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Abstract: Solving a wide range of engineering problems can be approached from the point of
view of multi-objective optimization (MOO), i.e. trying to optimize several conflicting objectives
simultaneously. Solutions to these problems are not unique and the designer must choose from
several optimal solutions (Pareto set), depending on his or her preferences. However, in addition
to those solutions, there are almost optimal solutions that can be preferred for several reasons.
For example, if the problem is multimodal, the optimization algorithm only offers one of the
possible solutions. Furthermore, the problem may present a certain degree of simplification which
implies that not all preferences are reflected in the minimization objectives. The nevMOGA
algorithm (multiobjective genetic algorithm of the epsilon neighborhood variable) offers the
possibility of finding, apart from an approximation to the Pareto optimal set, an extra set of
potentially useful near optimal solutions. This result allows a final solution more closely aligned
with the designer’s actual preferences. This paper shows the application of this technique to
the experimental identification problem of the parameters of a complex dynamic model. In
particular, it is applied to identify the thermal model of a µ-CHP (micro Combined Heat and
Power) system with a PEMFC (Proton Exchange Membrane Fuel Cell) type hydrogen cell.

Keywords: Multi-objective optimization, Non linear identification, multivariable identification,
µ-CHP.

1. INTRODUCTION

A wide range of engineering problems can be solved from
multi-objective optimization point of view, where it is
necessary to optimize several conflicting objectives simul-
taneously. For instance, a typical problem is the model
identification of multivariable dynamical systems. In these
problems, the objectives to be optimized are related to
the errors (in the different outputs) of the predictions of
the model against the real data obtained experimentally.
A multi-objective problem appears naturally as there are
several outputs to adjust. Due the unmodeled dynamics, in
general, there is no single optimum solution for adjusting
all outputs simultaneously.

In a classic approach different objectives are usually aggre-
gated, which means a decision (a priori) (Miettinen (1998))
and supplies a unique solution. All the detail about the
performance balance between the different solutions is lost.
A more general approach is to consider that the solution to
these problems is not unique and the designer must choose
(a posteriori) between several optimal solutions (Pareto
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set), the one that best matches his/her preferences (Coello
et al. (2007)).

A novel approach is one that considers, in addition to
optimal solutions, potentially useful nearly optimal solu-
tions (Pajares et al. (2018)) known as nearly optimal not
dominated in their neighborhood. These nearly optimal
solutions have similar performance to the optimal ones but
with difference in the parameter space.

These nearly optimal solutions allow:

• To extend the set of solutions of interest, with differ-
ent solutions with good performance with respect to
the optimized objectives.

• To detect multimodality.
• To obtain solutions better than the optimal ones

when analyzing objectives not considered in the op-
timization process.

Considering the nearly optimal solutions allows the de-
signer to make the final decision in a more informed
way. These alternatives allow studying new indicators not
included in the design objectives for optimal and nearly
optimal solutions. Thus, the designer can reduce the design
objectives, facilitating the convergence of the algorithm
used, analyzing these indicators in the decision phase.
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In order to show the benefits of this approach, the iden-
tification of the cooling system for a µ-CHP system
(micro Combined Heat and Power) based on PEMFC
(Proton Exchange Membrane Fuel Cell) presented in
(Navarro Giménez et al. (2019)) is considered.

A µ-CHP system (Maghanki et al. (2013)) generates elec-
tricity and heat for the energy supply of a house. On
the one hand, the electrical energy produced feeds the
electrical loads of the house. On the other hand, the ther-
mal energy generated is used for heating and hot water.
The main advantage of these systems is the use of the
thermal energy generated during the process of electricity
production. A novel alternative in the design of this type
of systems is to use a fuel cell as an electric generator
and take advantage of the heat produced (Hawkes et al.
(2009)). The correct design of the cooling system is key
issue in the durability, cost, reliability and energy efficiency
of the fuel cell (Schmittinger and Vahidi (2008)) and of
course the µ-CHP system. However, in order to design a
good temperature control of the PEMFC, it is necessary
to have an adequate model of the cooling system.

