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Abstract: Reduction of a dynamical theory consists of two steps: (i) finding its phase portrait
(collection of all trajectories), and (ii) recognizing in it a pattern that is then identified with
the phase portrait of the reduced dynamical theory. The original dynamical system becomes
split in the reduction into the reduced dynamics representing the recognized pattern and the
reducing dynamics representing the process of its emergence. From the experimental point of
view, the reducing dynamics represents the process of preparing macroscopic systems for using
the reduced description.
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1. INTRODUCTION

An effort to combine mechanics with heat gave birth to
thermodynamics. Its most significant contribution is the
introduction of a new potential called entropy. Features
of the microscopic mechanics of ∼ 1023 particles that
are detectable in macroscopic observations emerge in the
process of maximizing the entropy subjected to certain
constraints. This way of extracting pertinent features from
complex and very large data is called Maximum Entropy
Principle or, in short, MaxEnt. From the experimental
point of view, the macroscopic features are seen in the
macroscopic experimental observations only in systems
that have been specifically prepared. For example, the
preparation process for experimental observations made in
the classical equilibrium thermodynamics is to leave the
system under investigation sufficiently long time free of
external influences and internal constraints. The entropy
is a potential generating the time evolution involved in
the preparation process. The entropy thus makes its first
appearance in the preparation for certain type of experi-
mental observations and is maximized in the course of the
process.

We introduce the following terminology and notation. The
level of description involving more details is called an
upper level. The level of description involving less details
is called a lower level. The state space used on the upper
level is denoted M , its elements x (i.e. x ∈M). Similarly N
and y ∈ N denotes the state space and its elements on the
lower level. Quantities belonging to the upper respectively
the lower level are denoted by the upper index ↑ and ↓
respectively. Both levels have an autonomous existence.
They have arisen from an experience collected in certain
type of experimental observations (different for a different
level). If we consider them both simultaneously then we
call the lower level also a reduced level and the preparation
process from the upper to the lower level is governed by a
reducing dynamics. If we assume that the entropy is known
and consider only its maximization we call MaxEnt static.
If we consider the reducing dynamics that maximizes the
entropy we call MaxEnt dynamic.

To give an example, x is a one particle distribution
function and y are hydrodynamic fields; the upper level in
this example is the Boltzmann level of kinetic theory and
the lower level is the level of hydrodynamics. In another
example we take y to be the volume, the energy and the
number of moles. In this case the lower level is the level
of the classical thermodynamics and the reducing (i.e.
the preparation) process is governed by the Boltzmann
kinetic equation. This latter example is historically the
first example Gesamtausgabe (1983) in which the reducing
dynamics has been mathematically formulated.

The upper level involves always the time evolution (called
the upper time evolution). The lower level can but it does
not have to involve the time evolution. For example the
level of hydrodynamics does involve the time evolution
and thus if we consider hydrodynamics as a lower level it
will be the lower level with the lower time evolution. But
there are levels without the time evolution. In particular
it is the level of equilibrium thermodynamics. If the lower
level involves the lower dynamics we shall also consider
reductions from the upper level to the vector fields of
the lower dynamics (i.e. the mapping M → X(N)). We
use ”rate” to distinguish the concepts and the quantities
involved in reductions M → X(N) from the same type of
concepts and quantities involved in reductions M → N .
We thus have the concept of entropy (denoted S) involved
in the analysis M → N and the rate entropy (denoted
Σ) involved in the analysis of M → X(N). The MaxEnt
principle becomes the Maximum Rate Entropy Principle
(MaxRent).

