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Abstract: The impact of elastic modes limits the performance of position control of elastic
bodies in a significant way. Local dampers are a typical way to suppress this issue, but lead
to non-proportional damping and complex oscillation modes with varying nodal lines. To this
end, the placement of the sensors is of major importance in high-precision applications. In
this contribution, we present an optimal sensor placement algorithm which uses Gramian-based
observability measures to overcome this issue. Singular sensing configurations with respect to
the pose are avoided by considering the mappings’ local invertibility explicitly. Furthermore, we
are in the position to cope with the highly relevant issue of constrained installation space and
to handle complex 2D and 3D geometries by using model order reduction techniques. By means
of an illustrative example, the significantly reduced influence of the elastic deformations on the
controller is demonstrated at last.
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1. INTRODUCTION

The presence of elastic modes is a ubiquitous issue when
controlling the pose of mechatronic systems and arising in
various applications, see Munnig Schmidt et al. (2014);
Korkmaz (2011); Schmidt et al. (2019). The problem
can be handled by using notch filters as in Hoogendijk
et al. (2014), however at the expense of the maximum
bandwidth of the closed loop system. Secondly, structural
damping is supplemented by local damping (such as tuned
mass dampers, see Vervoordeldonk et al. (2006)), in or-
der to suppress the influence of elastic oscillation modes.
The latter solution evokes complex-valued modes which
are characterized by spatially-varying nodes and extrema
as demonstratively visualized in Fig. 1. Hence, intuitive
sensor placement strategies, e.g. placing sensors in the
modes’ nodal lines, are not applicable anymore. The issue
of constrained installation space further complicates the
derivation of sensing configurations with minimal obser-
vation spillover. Hence, we propose an optimization-based
approach for deriving a valid sensing configuration. The
latter one consists of at least six pairs of measurement
points and directions, which are necessary to estimate the
rigid-body pose in a 3D context. Besides the minimization
of the observation spillover, the local invertibility of this
mapping is crucial since it determines the amplification of
sensor noise.
The contribution of this work is the development of an
optimal sensor placement algorithm which uses Gramian-
based measures for the control spillover and the invert-
ibility of the pose reconstruction at the same time. Con-
straints on the sensor configuration arising from space re-
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Fig. 1. Complex-valued oscillation mode. Due to non-
proportional damping, the loci of extrema (red and
blue) and nodes (yellow) are phase-dependent.

strictions and demands on minimal distances between the
sensing points can be incorporated into the optimization
scheme. As a starting point, we model the bodies’ motion
by means of partial differential equations (PDEs). Accord-
ing to Craig and Bampton (1968), the overall motion is
split up into an elastic and a rigid-body movement, as the
observation spillover only concerns the elastic component.
Based on this representation, a modal analysis of the
elastic motion is the next step to a lumped design model.
This article is organized as follows: We first characterize
the problem and the objective from a technical point of
view in section 2. Subsequently, section 3 deals with the
optimization approach including the model order reduc-
tion and the determination of valid sensor candidates. We
close the paper by providing an illustrative 2D example
in section 4 in order to demonstrate the most important
parts of the algorithm.
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2. MODELING AND PROBLEM DESCRIPTION

Before considering the sensor placement algorithm in more
detail, a rigorous problem description is presented. We
first introduce the elastic bodies’ governing equations of
motion in subsection 2.1, and focus on representation of
the measured outputs subsequently. The contribution and
the objective are then summarized from a technical point
of view in subsection 2.3.

2.1 Dynamic Model Equations

The overall objective is to control the rigid body pose P
of a body B ⊂ Rn, at a particular point of interest with
high precision despite of transient elastic deformations
being present. We define the pose as the equilibrium
configuration of the body B for constant external forces.
Without any loss of generality, the bodies’ center of
gravity xc is chosen. The respective pose

P = {xc,θc} ∈ RN where N =
n(n+ 1)

2
(1)

comprises dimxc = n translations and dimθc = n(n−1)/2
rotations with respect to the undeformed body. Further,
let n∂B(z, t) be the outer normal vector of the bodies’
surface ∂B and x(z, t) the deflection field for each loca-
tion z ∈ B at a specific time t ≥ 0.