Therefore, a complete dynamic model of the fuel cell
cooling unit in a µ-CHP system is identified applying a
MOO approach. As a novelty in the modeling procedure,
nearly optimal solutions not dominated in its neighbor-
hood are considered. The nevMOGA algorithm (Pajares
et al. (2018)) will be used to characterize Pareto front
and nearly optimal solutions. Thus, it will be shown how
nearly optimal models can be better than optimal ones
when model validation is considered or when new quality
indicators are considered.

The remainder of this work is as follows: In Section 2
a brief background on MOO problem and the definition
of the nearly optimal solutions non dominated in their
neighborhood. In Section 3, the nevMOGA algorithm
is briefly presented. In section 4, the model parameter
identification of the cooling system of a µ-CHP process
is shown. Finally, in Section 5 the main conclusions are
presented.

2. MULTI-OBJECTIVE BACKGROUND

A general MOO problem can be stated as follows:

min
x∈Q

f(x) s.t. constraints (1)

where x = [x1, ..., xk] is defined as a decision vector in
the domain Q ⊂ <k and f : Q → <m is defined as
the vector of objective functions f(x) = [f1(x), ..., fm(x)].
The domain Q is defined by the set of constraints on x.
For instance (but not limited to):

xi ≤ xi ≤ xi, i = [1, ..., k] (2)

xi and xi are the lower and upper bounds of x components.

The solution of a MOO problem –Pareto Set and Pareto
Front– is based on the concept of dominance.

Definition 2.1. Dominance (Pareto (1971)): A decision
vector x1 is dominated by a decision vector x2 if fi(x

2) ≤
fi(x

1) for all i ∈ [1, ...,m] and fj(x
2) < fj(x

1) for at least
one j, j ∈ [1, ...,m]. This is denoted as x2 � x1.

Definition 2.2. Pareto set PQ: is the set of solutions in Q
that is non dominated by any solution in Q.
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Fig. 1. The optimal solutions are the ones in set SETn1
(blue front) and the nearly optimal solutions non
dominated in their neighborhood are the ones in
SETn2 (green front).

Definition 2.3. Pareto front f(PQ): set of values in objec-
tive space corresponding to the Pareto set PQ.

For the handling of nearly optimal solutions some addi-
tional definitions are necessary:

Definition 2.4. −ε-dominance (Schütze et al. (2007)): De-
fine ε = [ε1, ..., εm] as the maximum acceptable perfor-
mance degradation. A decision vector x1 is −ε-dominated
by another decision vector x2 if fi(x

2) + εi ≤ fi(x
1) for

all i ∈ [1, ...,m] and fj(x
2) + εi < fj(x

1) for at least one
j, j ∈ [1, ...,m]. This is denoted by x2 �−ε x1.

Definition 2.5. ε-efficiency (Schütze et al. (2011)): The set
of ε-efficient solutions (PQ,ε) is the set of solutions in Q
which are not −ε-dominated by any solution in Q.

And finally, the concept of neighborhood and how it
modifies the concept of dominance has to be defined.

Definition 2.6. Neighborhood: Define n = [n1, ..., nk] as
the maximum distance between neighboring solutions.
Two decision vectors x1 and x2 are neighboring solutions
(x1 =n x

2) if |x1i − x2i | < ni for all i ∈ [1, ..., k].

Definition 2.7. (n−dominance): A decision vector x1 is
n−dominated by a decision vector x2 if they are neigh-
boring solutions (Definition 2.6) and x2 � x1. This is
denoted by x2 �n x1.

Definition 2.8. (n−efficiency): The set of n−efficient solu-
tions (PQ,n) is the set of solutions of PQ,ε which are not
n−dominated by another solution in PQ,ε.

