± 0.50 0.04 ± 0.02

Proposed method 0.58 ± 0.18 91.86 ± 1.72 0.81 ± 0.35

4.2 PWARX identification

In this example, the following system has been consid-
ered (Bemporad et al., 2005):

y(t) =



−0.4y(t− 1) + u(t− 1) + 1.5 + e(t)

if 4y(t− 1)− u(t− 1) + 10 < 0

0.5y(t− 1)−u(t− 1)− 0.5 + e(t)

if 4y(t− 1)− u(t− 1) + 10 ≥ 0

and 5y(t− 1) + u(t− 1)− 6 ≤ 0

−0.3y(t− 1) + 0.5u(t− 1)− 1.7 + e(t)

if 5y(t− 1) + u(t− 1)− 6 > 0

where u(t) and e(t) are sequences of independent random
variables uniformly distributed in the ranges [−4, 4] and
[−0.2, 0.2], respectively. Figure 2 shows a data realization
of length 2000 used for estimation. Figure 3 displays the
sample-mode mapping obtained by applying the proposed
approach. It is easy to note that the region boundaries have
been quite accurately estimated. This reflects on the final
classification error rate and FIT values which amount to

0.1501% and 96.2870%, respectively. The identified affine
subsystems are:

ϑ1 = [−0.4047, 1.0016, 1.4867]

ϑ2 = [ 0.5001, −0.9979, −0.4936]

ϑ3 = [−0.3016, 0.5018, −1.6894]

Table 3 reports the aggregated results of the comparative
analysis. The algorithm proposed in the paper shows com-
parable performance with the approach presented in Be-
mporad et al. (2018), while it outperforms all the other
competitors particularly in terms of sample classification.
Also note that significant differences in the computed
classification error rates do not correspond to equally
significant differences in the fitting performance, i.e., FIT
values. This is not surprising since the majority of mis-
classified samples lie on the mode boundaries and hence
can be consistent with more than one affine submodel.
Nonetheless, reducing the amount of misclassified data
points is fundamental if the estimation of the polyhedral
partition {Xi}i∈M is addressed based on the results of the
identification procedure.

Table 3. PWARX Identification. Comparative
analysis: aggregated mean ± standard devia-

tion values.

Method Cl. error [%] FIT [%] CPU time [s]

Bako et al. (2011) 0.59 ± 0.87 95.85 ± 0.84 0.43 ± 0.01

Breschi et al. (2016) 1.91 ± 0.70 96.04 ± 0.83 0.77 ± 0.03

k-RANSAC 5.63 ± 3.55 82.80 ± 9.94 0.87 ± 0.02

Bemporad et al. (2018) 0.16 ± 0.10 96.25 ± 0.08 2.36 ± 0.52

Proposed method

(no post-processing)
2.11 ± 1.04 96.27 ± 0.42 0.04 ± 0.02

Proposed method 0.15 ± 0.14 96.24 ± 0.08 1.12 ± 0.53

5. CONCLUSION

An iterative batch method has been presented for switched
system identification. It tackles the typical heterogeneous
optimization problem which characterizes the identifica-
tion of SARX and PWARX models with an alternating
optimization strategy over the model parameters first, and
then over the sample-mode assignment variables. A distin-
guished feature of the presented approach is the capability
of correcting wrong sample-mode assignments by means of
a simple and computationally affordable procedure which
can take into account for assignment constraints originat-
ing from some prior knowledge on the switching mecha-
nism. Numerical results show that the proposed method is
quite accurate and has superior performance with respect
to alternative methods in the literature.

Future work will focus on the convergence analysis of the
proposed method, as well as the analysis of robustness
against a possibly mode dependent noise. Furthermore,
the extension to the case when the number of modes is
not a priori known will be pursued.
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