Equations of Motion. Since only small variations of the
initial pose P0 are relevant, the assumption of small de-
flections x(z, t) with respect to an initial state x0(z) ∈ B
is natural. For this, the linear equations of motion

M∂2x

∂t2
(z, t) +D∂x

∂t
(z, t) +Kx(z, t) = 0 (2)

can be used for all z ∈ B and all t > 0. Without any loss
of generality, we assume the initial conditions x(z, 0) = z
and ∂x(z, 0)/∂t = 0 for all z ∈ B. Here, M, D, and K
denote the mass, damping, and stiffness operators. The
present contribution focuses on, but is not limited to, non-
proportional damping sometimes referred as non-Rayleigh
damping. In this case, the Rayleigh assumption does
not hold and the damping operator cannot be expressed
by means of the mass and stiffness operators, i.e. D /∈
span(M,K). As an example for this problem class is
the linear elastic body with an Navier-Cauchy stiffness
operator

Kx = −G
[
∆x+

1

1− 2ν
∇ (∇ · x)

]
, (3)

see Ehlers and Bluhm (2013), an isotropic density M =
ρ = const. and spatially varying damping D = d(z).

Boundary Conditions and Actuation. Since the particu-
lar actuation principle is not of interest for the sensor
placement scheme, we assume N points of the bodies’
boundary ∂B to be position controlled, i.e. αᵀ

jx(aj , t) =

uj(t), with αj and aj being the actuation direction and
the actuation point of the input uj respectively. For the
sake of simplicity, we assume decoupled actuator dynamics
regarding a desired control ud of the form

µ̇ = Auµ+Buud, u = Cuµ (4)

with CuA
−1
u Bu + I = 0, relative degrees rj > 2,

and Hurwitz dynamics with sufficiently large bandwidth
min ‖λ(Au)‖ ≥ 2πfbw,u. All other points ∂B \ aj are

Sb ⊂ Rn

Sm ⊂ ∂B

d1(t)

d2(t)

dk(t)

nk

B ⊂ Rn

u1(t)

uk(t)

u2(t)

n1

n2

b1

b2

bk

pose Pc = {xc,θc}

z1

z2

zk

Fig. 2. Problem description. The actual configuration of
the elastic body B, actuated by N inputs uk(t), is
measured by K distance measurements dk(t) between
the respective mounting points zk on the bodies
surface and the base points bk.

assumed be free of tension or external forces. According
to Cauchy’s theorem, we receive the Neumann boundary
condition σ(z, t)n∂B(z, t) = 0 in dependence of the stress
tensor σ, see Ehlers and Bluhm (2013).

Rigid-Body and Elastic Deformation. The decomposition
of bodies’ displacement in rigid-body motion and elastic
modes is a crucial notion for the desired spillover reduction
by optimal sensor placement. Thus, we use the decompo-
sition

x(z, t) = xs(z, t) + xe(z, t), (5)

where xs is referred to as the rigid-body deflection. It
contains the information of the pose P to be controlled
or observed, respectively. The rigid-body motion is an
algebraic function of the inputs, i.e. xs(u), and defined by
the equilibrium solution of PDE (2) with corresponding
inhomogeneous boundary conditions:

xs(u) : Kxs(z, t) = 0, αᵀ
jx

s(aj , t) = uj(t). (6)

In related research, this representation is denoted as ’rigid-
body modes’ and is associated with the zero-eigenvalues
of the overall system Craig and Bampton (1968). Even
for complex geometries, the rigid-body modes can be
computed by means of numerical methods such as finite
element analysis, see Panzer et al. (2009); Siebelts et al.
(2018) for instance.
The remaining movement xe represents the transient elas-
tic deformations, whose impact on the measured output
shall be minimal. By combining (2) and (6) we receive

M∂2xe

∂t2
+D∂x

e

∂t
+Kxe = −Mxs(ü)−Dxs(u̇) (7)

with homogenized boundary conditions αᵀ
jx

e(aj , t) = 0.
In comparison to the original system, the elastic deforma-
tions asymptotically vanish for u = const. having a stable
spectrum for physically meaningful operators.

