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Abstract: In a context where electroencephalography (EEG) is largely used for brain studies,
this paper focuses on the dynamics of the measurement process itself by means of a so-called
phantom EEG device developed in a former study. A model is proposed in order to better
understand the physical properties of each part of the measurement chain separately, with the
purpose of helping for a better recovery of neuronal activity. The model structure is based on a
physical analysis, and parametric identification is used in combination with it to estimate all the
underlying physical components. Numerical results are provided based on experimental data.
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1. INTRODUCTION

Electroencephalography (EEG) is largely used in neuro-
science and medical diagnosis. It consists of the recording
of electric potentials differences induced by current flows
during neuronal activities. It is often realized on subject
scalps with metal electrodes. Measurements acquired from
EEG recordings can be useful in monitoring alertness
and locating injured areas in the brain for example. In
this report, we model the measurement chain of an EEG
recording itself. To do so, a specific device was built (Becq
et al. (2017)) called phantom EEG that mimics the mea-
surement chain of such processes. This device gave rise to
first transfer function models (Besançon et al. (2018)) and
(Besançon et al. (2019)).

The purpose here is to refine these models by adding
physical components described in the literature concerning
EEG measurements, at different parts of the system.
This enable to identify them precisely and can be helpful
for modeling data in real EEG applications where the
input sources are not controlled or where electrodes may
interact differently with the medium depending on their
locations in the brain. Furthermore, this enables to better
relates these components to reactions occurring during the
measurement process.

This paper is organized as follows: First, in section 2, the
device considered is presented as well as an overview of
the different parts of the measurement chain. In section 3
the new model is introduced, together with the parametric
identification approach. In section 4 the results obtained
with experimental data are shown and finally section 5
concludes this paper.

Fig. 1. Experimental setup for data acquisition of the
phantom EEG.

2. EEG MEASUREMENT SYSTEM AND MODELING
PROBLEM

The experimental setup proposed in Becq et al. (2017) can
be represented as Fig. 1.

Fig. 2. Measurement chain components of an actual EEG
recording
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Fig. 3. Block diagram of the different parts of the EEG
measurement chain.

The input signal is a white noise generated in Python
that is transmitted to the input electrode via a digital
to analog converter (National Instruments CRIO-9263
mounted on a cDAQ-9181 Ethernet chassis). The input
electrode is inserted into an electrolyte medium which is
a solution of phosphate buffered saline (PBS) obtained
from a dissolution of half a tablet of P4417 Sigma-Aldrich
dissolved in 1 l of pure water (0.1 times concentration).
The output voltage is measured in three different positions
by output electrodes located at 1 cm, 3 cm, and 5 cm from
the input electrode. The input and output electrodes are
connected to an EEG recorder (g.tec g.USBamp) with a
selected sampling frequency of 4.8 kHz. The electrodes are
made out of pure platinum and have a cylindrical shape
with a 0.5 mm diameter and length of 1 cm. Only about
0.5 cm of the length of the electrodes are inserted into
the medium. The translation of the components of the
measurement chain to an actual EEG recording is shown
in Fig. 2. In this case instead of an input signal generated
by a PC, the signal measured by the output electrodes is
the neuronal activity.

As it was mentioned before, the aim of the study is to
understand the dynamics and physical properties of each
stage in the EEG measurement chain. In other words,
we would like to go beyond the direct transfer function
between input voltage Vin and output voltage Vout, as it
was established in Besançon et al. (2019), and find a model
that describes separately the effects of input electrode,
medium, output electrode and EEG recorder, as in Fig. 3.

3. IDENTIFICATION APPROACH AND PHYSICAL
PARAMETERS RECOVERY

Differently from Besançon et al. (2019) where the transfer
function to be identified was proposed by the analysis
of the data in frequency, the transfer function in this
article will be obtained from an electronic circuit whose
components represent physical properties of each part of
the measurement chain.

