
On considering the output in space-filling
test signal designs for the identification of

dynamic Takagi-Sugeno models

Matthias Gringard and Andreas Kroll

Department of Measurement and Control, University of Kassel,
D-34109 Kassel, Germany

{matthias.gringard,andreas.kroll}@mrt.uni-kassel.de

Abstract: The model-based design of test signals for the identification of dynamical Takagi-
Sugeno (TS) fuzzy models is addressed. The multi-model structure is exploited to reduce
computational cost. Space-filling designs usually only address the input but the nonlinear
behavior of dynamic systems depends on the lagged output in general. This is considered as an
additional constraint regarding the test signal design. This contribution investigates whether
a control input can be calculated exploiting the local structure and whether considering the
output in space-filling designs yields identified models of higher quality.
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1. INTRODUCTION

It is of great interest to design test signals that excite
systems in their full operating range. This excitation is
important for the identification of high quality models that
can be used for simulation and control design. In this con-
tribution, the focus is on the model-based test signal design
for the identification of locally affine, dynamic Takagi-
Sugeno (TS) fuzzy models. The multi-model structure of
TS models can be exploited for control design based on
linear approaches which is not possible for other universal
approximators like neural networks.

In this approach, an initial model is used to design a
test signal such that the output behaves in a certain
way. Space-filling designs have been extended from their
application on static systems to dynamic systems like in
Ebert et al. (2015). For the identification of multi-models,
it is important to cover the scheduling space well, since the
nonlinear behavior is only described by the superposition
that depends on the scheduling variable. In contrast to the
identification of static systems, the scheduling variable is
likely to contain the output. If a space-filling test signal
design is applied just to the input space, the task of
achieving a sufficient coverage of the scheduling space is
only partly fulfilled or at least not addressed in the design
scheme.

Since the input is used to purposefully manipulate the
output, the test signal design can be viewed as a control
problem. An initial model is required for this method. It is
obtained using model-free approaches like in Gringard and
Kroll (2016) and Deflorian (2011). The identification then
becomes an iterative process in which the success depends
on the initial identification. Kroll and Dürrbaum (2015)
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have shown that data within the center of a partition
yield insufficient partition parameters. Therefore a space-
filling design that takes into account the output within the
scheduling variable is assumed to yield models with higher
generalization capability.

For this method, a reference output has to be designed that
satisfies conditions on the scheduling variable assumed to
be important. The local structure of the TS models will be
exploited during the input design. In this contribution, it is
investigated whether superposed local designs can achieve
the task of controlling the actual system’s output. It is also
investigated whether the space-filling assumptions result
in higher quality models.

In section 2, TS models and the used nomenclature are
introduced as well as the identification process. In section
2, the proposed method for the test signal design is dis-
cussed. Before this contribution is closed with a summary
and an outlook in section 5, a case study is presented in 4.

2. MODEL CLASS AND IDENTIFICATION PROCESS

In this section, the class of the used TS models and the
identification process is presented.

2.1 Locally affine Takagi-Sugeno models

Discrete-time, locally affine Takagi-Sugeno (TS) SISO
models are considered in this paper. These result from
superposing c local models that are weighted by the respec-
tive fuzzy basis function (FBF). The prediction equation
of such a model is:

ŷ (k) =

c∑
i=1

φi (z (k) ,ΘMF) · ŷi (ϕ (k) ,ΘLM,i) (1)

The local models are given in ARX (AutoRegressive with
eXogenous input) configuration:
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ŷi (k) :=ŷi (ϕ (k) ,ΘLM,i) = ϕ> (k) ·ΘLM,i

=[y (k − 1) · · · y (k − n) u (k − 1) · · ·u (k −m) 1]︸ ︷︷ ︸
ϕ>(k)

·[−ai,i · · · − ai,n bi,1 · · · bi,m ci]
>︸ ︷︷ ︸

ΘLM,i

(2)

In (1) and (2), ΘLMi
is the local parameter vector of

the i-th local model, ϕ (k) is the regression vector, n
and m are the dynamic orders of the output and input,
respectively. The FBF depend on the scheduling variable
z (k) as well as the partition parameters ΘMF. Without a
priori knowledge it is assumed that the components of the
scheduling variable are a subset of the components of the
regression vector. The FBF are normalized membership
functions (MF) µi (z (k) ,ΘMF):