2. STATIC MAXENT

The input of MaxEnt is the upper fundamental thermo-
dynamic relation

Y ↑(x) = y

S↑(x)

(1)
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Both the mappings Y ↑ : M → N and S↑ : M → R
are assumed to be sufficiently regular, the mapping S↑ is
moreover assumed to be a concave function of x. MaxEnt
is formulated as follows. First, we introduce an upper
thermodynamic potential

Φ↑(x, y∗) = −S↑(x)+ < y∗, Y ↑(x) > (2)

where y∗ are Lagrange multipliers and <,> is a pairing in
N . Next, we solve equation

Φ↑x = 0 (3)

(we use hereafter the shorthand notation Φ↑x = ∂Φ↑

∂x ). Let
its solution, called an upper equilibrium state, be x̂(y∗).
In the third step we evaluate the upper thermodynamic
potential Φ↑(x, y∗) at x̂(y∗),

S↓∗(y∗) = Φ↑(x̂(y∗), y∗) (4)

where S↓∗(y∗) is called a lower conjugate entropy implied
by the upper fundamental thermodynamic relation (1). In
order to obtain the lower entropy S↓(y) implied by the
upper fundamental thermodynamic relation (1), we make
the standard Legendre transformation S↓∗(y∗) → S↓(y)
(i.e. we introduce Φ↓∗(y∗, y) = −S↓∗(y∗)+ < y∗, y >

solve Φ↓∗y∗ = 0 (let its solution be ŷ∗(y)) and obtain

S↓(y) = Φ↓∗(ŷ∗(y), y)).

Summing up, we made the MaxEnt reduction of the upper
fundamental thermodynamic relation (1) in two stages:

(S↑(x), Y ↑(x))→ (S↓∗(y∗), y∗)→ (S↓(y), y) (5)

The second mapping in (5) is the standard Legendre
transformation, the first mapping is the reducing Legendre
transformation which is just an alternative viewpoint of
the maximization of S↑(x) subjected to constraints Y ↑(x)
with y∗ playing the role of the Lagrange multipliers.

Example

We choose x = f(r,v), where r ia the position coordinate
and v momentum of one particle; y = (E,N (mol)), where
E is the energy per unit volume and N (mol) the number of
moles per unit volume. The upper fundamental thermody-

namic relation: (E,N (mol)) = (
∫
dr
∫
dvf v2

2m ; N (mol) =∫
dr
∫
dvf); S↑ = −

∫
dr
∫
dvf ln f , m is the mass of

one particle;. The MaxEnt reduction (5) leads in this
example to the entropy S↓(E,N (mol)) that in the classical
equilibrium thermodynamics represents the ideal gas (for
details see Pavelka et al. (2018)).

Remark 1

The MaxEnt reduction (5) gives the lower entropy as a
function of the upper fundamental thermodynamic rela-
tion (1) and the Lagrange multipliers y∗ (that at the end
of the reduction appear as conjugates of the lower state
variables y). The question of how can we find the upper
fundamental relation is discussed in Section 4. If the lower
level involves the time evolution then the only information
about the lower vector field that is implied by the MaxEnt
reduction (5) is that it is the upper vector field restricted to
the submanifold of equilibrium states x̂(y∗) and projected
(in a way that remains to be determined)) on its tangent
space. Various extensions of MaxEnt that aim at the lower
entropy as well as the lower vector field are discussed in
Klika et al. (2019); Grmela et al. (2020).

Remark 2

The fundamental thermodynamic relation can be formu-
lated on the level of the classical equilibrium thermo-
dynamics in two equivalent representations: (i) the en-
tropy representation (E,N (mol), S(E,N (mol))) and (ii) the
energy representation (S,N (mol), E(S,N (mol))). The ex-
change of the roles between the energy E and the entropy
S is possible because SE = E∗ = 1

T > 0, where T is the
absolute temperature. Moreover, because of the ubiquity
in the nature of the walls that freely pass or stop the
passage of the internal energy, the temperature T can be
easily measured by thermometers.

Both the double view of the fundamental representation as
well as the easy way to measure the temperature do not
extend to the general mesoscopic formulation (1). With the
classical equilibrium thermodynamics as the lower level,
the general upper fundamental thermodynamic relation
(1) takes the form (E(x), N (mol)(x), S↑(x)) together with
the Lagrange multipliers (E∗, N (mol)∗). In such general
mesoscopic setting the roles of the entropy and the energy
cannot be exchanged and the quantity E∗ plays only the
role of the Lagrange multiplier (it becomes the conjugate of
the energy only after the reduction has been completed).
This is the reason for the well known difficulty with an
appropriate definition of (and an appropriate way to mea-
sure) the temperature on mesoscopic levels. How can we
express the temperature T in terms of the upper state
variables x? The main problem is that there does not
seem to be a single answer to this question. For example,
T can be seen as an appropriately chosen moment of
x̂(E∗, N (mol)).