Figure 1 shows an example to illustrate (in bi-objective
case) the optimal, nearly optimal, and nearly optimal
solutions non dominated in their neighborhood. The figure
shows a set of optimal and nearly optimal solutions PQ,ε
(gray areas). There is a set of optimal solutions SETn1
that are in the neighborhood n1 and a set of nearly
optimal solutions SETn2 in a different neighborhood n2.
The neighborhood n3 is discarded because it does not
contain any nearly optimal solution. Then in this case
PQ,n is SETn1 ∪ SETn2. Generally, the algorithms try to
obtain a discrete set P ∗Q,n ⊂ PQ,n, in such a way that
P ∗Q,n appropriately characterizes PQ,n. This is because
determining PQ,n is usually unapproachable, since it may
have infinite solutions (note that the set P ∗Q,n is not

unique).
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3. nevMOGA ALGORITHM

In this work the evolutionary algorithm nevMOGA (Pa-
jares et al. (2018)) is applied to characterize the discrete
set of optimal and nearly optimal solutions non dominated
in their neighborhood. This set is defined as the set of
n−efficient options (PQ,n, see Definition 2.8).

Front (t)

Sub-Front (t)

G (t)

save

initialize

t=0

update

P (t)

create

create

Fig. 2. Structure of nevMOGA formed by four populations.

nevMOGA manages four populations (see Figure 2):

(1) P(t) is the main population. This population con-
verges towards PQ,n and not only on PQ.

(2) Front(t) is the archive where P ∗Q is stored, i.e., a
discrete approximation of the Pareto front.

(3) Sub-front(t) is the archive where P ∗Q,n \P ∗Q is stored,
i.e., a discrete approximation of the nearly optimal
solutions non dominated in their neighborhood.

(4) G(t) is an auxiliary population where the new indi-
viduals generated by evolutionary techniques in each
iteration are stored.

Algorithm 1 shows the pseudocode for nevMOGA. It is
an algorithm based on evolutionary methods in which the
following operations can be highlighted:

• Line 6 and 15, ranks P(t) according to the population
density in each individual’s environment.

• Line 10, the population G(t) is created by evolution-
ary operators (selection, crossover and mutation).

• Incorporating solutions in the different subpopula-
tions (lines 7, 8, 12, 13 and 14) is carried out using
functions based on definitions described in section 2.

The details of the algorithm and the setting of its param-
eters can be found in (Pajares et al. (2018)).

4. IDENTIFICATION OF THE COOLING
SUBSYSTEM OF A µ-CHP SYSTEM BASED ON A

PEMFC

The model to be identified described in (Navarro Giménez
et al. (2019)) is based on first principles and has a non
linear structure. The model will be adjusted and validated
with experimental data obtained from a real process that
simulates a µ-CHP system based on PEMFC. Details of
this model as well as the data sets used for its identification
and validation can be seen in (Navarro Giménez et al.
(2019)). The inputs model are (in red in Figure 3):

• Fa: PEMFC air flow, m3/s
• Tamb: Ambient temperature, oC

Algorithm 1 Main pseudocode.
1: t:=0;
2: Front(t):= ∅;
3: Sub-Front(t):= ∅;
4: Create initial population P(t) at random
5: Calculate f(x) ∀ x ∈ P(t)
6: Rank population P(t)
7: Inclusion of the individuals of P(t) in Front(t)
8: Inclusion of the individuals of P(t) /∈ Front(t) in Sub-Front(t)
9: for t:= 1:Number of iterations do

10: Create population G(t)
11: Calculate f(x) ∀ x ∈ G(t)
12: Inclusion of the individuals of G(t) in Front(t)
13: Inclusion of the individuals of G(t) /∈ Front(t) in Sub-Front(t)
14: Update P(t) with the individuals of G(t)
15: Rank population P(t)
16: end for

• Tain : PEMFC air inlet temperature, oC
• v: Voltage supplied by the PEMFC, V .
• i: Current supplied by the PEMFC, A.
• Fw1

: Primary circuit flow rate, m3/s.
• Fw2

: Secondary circuit flow rate, m3/s.
• R: Radiator, on/off.