2.2 Sensor Configuration

Measured Outputs. Since the objective of the paper is to
determine an optimal sensor configuration, the notion of
sensing configurations is crucial. As illustrated in Fig. 2, we
assume that the measurement system features K distance
measurements. Many optical measurement systems such
as optical linear encoders or LIDAR sensors can be named
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as examples. In more detail, each sensor features a base
point bk, located at a fixed external point, as well as a
mounting point zk, located on the bodies’ surface. The
particular sensor signal is distance dk(t) between those
points, which depends on the local deflection x(zk, t) and
is given by dk(t) = ‖bk − (zk + x(zk, t))‖. Since small
deflections are considered, we take the Taylor expansion
of the above equation with respect to the undeformed
configuration into account and receive the relation

dk(t) = ‖bk − zk‖︸ ︷︷ ︸
d0
k

+
∂dk
∂x

∣∣∣∣ᵀ
x=0︸ ︷︷ ︸

nᵀ
k

x(zk, t) +O(‖x‖2), (8)

with normalized sensing direction between the base and
the mounting point

nk =
bk − zk
‖bk − zk‖

=
bk − zk
d0
k

. (9)

Thus, we end up with the linearized sensing equation

yk(t) , dk(t)− d0
k = nᵀ

kx(zk, t), (10)

which describes the change of distance with respect to the
initial configuration. Since the output equation directly
depends on the mounting point zk and the sensing direc-
tion nk, it is more convenient to use the tupel (zk,nk)
to parametrize a particular sensor than the base and the
corresponding mounting point (zk, bk). All in all, a whole
sensing configuration S consists of K ≥ N sensors

S =
{

(zk,nk)
∣∣ k = 1, ...,K

}
(11)

which lead to the output vector y(t) ∈ RK .

Sensor Constraints. The definition and consideration of
constraints is an essential part of the algorithm, since the
issue of limited construction space is ubiquitous. More
specifically, we consider two kind of constraints in this
paper: While the first one defines sets of valid positions
for each individual base and mounting points, the second
one addresses the overall sensor configuration.
As sketched in Fig. 2, we define two sets to describe the
valid sensor locations. All sensor base points need to be
located in the so-called sensor base set bk ∈ Sb ⊂ Rn \
B, which is a subset of Rn and does not include the
elastic body. A similar set is defined for the mounting
points zk ∈ Sm ⊂ ∂B which restricts the allowed sensor
locations on the surface of the body. Moreover, mentioned
sets comprise several subsets, which do not have to be
connected necessarily. Note that this kind of constraint
can be considered a priori, allowing only white-listed
candidates (zk,nk) for the optimization.
Given the whole sensing configuration S defined in (11),
we further define the minimal distance of the involved
mounting points

∆z−(S) = min
1≤k,m≤K
k 6=m

‖zm − zk‖ (12)

in order to account for the required sensor mounting space
within the optimization. Analogously, a similar condition
for the base points can be derived. Using (9), we obtain

∆b−(S) = min
1≤k,m≤K
k 6=m

∥∥zm + nmd
0
m − zk − nkd0

k

∥∥ . (13)

In contrast to the white-listing of the individual points
and directions, distance constraints of the form ∆b−(S) ≥
∆pmin cannot be guaranteed beforehand, but have to be
considered as inequality constraints.