3.1 Physical-based approach for model structure

One of the first authors to propose an electronic circuit
representation of the EEG measurement chain was Robin-
son (1968), with a form recalled in Fig. 4. The difference
between the model proposed by Robinson and the phantom
EEG being analysed in this paper is the input electrode.
The signal is considered to be generated directly from
neuronal activities. Robinson represents the solution by a
resistance (Rs), the impedance of the output electrode by
a metallic resistance (Rm) in series with the parallel of the
shunt capacitance of the system to the ground (Cs) and
the input impedance of the amplifier of the recorder (Za).
Robinson also proposes a representation of the interface
between the electrode and the electrolyte solution as the
parallel between a double layer capacitance Cdl and a
charge transfer resistance RCT .

Fig. 4. Model proposed in Robinson (1968) for EEG
measurement chain with input from neuronal activity.

Many authors have discussed fractional order representa-
tions of the electrode/electrolyte interface. For instance
Magin and Ovadia (2008) studied the interface between
cardiac tissue and electrodes and McAdams et al. (1995)
studied various different aspects of what happens when a
metal is placed in an electrolyte. The most common circuit
proposed for modeling the interface is shown in Fig. 5.
The non faradic processes in the interface are represented
by the double layer capacitance Cdl that corresponds to
the layers of charge of opposite polarity located in the
surface of the electrode and in the electrolyte. The faradic
processes are represented by the charge transfer resistance
RCT in series with the Warburg impedance ZW . The resis-
tance RCT represents the possible transfer of charge that
occurs in the interface and ZW represents the diffusion,
with a transfer function as follows (where s stands for the
Laplace variable):

ZW =
1

Cws0.5
(1)

Fig. 5. Commonly used model for the electrode/electrolyte
interface.

For the specific case of this study where platinum elec-
trodes were chosen, the faradic processes are greatly re-
duced in the interface. Richardot and McAdams (2002)
proposed a new circuit to represent specifically the case of
platinum electrodes in electrolyte medium (Fig. 6).

Fig. 6. Platinum electrode/electrolyte.

In this case, ZCPE is a constant phase element of model (2)
below, for 0 < α < 1 that represents the non faradic
processes in the interface instead of the capacitance Cdl.
The closest α is to 1 the closest the element is to a capac-
itor. The choice to replace the double layer capacitance
by a constant phase element was made because the latter
better represents the adsorption and surface roughness
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effects. Even though the faradic processes are reduced,
there might still be a charge transfer in very small amounts
between the electrode and the electrolyte, as explained by
Richardotand McAdams, that is why RCT is still present
in the circuit.

ZCPE =
1

Qsα
(2)

With the preliminary study of the EEG measurement
chain made by Robinson and the interface proposed by
Richardot and McAdams, the complete circuit that can
represent the phantom EEG setup under study is given
in Fig. 7. Rm1, ZCPE1, and RCT1 represent the metallic
resistance and the interface with the electrolyte for the
input electrode, Rs represents the resistance of the solu-
tion (electrolyte), Rm2, ZCPE2, and RCT2 represent the
metallic resistance and the interface with the electrolyte
for the output electrode, and Cs represents the shunt
capacitance to the ground. Zr is a simplification of the
impedance of the recorder viewed from the measurement
chain considering that the signal is filtered and amplified.

Fig. 7. Proposed model of the phantom EEG measurement
chain.

For the case studied in this paper, the input and output
electrodes will be considered to be the same in terms of
their physical properties (Rm1 = Rm2 = Rm, ZCPE1 =
ZCPE2 = ZCPE , and RCT1 = RCT2 = RCT ). This
consideration is made in order to simplify the model of
the EEG measurement chain, as the identification of more
complex models tend to be more sensitive to noise (as
described in the results and discussion of this article.).
This is not far from reality as both electrodes have the
same dimensions, they are made of the same material and
they are in contact with the same electrolyte. With this
assumption, and using model (2) for ZCPE , the impedance
of each electrode can be represented as follows:

Zelectrode =
RmRCTQs

α +Rm +RCT
RCTQsα + 1

=
p1s

α + p2
x1sα + 1

(3)

3.2 Physical-based model considered for identification

The overall transfer function that describes the circuit
given in Fig. 7, taking into consideration the impedance
of the electrodes in equation (3) finally results in equa-
tion (4) below, with coefficients given in equation (5) to
equation (9).