The outputs of the model are (in blue in the Figure 3):

• Twout
: PEMFC water outlet temperature, oC.

• Twin
: PEMFC water inlet temperature, oC.

• Tt2: Temperature inside the tank 2, oC,
• Taout

: PEMFC outlet air temperature, oC.
• Tsin : Shell exchanger inlet water temperature, oC.
• Tsout

: Shell exchanger outlet water temperature, oC.

Fig. 3. Inputs and outputs of the a µ-CHP cooling system.

The model has 30 parameters to estimate. To adjust
them, the identification data set (approximately 2.5h long)
performed on the real plant will be used (see Figure 4
in Navarro Giménez et al. (2019)). In this test, steps
are introduced in the electricity demand, the flows of
primary and secondary circuits of the cooling system, and
the demand for thermal energy. Additionally, there is a
validation data set (Figure 5 in Navarro Giménez et al.
(2019)).

4.1 MOO problem

The MOO problem is defined as follows:

min
x
f(x) = [f1(x) f2(x) f3(x)] (3)

subject to x ≤ x ≤ x where:

f1 =
1

T

∫ T

0

∣∣∣T̂wout
(t)− Twout

(t)
∣∣∣ dt (4)

f2 =
1

T

∫ T

0

∣∣∣T̂win
(t)− Twin

(t)
∣∣∣ dt (5)
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Table 1. Lower (x) and upper (x) limits of the
cooling system parameters.

Parameter x x Parameter x x

Vt1 0.001 0.003 hwmax 1 200

htmin 1 100 hwmin 1 150

htmax 1 200 haw 1 100

hsmin 1 150 calTwout
-2 2

hsmax 1 300 calTaout
-2 2

Vp1 0.0001 0.001 Vp4 0.001 0.002

hp1loss 1 15 hp4loss 1 14

Vw 0.001 0.004 calTp4out
-2 2

Va 0.001 0.005 hrOFFmin 1 40

ka 1000 8000 hrOFFmax 1 40

hfc2max
1 100 hrONmin 1 100

hfc2min
1 100 hrONmax 1 200

hfcloss 1 15 Vt2 0.015 0.035

hamax 1 150 Vr 0.001 0.005

hamin 1 100 Tambr 15 35

f3 =
1

T

∫ T

0

∣∣∣T̂t2(t)− Tt2(t)
∣∣∣ dt (6)

T = 8087s is the duration of the identification test,
variables with and without circumflex accent are process
and model outputs respectively, x is the parameter vector

x = [Vt1 htmin htmax hsmin hsmax Vp1 hp1loss Vw Va ka
hfc2max

hfc2min
hfcloss hamax

hamin
hwmax

hwmin
haw

calTwout
calTaout

Vp4 hp4loss calTp4out
hrOFFmin

hrOFFmax

hrONmin
hrONmax

Vt2 Vr Tambr ] (7)

and x and x (see Table 1) the lower and upper limits of x.
The design objectives measure the error, along the afore-
mentioned identification test, at water temperatures: inlet
and outlet water (Twin

and Twout
respectively) and reser-

voir 2 (Tt2). The PEMFC outlet air temperatures (Taout
),

and inlet and outlet temperatures in the heat exchanger
shell (Tsin and Tsout

respectively) are less important model
outputs. Therefore, the error associated with these signals
has not been included in the design objectives. In this
way, the MOO problem is reduced to 3 objectives in order
to reduce the optimization process and the analysis of
the models obtained. So, we facilitate the convergence of
nevMOGA, not considering the objectives that are less
important for the designer. However, the errors in these
outputs (objectives f4, f5 and f6, see Equation 8) will be
analyzed in the decision phase.