φi (z (k) ,ΘMF) =
µi (z (k) ,ΘMF)
c∑

j=1

µj (z (k) ,ΘMF)
(3)

with

Θ>MF = [v1 · · · vc] (4)

In this contribution, the prototype-based MF of the fuzzy-
c-means (FCM) cluster algorithm are used:

µi (z (k) ,ΘMF) =

 c∑
j=1

( ‖z (k)− vi‖
‖z (k)− vj‖

) 2
ν−1

−1 (5)

Since
c∑

j=1

µj (z (k) ,ΘMF) ≡ 1, the FBF and MF are iden-

tical. The number of local models c as well as the fuzzi-
ness parameter ν ∈ R>1 are hyperparameters. Different
distance norms ‖·‖ are possible. In this contribution, the
Euclidean distance is used. vi are the prototypes and make
up the vector of partition parameters ΘMF. If (2) is put
into (1), ŷ (k) is linear in ΘLM:

ŷ (k) =
[
µ1ϕ

> (k) · · ·µcϕ
> (k)

]︸ ︷︷ ︸
ϕ>

E
(k)

· [ΘLM,1 · · ·ΘLM,c]
>︸ ︷︷ ︸

ΘLM

=: ϕ>E (k) ΘLM (6)

2.2 Identification process

The identification is conducted in four steps: i) The
determination of the structural hyperparameters (ν, c),
ii) the calculation of the partition parameters through
clustering, iii) the least-squares (LS) estimation of the
local model parameters and iv) the parallel optimization
of all parameters.

In the first step, the hyperparameters c and ν as well as
the dynamic orders n and m are determined. c and ν are
determined by cluster validity measures or the prediction
error as in Juhász et al. (2006). The scheduling variable
z (k) is often chosen to be identical to the regression vector
ϕ (k).

With known hyperparameters, the scheduling space can
be partitioned by clustering in the input space by e.g. the
FCM algorithm providing the MF (5) in the second step.

In the third step, a global estimation of the local model pa-
rameters ΘLM is conducted similar to Babuška (1998). For

this, the representation of the TS model (6) is evaluated
in N datapoints which is for the case of n ≥ m: ŷ (n)

...
ŷ (N)


︸ ︷︷ ︸

Ŷ

=

ϕ
>
E (n)

...
ϕ>E (N)


︸ ︷︷ ︸

ΦE

ΘLM (7)

Within the prediction error method (PEM) framework, a
quadratic cost function is minimized for the ARX model.
It can be written as:

JPEM (ΘLM) =
(
Ŷ (ΘLM)−Y

)> (
Ŷ (ΘLM)−Y

)
(8)

Y = [y (n) · · · y (N)]
>

is the vector of output measure-
ments. The argument minimizing JPEM (ΘLM) is:

Θ̂LM =arg min
ΘLM

Jpem (ΘLM) =
(
Φ>EΦE

)−1
Φ>EY (9)

Since the FCM algorithm converges locally, it is executed
multiple times with random initialization of the prototypes
followed by the LS estimation of the local model parame-
ters. The best model on the validation data set is selected
and used for the succeeding optimization step.

The partition parameters are optimal with respect to
the data grouping, not with respect to the prediction
error. Since the nonlinear ARX (NARX) estimation often
results in an unsatisfying simulation behavior, all model
parameters

Θ =
[
Θ>LM Θ>MF

]>
(10)

are optimized with respect to the sum of squared simula-
tion errors. In a simulation, previous model outputs are
used for predicting the following outputs (recursive model
evaluation, nonlinear output error (NOE) configuration):

Θ̂ =arg min
Θ

N∑
k=n

(y(k)− ŷ(k,Θ))
2

(11)

The nonlinear optimization is conducted using the MATLAB
function lsqnonlin which uses a trust region reflective
algorithm by default as it can be found in MathWorks
(2019).