H(s) =
Vout
Vin

=
b1s

α + b2
a1sα+1 + a2s+ a3sα + 1

(4)

b1 =
Zrx1

Zr + 2p2 +Rs
(5)

b2 =
Zr

Zr + 2p2 +Rs
(6)

a1 =
2p1ZrCs +RsZrCsx1

Zr + 2p2 +Rs
(7)

a2 =
2p2ZrCs + ZrCsRs
Zr + 2p2 +Rs

(8)

a3 =
Zrx1 + 2p1 + x1Rs
Zr + 2p2 +Rs

(9)

The aim now is to recover from the identification of trans-
fer function (4), the six physical parameters of the circuit
in Fig. 7 that are Rm, RCT , ZCPE , Rs, Cs, and Zr.
The problem is that there are only five coefficients which
are (structurally) identifiable (see Walter and Pronzato
(1997)) from equations (5) to (9). Therefore, one of the six
physical parameters has to be estimated via other consid-
erations. The chosen physical parameter to be calculated is
the medium resistance Rs, which can be calculated directly
from the general resistance formula given in equation (10)
hereafter, in which σ ([S/cm]) is the electrical conductivity
of the solution, l ([cm]) the length of the material for which
the resistance is going to be measured and A ([cm2]) the
transverse surface of the material:

R =
1

σ

l

A
(10)

In the case of the resistance of the solution, the length (l) is
the distance between the input and output electrodes. The
area (A) is the transverse surface of electrolyte between the
input and output electrodes, which can be approximated
to the lateral surface of the cylinder of diameter 0.5 mm
and height 0.5 cm. The electrical conductivity (σ) of
the PBS presented in section 2 was already estimated in
Johnson et al. (2005) as being σ = 0.00181 [S/cm]. The
resulting values of the resistance of the solution in function
of distance are given in table 1. The found values of Rs are
close in order to those calculated in Robinson (1968) and
Johnson et al. (2005).

Table 1. Values of Rs as a function of the
distance between electrodes.

Distance between electrodes Rs
1 cm 7.03 kΩ
3 cm 21.10 kΩ
5 cm 35.17 kΩ

With the resistance of the solution (Rs) known, the system
of equations to recover the physical parameters of the
circuit shown in Fig. 7 becomes:
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x1 =
b1
b2

Zr(b2 − 1) + 2p2b2 = −Rsb2
2p1 −

a1
b2

1

Cs
= −Rs

b1
b2

a2
b2

1

Cs
− 2p2 = Rs

Zr

(
b1
b2
− a3

)
+ 2p1 − 2p2a3 = Rs

(
a3 −

b1
b2

)
(11)

3.3 Parameter identification of the transfer function

The chosen algorithm for the parametric identification
of this system is the recursive least squares (RLS) with
adaptation gain presented in Landau et al. (2011). This
algorithm is chosen because from several experiments
with the data obtained from the phantom EEG setup, it
appeared to be more easily implemented, as compared to
other ones, and with a satisfactory response for all cases
satisfying the validation condition. The RLS is used to
solve equations of the form given in equation (12) below,
where the goal is to find the vector θ containing the
coefficients (weights) that describe the transfer function.
Vectors θ and φ for a rational transfer function are given
in equations (13) and (14). Where N is the order of the
denominator of the transfer function and M is the order
of the numerator. The ˆ symbol represents the estimation
as opposed to the real value of θ or y(t+ 1).