f4 =
1

T

∫ T

0

∣∣∣T̂aout
(t)− Taout

(t)
∣∣∣ dt

f5 =
1

T

∫ T

0

∣∣∣T̂sout
(t)− Tsout

(t)
∣∣∣ dt

f6 =
1

T

∫ T

0

∣∣∣T̂sin(t)− Tsin(t)
∣∣∣ dt

(8)

To optimize the defined MOO problem, nevMOGA with
the following configuration is used:

• NindG = 4 (size population G)
• NindP = 250 (size population P )
• Iterations = 1000
• ε = [0.01 0.01 0.01] (objective degradation accepted)
• n = [0.0005 10 20 10 40 0.0003 4 0.0005 0.0001 1000

15 15 3 15 10 15 15 15 0.5 0.5 0.0005 4 0.2 5 7 7 10
0.002 0.0004 3] (neighborhood definition)

In this MOO problem the decision variables and objectives
have a physical sense which facilitates the choice of the
parameters of nevMOGA (ε and n), the analysis and
the decision making process. Figure 4 shows the set of
models obtained (PQ,n) using nevMOGA for the proposed
MOO problem. Given the large number of dimensions in
objective and decision spaces, the Level Diagrams (LD)
tool (Blasco et al. (2017)) has been used for graphical
representation.

The LD tool transforms the m-dimensional objective space
and the k-dimensional decision space into m + k two-
dimensional separate but synchronized graphs. LD pro-
vides a two-dimensional graph for each objective and de-
cision variable. On the abscissa axis of each graph, the
values for each objective or decision variable are repre-
sented, while the ordinate axes of all graphs display the p-
norm calculated for each solution. In particular, for Figure
4, 2-norm is used (|| · ||2). This allows graphics to stay
synchronized by means of their ordinate axes —meaning
that each given solution presents identical ordinate value
in every graph— and, therefore, helps to compare solutions
according to the selected norm. For more details about this
representation see (Blasco et al. (2008)) or (Blasco et al.
(2017)).

Starting the LD analysis, the Pareto front (orange color
solutions) in Figure 4 shows a trade-off between objectives
(expected due to the non-modeled dynamics). It is possi-
ble to achieve prediction errors near to 0.1oC in f1 but
increasing f3 to values of 0.3oC. Besides, there are a large
number of nearly optimal models (green color solutions)
with similar performance to the optimal ones. To compare
their performance, two of them are chosen. Firstly, model
x1 is selected from the Pareto front. x1 gets the lowest
value of norm 2 (ordinate axis of Figure 4). This alternative
is a balanced model, and could be the final choice of the
designer. Secondly, a nearly optimal solution (x2) domi-
nated by x1 is selected, but in a different neighborhood,
that is, significantly different (see Table 2).

The response of the models x1 and x2 on the identification
test is shown in Figure 5. Besides, the objective values for
both models are shown in the Table 3. The model x1 has
an error slightly lower than x2, in all objectives (f1 to f3).

Analyzing in deep the time response (see Figure 5) it
can been noticed zones where model x1 adjusts better
the behavior of the process than x2 one (see instant of
time around 3000s). However there are other areas where
the opposite occurs (see time instant around 4200s). This
shows that different models can produce similar values of
the design objectives even presenting clear differences in
different zones of the experiment. Therefore, the identifi-
cation problem is a multimodal optimization problem.

On the other hand, since these two models have very
similar performance, it seems appropriate to analyze new
objectives in order to be able to make a better informed
decision. First, in Figure 6 the evolution of the less
significant outputs (Taout

, Tsin and Tsout
) for both models

on the identification test is shown. It is observed how the
nearly optimal model x2 improves the performance (lower
error) with respect to the optimal model x1 (see also the
value of the objectives f4, f5 and f6 in the Table 3). This
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Fig. 5. Outputs Twout
, Twin

and Tt2 obtained for the
models x1 and x2 on the identification test. The error
of these outputs on the identification test is evaluated
in the design objectives f1, f2 and f3. (see Table 3).

improvement is significant with respect to the output Taout

(objective f4).