In this contribution, the simulation error is defined as:

e(k) = ŷ(k)− y(k) (12)

An averaging measure (Normalized Root Mean Square
Error, JNRMSE) is used:

JNRMSE =

√
1

N−n
N∑

k=n

e(k)2

ymax − ymin
(13)

The NRMSE (13) is normalized to the signal range for
comparable values in case of different output signal ranges.

3. TEST SIGNAL DESIGN METHOD

The presented method is a model-based approach to
achieve desired properties of the scheduling variable z (k)
during the experiment by designing the system’s reference
signal yref(k). Since the output is subject to the system’s
dynamics a control scheme has to be developed. The local
structure of the TS models will be exploited to obtain local
control variables that are superposed to build the required
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test signal. The test signal is then used to identify the
system. The procedure can be divided into three steps: i)
Design of the reference signal yref(k), ii) calculation of the
test signal and iii) subsequent identification.

3.1 Design of the reference signal

In general, the nonlinear behavior of dynamic systems
depends not only on the input but also on the lagged
output. Therefore, the space-filling input designs have
to be adapted and applied to the system’s output. The
assumption of space-filling designs is that if there is no
a priori knowledge about the system, it is a plausible
approach to uniformly excite the system. But a uniformly
distributed input signal might not excite the system in a
way that the scheduling space is covered uniformly which
might lead to insufficient identification of the partition
parameters. In this contribution, it is assumed that the
system’s input doesn’t determine the nonlinear behavior.
Therefore it can be described by the output and its lags
alone. So the scheduling variable in general consists of a
subset of the lagged outputs. The design itself has to be
tailored to the problem.

3.2 Calculation of the test signal

The calculation of the test signal itself can be divided into
two steps. First the local models are used to obtain local
control variables. In this contribution, a direct calcula-
tion of the local control variable is used, since for this
specific method the reference signal is known. Secondly,
the local control variables are superposed. This method
can be used for different approaches of calculating the
local control variables where the minimization of a cost
function containing nonlinear system dynamics results in
high computational cost.

Supposed a fuzzy model (1) is given and the i-th local OE
model (2)

ŷi (k) = ci −
n∑

l=1

ai,lŷ (k − l) +

m∑
l=1

bi,lu (k − l) (14)

is given in its summation form with the abbreviation
φi (z (k)) =: φi (k). The global model becomes:

ŷ (k) =

c∑
i=1

φi (k) · ŷi (k) (15)

In this contribution, the method of determining the local
control variables is straightforward, but as mentioned
before, it can only be calculated if a reference signal is
known at this stage. In (14), the model output ŷi(k) is
substituted by the known reference yref(k), resulting in a
linear difference equation for the calculation of the desired
local control variable uj(k). This corresponds with the flat
output design used by Zeitz (2010) for a more general
state space representation. Since a difference equation
has to be solved, initial values for the respective control
variables uj(k) have to be specified in accordance with
the reference signal. The big advantage using the Input-
/Output-(I/O)-representation with TS models is twofold.
First the dynamics of the control variable (i.e. the b
coefficients and respective lags in u(k)) cannot be shifted
to the output as it is done for linear systems. It is possible

to have the local models in the state space representation
but the local states would not be identical for the local
models. The affine term ci is never problematic when using
identification in the I/O-representation. The calculation of
the j-th local control variable therefore is with aj,0 = 1:

m∑
l=1

bj,luj (k − l) =

n∑
l=0

aj,l · yref (k − l)− cj (16)

The c local control variables uj(k) are the solutions to the c
difference equations (16). A scheme is needed to superpose
the local control variables uj(k). The approach is based on
works of the parallel distributed control (PDC) community
in which the local state feedbacks are superposed by the
forward model’s basis functions e.g. in Li et al. (1999).
With given local control variables uj (k) from (16) as well
as the superposition scheme

u(k) =

c∑
j=1

φjuj(k) (17)

The issue with (17) is it cannot be calculated directly in
the case of the scheduling variable containing the input uk,
since the basis functions to be used at every time instance
to weight the local control variables would change with the
desired result of the calculation itself. In that case (17) has
to be solved using nonlinear equation solving methods.
It can be put into (14) which then is put into (15). Since
the coeffictients bi,l don’t depend on the counting index
j the j-sum can be put in front: Also, since the FBF are
normalized it is possible to put a sum over all the basis
functions in front of every term and pull it out of the
bracket as a whole:

ŷ(k) =

c∑
i=1

c∑
j=1

φi (k)φj (k) · ŷi,j (k) (18)

with

ŷi,j (k) = ci −
n∑

l=1

ai,lŷ (k − l) +

m∑
l=1

bi,luj (k − l) (19)

The interpretation of this equation is that the global model
is a superposition of every local model excited by every
local control variable weighted by the FBF product φiφj .
Since φiφj only approaches Kronecker’s delta in regions
around a local model’s prototype, the cross terms ŷi,j(k)
in the model output have to be taken into account. This
will be addressed in subsection 3.3.

To obtain the input u(k) the FBF have to be calculated.
This cannot be achieved by using the reference, because
deviations from the reference are expected due to the
impact of the cross terms. These deviations would accu-
mulate during an experiment. Therefore, the scheduling
variable is generated during a simulation of the global
model as shown in fig. 1. The grey boxes in fig. 1 contain
the FBF and the feedback of the output ŷ(k) implies that
the scheduling variable is calculated from the output and
plugged into the FBF. The local control variables then are
superposed to the u(k) that is applied to the fuzzy model.
After the completion of the simulation, the resulting u(k)
can be used as a test signal to be applied to the system to
be identified. The calculation of the test signal follows the
following procedure:

(1) Generate reference signal yref (k) (method depends on
individual modeling task)
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φ1

φc
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LM1

LMc

u1 (k)

uc (k)

ŷ (k)

u (k)

Fig. 1. Superposition scheme for obtaining u(k)

(2) Solve the c difference equations in (16)
(3) Calculate scheduling variable current model output
(4) Evaluate FBF at current scheduling variable
(5) Calculate (17)
(6) Calculate the next model output with (15)
(7) Repeat (3) to (6) until the whole input signal is

constructed.

3.3 Deviation in regions of model transition

The basic assumption in nonlinear model-based test signal
design is that it is possible to identify an initial model
that captures the system’s beahvior sufficiently well to
even attempt model-based design. In a region around a
local model’s prototype, the activation of cross terms can
be neglected. In this section, it is demonstrated that the
deviation e(k) = ŷ (k) − y (k) is sufficiently small under
certain assumptions, even in regions of model transition,
where y(k) denotes the reference in this example. These
assumptions will be introduced later. The calculations are
presented on the example of a first order model to make the
result clear, but under the assumptions made the argument
holds for higher orders:

ŷ(k) =

c∑
i=1

φi (k) (aiŷ (k − 1) + biu(k)) (20)

The j-th local input is:

uj(k) =
y(k)− ajy(k − 1)

bj
(21)

With (21) the global model (19) can be rewritten as:

ŷ(k) =

c∑
i=1

φ2i (k) yi,i(k)

+

(
1−

c∑
i=1

φ2i (k)

)
ŷi,j(k) + ŷj,i(k)

2
(22)

The first assumption is that the past model outputs are
approximately equal to the past values of the reference
(ŷ(k − 1) = y(k − 1)), which is plausible when entering a
region of transition. This allows the analysis of the devia-
tion without the accumulation over time which diminishes
after leaving transition areas. The cross terms then can be
written as:

ŷi,j (k) =

{
y(k), i = j

aiy (k − 1) + bi
bj

(y(k)− ajy (k − 1)) , i 6= j

(23)

The sum of the corresponding cross terms for the case i 6= j
is:

ŷi,j(k) + ŷj,i(k) =
b2i + b2j
bibj

y(k)

+ (bi − bj)
(
ai
bi
− aj
bj

)
y(k − 1) (24)

The second assumption is that only the local models where
the transition takes place are contributing significantly to
the model output. The reactivation effect of the used FBF
only is an issue in regions far away from the prototypes.
The only transition that is addressed is between two
models. Therefore the local model parameters of one model
can be expressed in terms of the other in order to analyze
how the difference in local model parameters impacts the
model output: With ai = a, aj = αa, bi = b and bj = βb
the model error can be written as:

e (k) =

(
1−

c∑
i=1

φ2i

)