ŷ(t+ 1) = θ̂Tφ(t) (12)

θ̂T = [a1, a2, ..., aN , b1, b2, ...bM ] (13)

φT = [−y(t),−y(t− 1), ...,−y(t+ 1−N),
u(t+ 1), u(t), ..., u(t+ 1−M)]

(14)

The recursive least squares algorithm with adaptation
gain consists of the system (15), with λ representing the
forgetting factor, meaning the given importance for past
values in the current time estimation. In this application it
is chosen as λ = 0.99 as it resulted in identified coefficients
less sensitive to noise.


θ̂(t+ 1) = θ̂(t) + F (t)φ(t)ε(t+ 1)

F (t+ 1) =
1

λ
[F (t)− F (t)φ(t)φT (t)F (t)

λ+ φT (t)F (t)φ(t)
]

ε(k + 1) =
y(k + 1)− θ̂T (t)φ(t)

1 + φT (t)F (t)φ(t)

(15)

In order to determine if an identified model is validated, in
other words not biased, a test must be performed depend-
ing on the chosen identification method. The recursive
least squares method is based on the whitening of the pre-
diction error. Therefore, in order to validate the identified
model, a whiteness test must be performed. The whiteness
test consists in the verification of the whiteness of the
prediction error ε(t). This can be done with the analysis
of the normalized auto-correlations comparing them to a
threshold value, which is relaxed to a global approximation
of 0.15 as proposed by Landau et al. (2011).

In the case of this paper specifically, the system to be
identified has a non integer order. Therefore, there are
fractional order derivatives that need to be approximated

in order to guarantee the precision of the identification.
There are many ways in which one can approximate the
non integer order derivative to a discrete equation, most
of them are presented in Li and Zeng (2012), Malti et al.
(2006), and Oustaloup (1995). A study prior to this article
was done on the different equations of the non integer
derivative approximation. The selected one was proposed
by Ivo Petràš in Petráš (2011) for its small computational
time and good precision.

The approximation consists of an IIR digital integer filter
as an approximation of the fractional derivative of order
α (α ∈ R). The resulting discrete transfer function
is obtained via the continued fraction expansion (CFE)
described in Petráš (2011) of the Al-Alaoui discretization
of the fractional derivative described in Al-Alaoui (1993).
In this procedure a generating function ω is chosen as
the digital approximation of sα (sα ≈ ω(z−1)). In Petráš
(2011) the generating function is chosen as in equation (16)
below, in which T represents the sampling time, r is the
fractional order and a is a ratio term chosen as a = 1/7 as
the Al-Alaoui rule for the discretization of sα.

(ω(z−1))±r =

(
1 + a

T

1− z−1

1 + az−1

)±r

(16)

Applying the continued fraction expansion (CFE) in the
generating function (16) one obtains equation (17) which
ultimately results in equation (18), where ci and di are
the transfer function’s coefficients and m and n are the
respective nominator and denominator orders which are
usually chosen to be the same:

(ω(z−1))±r ≈
(

1 + a

T

)±r

CFE

{(
1− z−1

1 + az−1

)±r}
m,n

(17)

(ω(z−1))±r ≈
(

1 + a

T

)±r
c0 + c1z

−1 + · · ·+ cmz
−m

d0 + d1z−1 + · · ·+ dnz−n

(18)

The algorithm for this approximation already exists as a
Matlab function developed by Ivo Petráš (Petráš (1993))
and is the one used in this study. As an input, the function
dfod1 takes the order of the equivalent transfer function to
be found (N) and the weighting factor between the Euler,
Tustin and Al-Alaoui rules (a). For the present case, the
order is chosen as 4 and the weighting factor according to
the Al-Alaoui rule (1/7). This values were chosen via trial
and error by comparison of the responses of the identified
models.