Secondly, we observe in Figure 7 the response of the six
model outputs on the validation test. The nearly optimal
model x2 improves the performance, in all outputs, com-
pared to model x1 (see the objective values in the Table 4)
on the validation data set. This improvement is significant,
again, in the output Taout

(f4). So, x1 and x2 are two sig-
nificantly different models with very similar performance
in the design objectives. x1 model gets a slightly higher
performance. However, with respect to other objectives
(errors concerning the outputs Taout

, Tsin and Tsout
), the

model x2 obtains better performance than x1, there is a
significant improvement with respect to the output Taout

.
In addition, with respect to the validation test, the model
x2 improves the optimal model x1 in all the outputs, and

Table 2. Models x1 and x2.

Parameter x1 x2 Parameter x1 x2

Vt1 0.0018 0.0017 hwmax 68 66.45

htmin 14.55 20.78 hwmin 65.45 20.21

htmax 85.8 86.54 haw 39.9 40.53

hsmin 55.89 55.88 calTwout
1.08 1.09

hsmax 237.67 202.39 calTaout
0.88 0.8

Vp1 0.00043 0.0005 Vp4 0.0011 0.001

hp1loss 8.59 8.74 hp4loss 8.97 8.52

Vw 0.0014 0.0013 calTp4out
0.25 0.2

Va 0.0034 0.0014 hrOFFmin 7.8 7.16

ka 5799.3 5295.8 hrOFFmax 10.83 16.52

hfc2max
27.83 39.05 hrONmin 59.12 59.88

hfc2min
23.8 19.86 hrONmax 101.93 100.57

hfcloss 4.17 4.41 Vt2 0.0267 0.0256

hamax 53.49 59.89 Vr 0.001 0.0011

hamin 20.64 25.19 Tambr 26.81 27.42

Table 3. Value of the defined objectives for the
models x1 and x2 for the identification test.

Model f1 f2 f3 f4 f5 f6

x1 0.126 0.138 0.203 0.805 0.200 0.178

x2 0.131 0.159 0.230 0.405 0.167 0.170

Table 4. Value of the objectives for the models
x1 and x2 for the validation test.

Model f1 f2 f3 f4 f5 f6

x1 0.742 0.639 0.447 1.231 0.816 0.642

x2 0.726 0.629 0.406 0.827 0.786 0.603

in particular for output Taout . Therefore, the model x2 is
selected as the final solution of the MOO problem.

5. CONCLUSIONS

The work presented shows the benefits of finding the
optimal and near optimal solutions in an identification
problem set as a MOO. In addition, identification problems
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Fig. 7. Outputs Twout , Twin , Tt2, Taout , Tsin and Tsout

obtained for the models x1 and x2 on the validation
test. The error of these outputs on the validation test
is evaluated in the objectives f1 to f6 (see Table 4).

have been shown to be multimodal optimization problems,
and significantly different optimal solutions may exist.

By obtaining the set of near-optimal solutions not domi-
nated in their neighborhood, the designer

1) Obtains models with performances similar to the opti-
mal models but with significantly different characteristics.

2) Can carry out a detailed analysis considering extra
objectives and validation experiments.

In this paper, we have analyzed two significantly different
solutions in the parameter space. In this study we have
seen how their different responses provide diversity to

the designer, despite the predominance of one over the
other with respect to the design objectives. However, the
analysis of the parametric space, in this case, is complex
due to the large number of decision variables. Using this
approach, the designer can take the final decision with
information that would not have been obtained with the
traditional multiobjective optimization approach.

As future work, it is possible to perform a deeper analysis
of the set of models obtained through nevMOGA (includ-
ing the analysis in the parameter space). In addition, it is
possible to apply this approach to other engineering prob-
lems. In the same way, it is also possible to improve the
nevMOGA algorithm. Such improvements can be aimed,
for example, to reduce its computation cost or to use
clustering techniques for the choice of the neighborhood
(sometimes difficult for the designer).
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