·
(

(1− β)
2

2β
y(k) +

a

2
(1− β)

(
1− α

β

)
y(k − 1)

)
(25)

The first term is the activation of all cross terms with
i 6= j. It is intuitive that the error approaches 0 in a
region around a local model’s prototype. (25) shows that
the error also depends on the difference of the local models.
The technical systems in question are considered to be
Lipschitz continuous. Therefore, neighboring models are
assumed to be sufficiently similar. However, it is interesting
that the proper motion of the local models enters the
error term absoluteley. It is concluded that the feedforward
control of a TS model with a superposition of local control
variables is a reasonable approach since the errors don’t
accumulate and remain small under plausible assumptions.
Furthermore it is expected that the deviations based on the
fact that the system is not in the model class are larger
than the deviations based on the cross terms which will be
addressed in the case study.

4. CASE STUDY

The goal of this case study is to demonstrate that the non-
linear superposition of control inputs derived from identi-
fied local linear models can be used as a global control
variable for the nonlinear system. Furthermore, the ability
to generate system outputs with desired properties is used
to investigate whether space-filling methods considering
the output yield higher quality models.

4.1 Test system and modeling decisions

The system from Narendra and Parthasarathy (1990) is an
established benchmark system. Its output ysys (k) is given
by the 2nd order difference equation:

ysys (k) = f (ysys (k − 1) , ysys (k − 2)) + u(k − 1) + η (k)
(26)

with

f (y (k − 1) , y (k − 2)) =

y (k − 1) · y (k − 2) · (y (k − 1) + 2,5)

1 + y (k − 1)
2

+ y (k − 2)
2 (27)

η (k) is chosen to be an i.i.d. normally distributed random
variable η (k) ∈ N

(
0, 0.12

)
. For the determination of the
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hyperparameters c and ν, three datasets are used. Fig. 2
shows the input data in the top row and the corresponding
output data in the bottom row. To determine the hy-
perparameters multiple complete identifications (including
the nonlinear optimization) have been conducted on the
first dataset (D1) shown in the leftmost column for all
combinations of ν ∈ {1.1, 1.3, 1.7} and c ∈ {3, 4, 5, 6}.
The resulting models from dataset D1 have been evaluated
on the second (D2) and the third dataset (D3), see fig. 2.
A time variable t(k) = k · TS with TS = 0.01 s has been
added to simplify comparison. The model performance is
assessed with the NRMSE (13). The results can be seen in
table 1. The first three rows show the NRMSE evaluation

ν/c 3 4 5 6 dataset

1.1 0.9766 0.2977 0.2792 0.5060
D21.3 0.5387 0.5079 0.2798 0.6239

1.7 0.3495 0.2746 0.2775 0.3206

1.1 1.0593 0.7332 0.1257 1.1794
D31.3 0.7734 0.8370 0.3102 1.4083

1.7 0.5055 0.0622 0.3729 1.0813

Table 1. NRMSE for model evaluations on
datasets D2 and D3

of the initial models on the dataset D2 and the last three
rows the evaluation on the dataset D3, respectively. The
number of local models is chosen as c = 5 and the fuzziness
parameter as ν = 1.1. Since the true system is known, the
dynamic orders are set to n = 2 and m = 1. Considering
the affine term, the regression vector is:

ϕ> = [1 y (k − 1) y (k − 2) u (k − 1)] (28)

Since it is also known from the true system that just the
regressors y(k − 1) and y(k − 2) determine the nonlinear
behavior, the scheduling variable is chosen as:

z (k) = [y (k − 1) y (k − 2)] (29)

4.2 Design of the reference signal

Since the scheduling space is spanned by two consecutive
output variables, it is expected that the data is placed
around the main diagonal in the first and third quadrants.
It is proposed to assess the coverage of the scheduling space
by assessing the scattering of the data points around the
main diagonal. To achieve this, the data in the scheduling
space is rotated by 45 ◦ and the empirical standard de-
viation is calculated. Fig. 3 shows the rotated scheduling
space as well as the scheduling variables of D1 (olive cross),
the desired reference (cyan circle) and the actual system’s
output during the refined experiment (magenta triangle).
The standard deviation in the rotated scheduling space
of the data from D1 is sinitial = 0.0223. The standard
deviation of the reference signal is sref = 0.0484 and is
twice the value from D1. A factor of 2 in the standard
deviation means that the same amount of data is scattered
in a region 4 times as big. At this point there is no general
method of designing the needed reference signal. In this
example, a product of a sine wave with a swept sine have
been altered by changing the amplitude as well as the
frequency and the frequency rate of change randomly until
a reference signal met the criteria mentioned before.