Remark 3

From the mathematical point of view, MaxEnt is a se-
quence of, broadly speaking, Legendre transformations.
We can then ask the question of what is the geometrical
environment in which Legendre transformations appear as
natural transformations. The contact structure geometry
answers this question since the contact structure is pre-
served in Legendre transformations (see more Hermann
(1984), Grmela (2018))

3. STATIC MAXRENT

The reduction discussed in the previous section is based
on the fact that both the upper and the lower levels are
autonomous. This means that the lower phase portrait
(collection of all trajectories in N) has to be visible aa
a pattern in the upper phase portrait (collection of all
trajectories in M). Moreover, we have also used the exper-
imental observation according to which the system under
consideration has to be prepared before the lower level
can be applied. The preparation process is governed by the
reducing dynamics. Both of these features of the reduction
are independent of the presence or absence of the lower
dynamics. However, there is an important difference. In
the former case the main interest is to obtain the lower
dynamics as a reduced upper dynamics (for example the
famous and the extensively studied problem of reducing
the Boltzmann kinetic equations to hydrodynamic equa-
tions). How can we combine the reduction presented in
the previous section with the search for the reduced upper
dynamics? What does such combination bring new to the
lower dynamics seen as a reduced upper dynamics?
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The approach to equilibrium states investigated in Max-
Ent is replaced in MaxRent with the approach to the
lower vector field that is seen as a reduced upper vector
field. The input of MaxRent is the upper rate fundamental
thermodynamic relation (compare with (1))

J(y) = J↑(x, y)

Σ↓ = Σ↑(x)

(6)

where J(y) ∈ X(N). With (6) replacing (1) we now follow
all the steps made in the previous section. The lower
rate entropy Σ↓(J(y)) implied by upper rate fundamental
relation (6) arises, as in (5)), in two stages:

(Σ↑(x), J↑(x, y))→ (Σ↓∗(J∗(y)), J∗(y))→
→ (Σ↓(J(y)), J(y)). (7)

In the first stage we are making the Legendre transfor-
mation in which the upper rate entropy is maximized
subjected to the constraints J↑(x, y) with J∗(y) playing
the role of the Lagrange multiplier. The second stage is
the regular Legendre transformation.

Remark

The output of the MaxRent reduction (7) is the lower
vector field J(y) and the lower rate entropy Σ↓(J(y)). The
input is the upper fundamental thermodynamic relation

(6) and the Lagrange multipliers J∗(y) = Σ↓J(y). In com-

parison with MaxEnt, the lower vector field in the output
J(y) is new. The provenance of the upper rate fundamental
relation (6) is discussed in Section 5.

4. DYNAMIC MAXENT (REDUCING DYNAMICS)

Both reductions presented in the two previous sections
emerge in the process of trying to recognize a pattern
in the upper time evolution. After the pattern has been
recognized, the upper dynamics becomes split into the
reduced dynamics representing the recognized pattern
and the reducing dynamics representing the process of
its emergence. From the experimental point of view, the
reducing dynamics represents the process of preparing
macroscopic systems for using the lower level description.
Instead of engaging in the complex investigation of the
upper time evolution that is necessary for revealing such
split, we shall only attempt to identify the time evolution
during which the first transformation in (5) is made.

We begin with the maximization of S↑(x) without con-
straints. There are two obvious candidates for the time
evolution maximizing S↑(x). First, it is the gradient time
evolution

ẋ = ΛS↑x (8)
where Λ is a positive operator. The second candidate is

ẋ =
[
Ξ↑(x∗, x)x∗

]
x∗=S↑x

(9)

that generalizes (8). The quantity Ξ↑, called a dissipation
potential, is a real valued function of (x, x∗) such that: (i)
Ξ↑(x, 0) = 0, (ii) Ξ↑ reaches its minimum at x∗ = 0, (ii) Ξ↑

is convex in a neighborhood of x∗ = 0. In the particular
case of Ξ↑ = 1

2 < x∗,Λ↑x∗ > the right hand side of (9)
becomes the same as the right hand side of (8).