For the new model proposed in this study, there is not
only non integer powers of the Laplace variable or non
integer derivatives, but also, rational derivatives. In order
to incorporate them in the final equation they need to be
discretized as well. The chosen form of discretization is
the Tustin one, because it has shown better results when
used for identification compared to other ones. For this
discretization, the Laplace variable s can be approximated
as shown in equation (19), in which T is the sampling
period:

s ≈ 2

T

1− z−1

1 + z−1
(19)
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4. ESTIMATION RESULTS WITH EXPERIMENTAL
DATA

The results obtained for the black box identification of
the transfer function (4) will be presented considering the
data obtained from phantom EEG experiments for all of
the three distances between input and output electrodes.
The first step is the determination of the non integer
order α. To do that, a system is identified for various
different fixed non integer orders in the interval 0 < α < 1.
The order finally chosen is the one corresponding to the
best identified system. The main criterion here considered
for the comparison between identified systems is the best
fitted Nyquist plot (when comparing model to data).

This criterion is chosen for the fact that the Nyquist plots
analysis is subject to the largest variations under order
changes, in comparison to time responses and bode plots.
An example of Nyquist plots for a small interval of α values
is given in Fig. 8 considering the distance of 1cm between
electrodes. The selected non integer order is α = 0.8. The
same test was repeated considering the other distances
and α = 0.8 was selected as the optimal order for all of
the cases. After this selection, the system identification
is made, and the identified coefficients can be found in
table 2.

Fig. 8. Comparison between Nyquist plots for order selec-
tion (α).

Table 2. Identified coefficients with RLS
method for each of the different distances.

1cm 3cm 5cm

b̂1 1.0160e-03 5.3042e-04 3.7735e-04

b̂2 1.4043e-02 5.3900e-02 7.4789e-02
â1 -5.4077e-08 -8.1570e-08 -2.0437e-07
â2 7.3782e-09 9.1186e-09 1.1944e-08
â3 4.8536e-03 4.9977e-03 7.1832e-03

We identified â1 as negative for all of the distance cases,
which we did not expected as the coefficients describe elec-
tronic components. However, since the value of â1 is really

small when compared to b̂1, b̂2 and â3, it can be considered
to be zero. With that, the system of equations given in (11)
can be used to recover the physical parameters when Rs
is considered known with values in table 1. However, the
condition number of the matrix containing the weights of

each variable is too high (1.9586e+09), which means that
small variations in the results can imply big variations in
the identified coefficients. In other words, the system is ill-
conditioned and is not trustworthy to recover the physical
parameters. This was also observed in simulation. As a
remedy, a simplification of the model given by equation (4)
can be considered. What can be seen from the obtained
coefficients shown in table 2 indeed, is that not only â1 can
be approximated as zero but also â2. With these remarks,

only three coefficients will be next considered (b̂1, b̂2, and
â3), and the transfer function can be rewritten as:

H(s) =
b1s

α + b2
asα + 1

(20)

Notice that the number of equations in the system is re-
duced, but Cs is no longer a variable to be identified, and,
with Rs known there are only four physical parameters to
be identified: Rm, RCT , ZCPE (that are combined to form
p1, p2 and x1), and Zr. Even with a reduced number of
parameters there is still one more physical parameter than
equations, therefore Rm will be calculated. The calculation
can indeed be done in the same way as that of Rs using
equation (10). In this case σ is the electrical conductivity of
platinum that can be found in Cantrell et al. (2008), l is the
length of the electrode (1 cm) and A can be approximated
as the transverse surface of the electrode assuming that
the current flows uniformly inside it. With that, the value
of the metallic resistance of the electrode is given by:

Rm =
1

9.4× 106
0.01

π(2.5× 10−4)2
= 0.0054 [Ω] (21)

The value of Rm is very small when compared to the
other resistances, so it will not have an impact in the final
physical values. The problem is that Rm is not written
explicitly in the system of equations (11). But there is a
way of expressing Zr as a function of Rs and Rm. This can
be achieved by dividing the coefficient b1 of equation (5)
by the coefficient a3 of equation (9), and by writing p1 and
x1 as functions of the electronic components. The system
of equations (11) can be rewritten as (22):