4.3 Test signal design

For the test signal design, the best performing model
is chosen, the local inputs are calculated from (16) and

superposed using the procedure described in section 3.2.
Fig. 4 shows the refined test signal in the top plot which
doesn’t look like a test signal that could result from
tweaking standard test signals manually. The bottom plot
of fig. 4 shows the responses of the fuzzy model (magenta),
the true system (olive) to the refined test signal and
the reference (black dashes). The NRMSE values are
Jfuzzy = 0.0928 and Jtruesys = 0.528 for the fuzzy model
and true system, respectively. From fig. 4 two important
facts can be derived. Firstly, the response of the fuzzy
model has small deviations from the reference, whereas the
deviations of the true system are larger. This corroborates
the assumption that the deviations from the reference
based on the system not being in the model class are
more significant than the deviations regarding the impact
of the cross terms in this example. Secondly, the deviations
coincide. This leads to the assumption that the local
behavior is already approximated well by the initial model
but not the partition transitions. Since it was not the
primary goal to exactly achieve the reference signal but
to achieve well-covered scheduling space, the first part of
the design task has been achieved. The scheduling variable
during the refined experiment is shown in the rotated
scheduling space in fig. 3 as magenta triangles. Its standard
deviation snew = 0.0564 is increased with respect to the
reference and it can be seen that the scheduling space is
covered much more evenly than by the initial test signal.

4.4 Refined identification

The new dataset based on the refined test signal will be
used for identification. For validation, the datasets D2
and D3 are used. The reidentification has been initialized
with the initial model. Fig. 5 shows the exemplary model
evaluations on the dataset D3. In the top plot, the system’s
output with the two fuzzy model evaluations is shown. In
the bottom plot, the error is plotted. It can be seen that
the refined model’s error is far more consistently around
zero whereas the initial model’s error also shows peaks.
The error measures (NRMSE) on both datasets (table 2)
show that the refined model performs significantly better
on both validation data sets.

models D2 D3

initial 0.2792 0.1257
refined 0.0499 0.0304

Table 2. NRMSE for model evaluation on
datasets D2 and D3

5. SUMMARY AND OUTLOOK

In this contribution, two problems were investigated: The
first result is that a fuzzy superposition of locally generated
control variables can be used to approximately force a
nonlinear system to follow a desired output. It was demon-
strated that the errors that result from the superposition
remain small under the assumption that neighboring local
models are similar enough in order to reduce the error fol-
lowing the superposition. This is plausible if the modeled
system is not ill-conditioned. But the model error based
on the system not being in the model class is larger. This
result will be addressed in future works. Secondly, it was
shown that it is useful to consider the space-filling aspect
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Fig. 2. Datasets used for initial identification (D1) and for validation (D2 & D3)

−0.3 −0.2 −0.1 0.1 0.2 0.3

0

2

4

y′k−1

y
′ k
−
2

Scheduling space coverage

D1

reference

output

Fig. 3. Assessment of rotated scheduling space coverage

−1

0

refined test signal

0 10 20 30

0

2

time t in s

model and system responses

Fig. 4. Refined test signal (top) and responses (bottom):
model (magenta), system (olive), reference (dashes)

0

2

outputs on dataset D3

0 10 20 30 40

0

1

time t in s

model errors on Dataset D3
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in the scheduling space which usually contains the output
in case of dynamic systems. The method can be applied to
other offline control variable designs like optimal control
but the implementation gets more complicated if the input

cannot be treated as affine and therefore is part of the
scheduling variable. Then, nonlinear algebraic equations
have to be solved to obtain the test signals. Future studies
will include tests with real test beds.
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