Indeed, solutions to both (8) and (9) approach, as the time

t→∞, to x̂(y∗). This is because (8) and (9) imply Ṡ↑ > 0

so that −S↑(x) plays the role of the Lyapunov function for
the approach x→ x̂(y∗).

Now we take into account the constraints. In the static
maximization this is done by the Lagrange multiplier
method. In the dynamic maximization the problem is more
complex. One type of the modification of (8) or of (9)
that takes into account the constraints is made in the
following two steps. First, we require that the operator
Λ in (8) (and a corresponding to it requirement in (9))
is degenerate in the sense that ΛY ↑x = 0. Second, in the
nullspace of Λ we introduce a new time evolution that
leaves S↑ unchanged. We call this new time evolution a
non-dissipative time evolution. Next,we construct a new
vector field on M as a sum of the gradient vector field
(the right hand side of (8) or (9)) and the non-dissipative
vector field. If, in addition, the non-dissipative time evo-
lution leaves the constraints unchanged then the time
evolution generated by the combined vector field leaves
the constraints unchanged and the upper thermodynamic
potential Π↑(x, y∗) = −S↑(x)+ < y∗, Y ↑ >, plays the
role of the (weak) Lyapunov function for the approach

x → x̂(y∗). The Lyapunov function is weak since Φ̇↑ ≤ 0.
The weak inequality implies that solutions approach the
non-dissipative submanifold {x ∈ M |Φ̇↑ = 0}. The equi-
librium submanifold composed of x̂(y∗) is a submanifold
of the non-dissipative submanifold. In order to prove the
approach x → x̂(y∗) we need to prove that the non-
dissipative submanifold is approached only when the equi-
librium manifold is approached. An example of a proof of
this kind is in Desvillettes and Villani (2005). An example
of the reducing dynamics that makes the maximization
described in the example in Section 2 is the Boltzmann
kinetic equation. An abstract Boltzmann equation whose
solutions make the MaxEnt reduction with the level of
the classical equilibrium thermodynamics being the lower
level is called GENERIC (see Pavelka et al. (2018) and
references cited therein).

Remark

The fundamental thermodynamic relations (1) and (6)
arise in the pattern recognition process in the phase por-
trait of the upper dynamics. This realization shows, of
course, only a direction for further investigations leading
eventually to the fundamental thermodynamic relations
representing specific macroscopic systems. The viewpoints
and methods developed in stochastic dynamics provide
another complementary avenue leading to the fundamen-
tal thermodynamic relations Feynman (1972), Jizba and
Korbel (2019).

5. DYNAMIC MAXRENT (REDUCING RATE
DYNAMICS)

The same steps that led us in the previous section to
the split of the upper time evolution into the reducing
and the reduced time evolution lead us also to another
split into reducing rate time evolution and the reduced
rate time evolution. The latter is the time evolution of
the lower vector fields and thus it is no time evolution.
The reducing rate time evolution results in the lower rate

entropy Σ↓∗(J∗(y)), and, via the relation J(y) = Σ↓∗J∗(y),

to the lower vector field J(y). Both the lower rate entropy
Σ↓(J(y) and the Lagrange multipliers J∗(y) arise in the
process of the pattern-recognition type analysis of the
upper dynamics.
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6. CONCLUDING REMARK

Let our goal be to simplify (to reduce) a complex dynam-
ical system. We argue that it is useful to pay an equal
attention to the result of the simplification (i.e. to the
simpler dynamical system) as well as to the process leading
to it. The latter process (reducing dynamics) brings to
the reduction a extra information of the thermodynamical
nature. From the experimental point of view, the reducing
dynamics represents the process of preparing the system
under observations to the observations made in the re-
duced setting.
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