2.3 Contribution and Objectives

The overall objective of this paper is the pose control
of elastic bodies. In this framework, the error between a
desired pose Pd = ũd and the measured pose P = ỹ
is fed back into the system through a control transfer
matrix. The conversion of a desired pose to an actor
configuration u = a(ũ), and of measured outputs to the
actual pose ỹ = m−1(y) is essential. This paper focuses
on the latter aspect only. Given an elastic body described
by (2) and measured outputs (10), the contribution is to
determine an optimal sensing configuration S?, featuring
valid sensor mounting points zk ∈ Sm and directions nk,
which

• allows a well-defined reconstruction of the pose P
according to the rigid-body movement xs, see (6),

• minimizes the observation spillover induced by elastic
deformations xe defined by (7),

• corresponds to valid sensor base points bk ∈ Sb, and
• satisfies the minimum distances constraints intro-

duced in (12), (13).

3. OPTIMAL SENSOR PLACEMENT ALGORITHM

This section describes a solution to the multi-objective op-
timization problem stated above, starting with introducing
the cost function in section 3.1. As a further prerequisite,
the derivation of a lumped design model and other prepro-
cessing steps are stated subsequently. At last, the solution
of the resulting (mixed) integer programming problem is
focused in section 3.3.

3.1 Optimization Problem

In order to determine an optimum for the multi-objective
problem stated in part 2.3, we use the scalarized problem

min
S

J(S) = w1
trQ(S)− trQ?

trQ0 − trQ?
+ w2

µ(S)− µ?
µ0 − µ? (14a)

s.t. zk ∈ Sm (14b)

zk + d0
knk ∈ Sb (14c)

∆zmin ≤ ∆z−(S) (14d)

∆bmin ≥ ∆b−(S). (14e)

The cost function comprises two components, which are
explained in the subsequent paragraphs in more de-
tail. While the trace of the design model’s observability
Gramian Q is used to minimize the observation spillover,
an invertibility index µ of the measurement Jacobian is
used as a metric of the pose reconstruction. Both objec-
tives can hardly be compared since their values differ by
orders of magnitude. As a consequence, we normalize both
components with an affine mapping taking the cost of an
initial solution S0 as well as the individual optima trQ?

and µ? into account.

Metric for Observation Spillover. Based on a lumped state
space representation of the form ẋ = Ax+Bu with output
y = Cx+Du, the Gramian observability matrix

Q =

∫ ∞
0

exp (Aᵀτ)CᵀC exp (Aτ) dτ (15)

can be used as an adequate metric for the observa-
tion spillover. Since the eigenvalues of Q are related to
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the observability of the respective states, minimizing the
trace trQ is equivalent to minimizing the overall impact
of the state on the output y. Further details on how to
construct a lumped state-space is given in the subsequent
subsection 3.2.

Measurement Jacobian. The key idea of the second metric
is to exploit properties of the mapping d = m(P), whose
components describe how a certain output varies when
changing the pose. For the desired pose reconstruction, an
inverse mapping has to be derived. In the general case, a
closed-form expression form−1 can hardly be deduced, es-
pecially for redundant sensors configurations with K > N .
For each sensor yk, a row m̃ᵀ

j of the measurement Jacobian

M̃ =
∂m

∂P

∣∣∣∣
P0

=

m̃
ᵀ
1

...
m̃ᵀ
K

 ∈ RK×N , (16)

with y = M̃ [P − P0]. We can now define the second
component µ of the cost function for any specific sensing
configuration S:

µ(S) ,
∥∥M̃(S)

∥∥
F

∥∥M̃+(S)
∥∥

F
∈ [1,∞), (17)

which uses the Moore-Penrose Pseudo-inverse (·)+ and the
Frobenius matrix norm ‖(·)‖F. As µ(S) tends to infinity
for singular constructions, (17) is an adequate metric for
the reconstructablity of the rigid-body pose. A second
argument for choosing the ansatz (17) as a metric is its
relation to the amplification of disturbances y + δy. The
deviation of the solution P + δP can be bounded by

‖δP‖
‖P‖ ≤ µ(S) · ‖δy‖‖y‖ . (18)

using ‖δP‖ ≤ ‖M̃+‖F · ‖δy‖ and definition (17). The
disturbances δy may represent the influence of the elastic
modes for instance. Note that a Jacobian Ã for transform-
ing the actuator coordinates u to pose coordinates ũ can
be derived analogously.