Zr =
( b1a )2Rm + ( b1a )Rs

1− b1
a

x1 =
b1
b2

2p2b2 = −Rsb2 − Zr(b2 − 1)

2p1 − 2p2a = Rs

(
a− b1

b2

)
− Zr

(
b1
b2
− a
) (22)

As the data for 3 cm and 5 cm of distance were found
to have important noise, a new identification is done,
considering only three parameters for these two cases,
resulting in identified coefficients less sensitive to noise.
The final coefficients identified for each of the cases are
given in table 3. The coefficients were found not to be
biased as they were validated by the whiteness test.

From these identified coefficients, equation (10), and the
solution of (22), the physical parameters can be recovered
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Table 3. Identified coefficients with RLS
method for each of the different distances.

1cm 3cm 5cm

b̂1 1.0160e-03 4.4200e-04 2.7536e-04

b̂2 1.4043e-02 1.2687e-02 5.7549e-03
â 4.8536e-03 3.3536e-03 3.4787e-03

directly from the following system of equations, with l
being the distance between input and output electrodes:



Rs = (2.2099× 104) l

Rm = 0.0054

Zr =
( b1a )2Rm + ( b1a )Rs

1− b1
a

RCT = p2 −Rm
Q =

x1
RCT

(23)

The solution of (23) gives the physical parameters sum-
marized in table 4. The Nyquist plots for each case can be
found in Fig.9.

Table 4. Physical parameters recovered from
the results of the black box identification.

1cm 3cm 5cm

Rs [kΩ] 7.03 21.10 35.17
Rm [Ω] 0.0054 0.0054 0.0054

RCT [kΩ] 61.86 114.10 243.58
Q [Fs−1+α] 1.17e-06 3.0534e-07 1.96e-07

Zr [kΩ] 1.86 3.20 3.02

Fig. 9. Nyquist plots for all of the three distances between
input and output electrodes.

5. CONCLUSIONS

In this paper a new dynamical model was proposed for
the EEG measurement chain based on the physical prop-
erties of each separate part. The parametric identifica-
tion together with the estimation of the medium and the
electrodes resistances enabled the recovery of the values
of the physical parameters, notably those of the elec-
trode/electrolyte interface. Even though the model is more
complex than the one proposed in previous studies, the
separation into different parts allows its use in applications

where the input signal comes from an unknown source,
which is usually the case for EEG recordings.

Extensions to this work could be the use of the found
model for better interpretation of the data obtained from
EEG recordings in human patients, as the proposed model
can be used for artefact correction. In applications of
intracerebral stimulation, the interface electrode/tissue
can still be represented by the same circuit as the elec-
trode/electrolyte one according to Magin and Ovadia
(2008). What can change in the overall circuit is the
consideration of an additional layer called peri-electrode
that is present for the cases of Deep Brain Stimulation
(DBS) and the impedance of neural tissue.
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Besançon, G., Voda, A., Becq, G., and Machado, M.M.P. (2018). Or-
der and parameter identification for a non-integer-order model of
an EEG system. IFAC-PapersOnLine, 51. 18th IFAC Symposium
on System Identification SYSID 2018.

Cantrell, D., Inayat, S., Taflove, A., Ruoff, R., and Troy, J. (2008).
Incorporation of the electrode-electrolyte interface into finite-
element models of metal microelectrodes. Journal of neural
engineering, 5, 54–67.

Johnson, A., Sadoway, D., Cima, M., and Langera, R. (2005). Design
and testing of an impedance-based sensor for monitoring drug
delivery. Journal of The Electrochemical Society - J ELEC-
TROCHEM SOC, 152.

Landau, I.D., Lozano, R., M’Saad, M., and Karimi, A. (2011). Adap-
tive control: algorithms, analysis and applications-1rst édition.
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