3.2 Preprocessing and Initialization

Valid sensors and individual constraints. Before focusing
on the discretization of the equations of motion, a set of
valid sensor candidates (zk,nk) satisfying the individual
sensor constraints (14b)–(14c) can be derived by geometric
arguments. As a prerequisite, we assume that a spatial
discretization of the body B by means of a grid G, as
well as the sets Sm and Sb are given. Starting with the
evaluation of the individual sensor mounting constraints,
we determine all k̄ = 1, . . . , K̄ surfacial grid points zv

k ∈
Sm in the mounting set. To figure out the valid sensing
directions, a discretized n-sphere of possible directions nk̃
with k̃ = 1, . . . , K̃ is created – e.g. by spherical Fibonacci
mappings, Keinert et al. (2015). As shown in Fig. 3, we
evaluate the following conditions for every pair (zv

k̄
,nk̃), to

determine if the angle between the measurement direction
and the local normal vector is smaller than π/2 and if there
exists a valid base point in Sb:

nᵀ
k̃
n∂B(zv

k̄) ≥ 0, ∃d0
k̃
> 0 : zv

k̄ + d0
k̃
nk̃ ∈ Sb (19)

Note that for determining a sufficient total number Ktot
of sensor candidates (zk,nk) discretization K̃ needs to be
chosen comparably high if small solid angles are valid. To
prepare the computation of (17), we compute each m̃ᵀ

k.

Sb2Sb1

valid candidate (zv
k̄
,nk̃)

Sb2

Sb1

invalid candidate (zv
k̄
,nk̃−1)

valid mounting point zv
k̄
∈ Sm

B

discretized body B

Fig. 3. Determination of valid sensor candidates.

Discretization and modal truncation. The first step to-
wards an adequate design model is to derive a lumped
model for the elastic PDE (7) and the overall PDE (2)
respectively. After a spatial discretization scheme on the
grid G, such as the finite element or finite differences
method, has been applied, a model order reduction is
necessary. We obtain approximations for the stiffness and
damping operators of the form

Kx|z∈G ≈Kξ = Keξ +Ksu (20)

D∂x
∂t

∣∣∣∣
z∈G
≈Dξ̇ = Deξ̇ +Dsu̇, (21)

where ξ(t) is the high-dimensional discretized vector of
deflections. Furthermore, the matrices Ks and Ds repre-
sent the influence of the boundary conditions. As a con-
sequence, the elastic parts Ke and De remain for u = 0.
In the discretized setting, the non-proportional damping
leads to De 6= αM + βKe for any α, β ∈ R, where M
denotes the mass matrix.
With this notation, the approximation ξs(u) of the rigid-
body deflection xs(u) from (6) reads as

ξs(u) = −(Ke)−1Ksu , φsu. (22)

On the other hand, we obtain the discretized elastic motion

Mξ̈e +Deξ̇e +Keξe = Fµ (23)

with F = −MφsCuA
2
u − DeφsCuAu by evaluating

PDE (7) with (4),(20), and (21). The respective complex-
valued elastic modes Ψ = [ψ1,ψ2, . . .] with eigenval-
ues Λ = diag{λ1, λ2, . . .} are the solution to the gener-
alized eigenvalue problem[

De M
M 0

] [
Ψ

ΨΛ

] [
Λ 0
0 Λ

]
=

[
−Ke 0

0 M

] [
Ψ

ΨΛ

]
. (24)

Next, a normalization Ψ0 = ΨΓ−
1
2 with respect to the

augmented mass matrix can be performed, where

Γ = ΨᵀDeΨ + ΨᵀMΨΛ + ΓΨᵀMΛ. (25)

By choosing only the first m = 1, . . . ,M pairs of complex-
conjugated modes, sorted w.r.t. the absolute value of

λm = −ζmωm ± jωm
√

1− ζ2
m, (26)

we achieve a modal truncation. For the sake of simplicity,
we assume no critically damped modes to be present.
The remaining M pairs of complex-conjugated modes and
eigenvalues are rearranged as follows:

Λ̂ = diag{λ1, λ̄1, . . . , λM , λ̄M} ∈ C2M×2M , (27a)

Ψ̂ = [ψ1, ψ̄1, . . . ,ψM , ψ̄M ] ∈ CnNG×2M . (27b)

In order to end up with M real-valued 2 × 2 blocks of
integrator chains, we define the transformation

Tm =

[
0 1

ωm
√

1− ζ2
m −ωmζm

] [
1 1
−j j

]
(28)
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for each pair to build up the block diagonal T = C2M×2M

with the real-valued transformed modes Φ = Ψ̂T−1. One
advantage of transform (28) is that the algorithm is not
limited to measuring distances, but can be augmented to
velocities. In the present case, we receive one row

yk(t) =

M∑
m=1

[nᵀ
kφm(zk), 0]

[
qm(t)
q̇m(t)

]
, cᵀkΦq

e(t) (29)

of the output matrix C ∈ RK×2M w.r.t. the reduced gen-
eralized coordinates ξ(t) ≈ Φqe(t). Combining, (4), (22)–
(23), and (27a)–(29) the reduced-order design model for
overall deformation is given by

d

dt

[
qe

µ

]
=

[
T Λ̂T−1 ΦᵀFÃCu

0 Au

][
qe

µ

]
+

[
0
Bu

]
ũd (30a)

ỹ = M̃+C
(
Φqe + φsÃũd

)
(30b)

Finally, the observability of the pair (T Λ̂T−1,M̃+C) de-
termines the amount of spillover on the measured pose ỹ.
The corresponding Gramian Q can be computed with the
Lyapunov equation

[T Λ̂T−1]ᵀQ+QᵀT Λ̂T−1 +Cᵀ[M̃+]ᵀM̃+C = 0. (31)

3.3 Computation of Optimal Solutions

With the preprocessing steps described above, the orig-
inal optimization problem (14), could be reduced to a
(mixed) integer nonlinear programming (MINLP) type. In
addition, the determined Ktot sensing candidates (zk,nk)
already satisfy the individual constraints (14b)–(14c). For
determining the optimal choice, we define the Boolean vec-
tor s ∈ {0, 1}Ktot which represents which of the candidates
are chosen. With the 1-norm K = ‖s‖1 the number of
chosen sensors can be evaluated easily. Thus, by fixing the
valid maximum number of sensors, i.e. ‖s‖1 = N , redun-
dancy is not allowed. The remaining computational effort
for an evaluation of the scalarized cost (3.1) is comparably
low: Solely precalculated matrices need to be arranged,
the Frobenius norm norms of the measurement Jacobian
have to be computed according to (17), and the Lyapunov
equation (31) has to be solved. The resulting optimization
problem

min
s∈{0,1}Ktot

w1
trQ(s)− trQ?

trQ0 − trQ?
+ w2

µ(s)− µ?
µ0 − µ? (32a)

s.t. N ≤ ‖s‖1 ≤ Kmax (32b)

∆zmin ≤ ∆z−(s) (32c)

∆bmin ≤ ∆b−(s) (32d)

can be solved by using conventional MINLP-solvers. The
provided solutions of the subsequent section were com-
puted with a NSGAII differential evolution strategy,
see Qin et al. (2008). Note that a combinatorial solution is
not expedient: If it is desired to pick 6 ≤ K ≤ 12 sensors
in a 3D setup out of Ktot = 2000 candidates, one obtains
more than 8.2 · 1030 permutations.

4. ILLUSTRATIVE EXAMPLE

In order to demonstrate the performance of the proposed
sensor placement scheme, a simple example of form (2) is
chosen such that the crucial parts of the algorithm can
be illustrated more clearly. In more detail, the deflection

z

x

θc

pose P

xc

(nk, bk)
z = 1

u2(t)

u1(t) w(z1, t)

sensor base set Sb

w(zk, t)

dk(t)

xs(z, t)

xe(z, t)

Fig. 4. Sketch of the illustrative example. The deflec-
tion w(zk, t) at two points zk ∈ Sm in the valid
sensor mounting set is obtained by measuring the
distances dk(t) of the respective sensor points bk ∈ Sb.

x = [x(z, t), 0] ∈ R2 of a normalized Euler-Bernoulli beam
with non-proportional and Kelvin-Voigt damping in a 2D
plane z ∈ R2 is considered throughout this section. As
the second part of the deflection vanishes, a scalar PDE
on (z, t) ∈ (0, 1)× R+ remains:

ρh
∂2x

∂t2
+ d(z)

∂x

∂t
+
d0

L4

∂5x

∂z4∂t
+
EI

L4

∂4x

∂z4
= 0 (33)

According to the notation in (2) this example corresponds
to the operators M = ρh = const., D = d(z) + d0∂

4
z ,

and K = EI∂4
z . We assume a step-like spatially variant

damping function

d(z) = d1σ(z − zd,1)σ(zd,2 − z) (34)

to model a tuned mass damper with zd,1 = 0.244, zd,2 =
0.468. The resulting modes ψm(z) are complex-valued, as
there exists no Rayleigh-representation of the damping
operator. As further illustrated in Fig. 4, we use the
boundary actuation

x(0, t) = u1(t)
∂2x(z, t)

∂z2

∣∣∣∣
z∈{0,1}

= 0 (35)

x(1, t) = u2(t). (36)

and conclude that there remains only a single translational
degree of freedom for center of gravity xc = [1/2, xc]. Con-
sequently, the pose is considered as P = {xc, θc} in the
following. Since the elastic motion of the chosen example
is 1D, the first component of the measurement directions
can be neglected without any loss of information. We hence
restrict all measurement directions to n = [0, 1]ᵀ, consider
the whole body as valid mounting set, and use solely the
base set Sb for the remaining zk-positions as

[zk, 0] ∈ Sb = {b∈R2|b1 ∈ [0.15, 0.85]\(0.35, 0.40), b2 = 0}
with the output equations yk(t) = w(zk, t).

Modal decomposition and rigid-body modes. In accordance
with section 3.2, the separation of elastic deformations
and rigid-body modes is the first step of the algorithm.
It is straightforward to obtain the stationary deflection in
closed-form and the respective rigid-body modes:

xs(z, t) = u1(t) + z[u2(t)− u1(t)] = [1− z, z]u(t). (37)

By inserting the above equation in (33) we obtain the
dynamics of the infinite-dimensional elastic deflection

ρh
∂2xe

∂t2
+ d(z)

∂xe

∂t
+
d0

L4

∂5xe

∂z4∂t
+
EI

L4

∂4xe

∂z4
= −ρhü1+

+ ρhz[ü1 − ü2] + zd(z)[u̇1 − u̇2]− d(z)u̇1 (38)

for z ∈ (0, 1) which comes with homogenized boundary
conditions xe(0, t) = xe(1, t) = 0. Even for the simple
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case with piece-wise constant damping, there is no closed-
form solution for the complex eigenform ψm(z) ∈ C to
the best of the authors’ knowledge. As motivated in the
introduction (see. Fig. 1), the resulting oscillation modes

xk(z, t) ∝ A(z) sin(γ(z) + ωkt) (39)

have spatially varying amplitude A(z) and phase γ(z)
profiles due to inseparable spatial and temporal operators
– leading to spatially varying loci of some maxima, minima
and nodes. Some profiles (39) are provided in Fig. 5 for
selected modes and where computed by solving the gener-
alized eigenvalue problem (24) after a spatial discretization
by means of finite differences with 300 grid points.

Sensor and Actuator Map. The example allows deriving
a closed-form representation xP(z) = tan(θc)[z − 1

2 ] + xc

of (37) in dependance of the pose, leading to the Jacobian:

ũ(t) =
1

2

∂

∂P

[
2xc − tan θc

2xc + tan θc

]∣∣∣∣
P0

u(t) = Ãu(t) (40)

The components of the sensor mapping mk(zk) = xP(zk)
with the Jacobian m̃ᵀ

k = [1, (zk − 1
2 )(tan2 θc,d + 1)] follow

analogously, see (16). Moreover, for N = K = 2 sensors
and θc,d = 0, we obtain the result

µ(z) =
10z2

1 + 2z2
2 − 8z1z2 − 6z1 + 2z2 + 5

2(z2 − z1)
. (41)

for (17), with the properties µ → ∞ if z1 → z2, and
∂µ/∂(z2 − z1) > 0 for all sensor base positions 0 ≤ z1 <
z2 ≤ 1. This circumstance implies, that a minimum µ
corresponds to a maximum sensor base distance. The same
analysis for N > K implies that minimizing µ is equivalent
to equally distribute the sensors (and directions in 3D).

Optimal sensor placement. The evaluation of the sensor
constraint on the spatial grid yields Ktot = 195 valid
candidates zv

k and thus s ∈ {0, 1}195. We choose a minimal
distance of ∆zmin = 0.1, placed no more than Kmax = 10
sensors and considered M = 25 elastic modes. Starting
with an initial guess z0 = [0.33, 0.67]ᵀ, the optimal
positions for the individual optimization are

z(s?trQ) = [0.24, 0.56, 0.75]ᵀ (42a)

z(s?µ) = [0.15, 0.85]ᵀ (42b)

Note that (42b) uses the maximum allowed distance, as
implied from (41). The multi-objective solution of (32)
with the weights w1 = 2w2 yields the optimal sensing
positions z(s?) = [0.15, 0.79]ᵀ. The result reduces the
individual cost to 34% (trQ) and 77% (µ) of the initial
cost.
In order to depict the improvement in terms of observabil-
ity, the maximum magnitudes Mmax(ωk) of the transfer
matrix ỹe(jω) = G(jω)ũ(jω) from inputs to the elastic
components of the outputs at the modal resonant frequen-
cies ωk are considered. According to Tab. 1, the suppres-
sion of the shown modes is significantly improved – espe-
cially the amplification of the first mode with M0

max(ωk) >
0 dB is handled better.

Table 1. Maximum Magnitudes for selected
resonant frequencies ωk

magnitude initial guess s0 optimal solution s?

Mmax(ω1) +1.07 dB −5.06 dB
Mmax(ω2) −2.91 dB −9.26 dB
Mmax(ω3) −17.3 dB −24.4 dB
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Fig. 5. Complex oscillation modes for k = 1, 2, 3 of
the example PDE (38) with phase-dependent loci of
maxima (red), minima (blue) and nodes (yellow).

5. CONCLUSION

As elastic deformations limit the performance of high-
precision pose controllers, passive dampers are typically
used to enforce given damping requirements. However,
the resulting equations are governed by non-proportional
damping and the resulting observation spillover limits
the performance of the overall control loop. Furthermore,
limitations of the installation space make an intuitive
choice of the sensing positions impossible. As a solution,
we introduced an optimal sensor placement algorithm in
order to minimize the impact of the elastic modes on
the measured outputs. The multi-objective optimization
considers Gramian-based measures and the invertibility of
pose reconstruction at the same time and is capable of
evaluating redundant sensor configurations.
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