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˚Univ. of Luebeck, Institute for Robotics and Cognitive Systems,
23562 Luebeck, Germany. Email: nguyen@rob.uni-luebeck.de.

˚˚Univ. Grenoble Alpes, Grenoble INP :, LCIS, Valence, France.
Email: {ionela.prodan,laurent.lefevre}@ lcis.grenoble-inp.fr.

: Institute of Engineering and Management Univ. Grenoble Alpes.
˚˚˚ Technische Universität Chemnitz, Automatic Control and System

Dynamics (ACSD) Lab, 09107 Chemnitz, Germany.
Email: {felix.petzke, stefan.streif}@etit.tu-chemnitz.de.

Abstract: We propose a hierarchical FTC (Fault Tolerant Control) scheme for trajectory
tracking by a quadcopter system under stuck actuator fault and actuator saturation. Both
the FDI (Fault Detection and Isolation) and control reconfiguration modules are implemented
at the low-level associated with the rotation dynamics through a NMPC (Nonlinear Model
Predictive Control) strategy. The uncontrolled (when under fault) yaw torque is predicted and
compensated by the NMPC. It is shown that the overall control scheme succeeds in maintaining
trajectory tracking for various fault events (both in the sense of having various stuck values and
in the sense of changing the actuator under fault).
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1. INTRODUCTION

Recently, quadcopter unmanned aerial vehicles have elicited
increasing interest in the research community as a typical
system for studying control algorithms (Nascimento and
Saska, 2019) as well as sensors/actuators fault diagnosis
(Freddi et al., 2011; Shao et al., 2018). Among them, the
FTC (Fault Tolerant Control) hierarchical control design
(Stoican et al., 2018) is usually employed to take into ac-
count the decoupling between the translation and rotation
dynamics and to counteract various types of faults, e.g.,
loss of rotor(s) (Freddi et al., 2011). One particular fault
for aerial vehicles is the stuck rotor fault (Shao et al.,
2018; Nguyen et al., 2017). Once stuck, the faulty actuators
keep rotating at a constant speed regardless of the actual
control inputs. Thus, under a unique stuck rotor fault, the
quadcopter system not only loses one degree of freedom
in its control ability but also gains persistent disturbances
(Chen and Jiang, 2005).
This work extends previous results of the authors (Nguyen
et al., 2017) where an FTC scheme for controlling a
quadcopter system was developed by using FL (feedback
linearization) but without providing an FDI module and
considering actuator saturation. This shortcoming was due
to the complexity of the whole controlled system under
input constraints but can, arguably, lead to bad behavior
such as loss of stability and decrease in performance. In
the presence paper, these drawbacks have been overcome
by designing a fault diagnosis module particularized for
the stuck rotor fault (Hasan and Johansen, 2018). Fur-
thermore, the saturation constraints on the rotor speeds

are fulfilled by employing the NMPC (Nonlinear Model
Predictive Control) strategy. More precisely, this paper
provides several contributions which, to the best of our
knowledge, are new to state of the art (w.r.t. similar works
in FTC designs for multicopters as in Freddi et al. (2011);
Nguyen et al. (2017)):
‚ A hierarchical control scheme for the trajectory tracking
of a quadcopter system under actuator saturation and a
stuck fault occurrence is provided. The high level employs
a FL controller while the low level switches between two
different NMPC schemes according to the system’s func-
tioning states (healthy or under fault). The two NMPC de-
signs guarantee the satisfaction of the system’s constraints.
‚ A model of the uncontrolled yaw motion under fault is
proposed. This allows the prediction dynamics employed
within the NMPC controller to be more realistic than
keeping the yaw value as a constant feedback within the
whole prediction horizon would have been.
‚ A fault diagnosis module for detecting the faults of a
unique rotor being stuck at varying speeds is designed. The
residue is constructed based on the differences between the
estimated and reference normalized torques (given in the
unit of the rotor speed).
The remainder of this paper is organized as follows. Section
2 presents first mode of a standard quadcopter system and
of the stuck actuator fault. Next, Section 3 introduces the
hierarchical FTC scheme and the fault diagnosis module.
The simulation results are given and discussed in Section
4. Finally, Section 5 draws the conclusions and presents
the future directions.
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2. MODEL DYNAMICS

‚ System modeling

This section briefly recapitulates the mathematical model
of a standard quadcopter as found in (Freddi et al., 2011;
Nguyen et al., 2017). Firstly, the translation dynamics are
given in the global fixed frame as follows:

9ξ “ v, (1a)

9v “ ´gez `R3T {m, (1b)

with ξ “ rx y zs
J

the position and v “ rvx vy vzs
J

the
translation velocity of the quadcopter, ez “ r0 0 1sJ, m
the system mass and g the gravity consant. T P Rě0 is
the input thrust. R3 stands for the 3rd column of the roll–
pitch–yaw rotation matrix (Nguyen et al., 2017, 2018):

R3 “ rcφ s θ cψ ` sφsψ, cφsθsψ ´ sφ cψ, cφ c θsJ, (2)

with “c” the cosp¨q and “s” the sinp¨q functions. pφ, θ, ψq
are the roll, pitch and yaw angles which subject to the
rotation dynamics given as follows:

9η “W pηqω, (3a)

9ω “ J´1 p´ω ˆ pJωq ` τ q , (3b)

with η “ rφ θ ψsJ the angle vector, ω “ rωx ωy ωzs
J the

angle rate vector, τ “ rτ φ τ θ τψs
J

gathering the roll,
pitch, yaw torques, and J “ diagtJx, Jy, Jzu the inertia
matrix. The matrix W pηq P R3ˆ3 depends on the roll and
pitch angles as follows (with “t” the tanp¨q function):

W pηq “

«

1 sφ t θ cφ t θ
0 cφ ´ sφ
0 sφ{ c θ cφ{ c θ

ff

. (4)

The thrust and the three torques are calculated in terms
of the four rotor speeds (denoted by Ωi for the ith rotor):

u “MΩ2, (5)

with u “ rT τ φ τ θ τψsJ and Ω “ rΩ1 . . .Ω4s
J the rotor

speed vector. Note that, the four rotor can only rotate in
their predefined directions, i.e., Ωi P Rě0,@i P t1 . . . 4u. In
(5), the configuration matrix M is given by:

M “

»

—

–

KT KT KT KT

0 ´LKT 0 LKT

´LKT 0 LKT 0
´b b ´b b

fi

ffi

fl

, (6)

with KT the thrust coefficient, b the drag coefficient and
L the arm length, all assumed known.
Furthermore, the rotor speed Ωi tracks its reference de-
noted by Ωi,r which is actually the input sent to the quad-
copter system (1)-(5). The tracking mechanism is subject
to actuator saturation and faults as detailed hereinafter.

‚ Actuator under saturation constraint and stuck fault

In what follows we consider a stuck actuator fault (Chen
and Jiang, 2005; Nguyen et al., 2017) for the quadcopter
system. This type of fault forces the rotor speed Ωi to
remain stuck at a constant value Ωi,α, regardless of the
actual reference value Ωi,r. We neglect the internal dy-
namics of the rotors (which are usually considered as a
low-pass filter (Shao et al., 2018)), hence, under saturation
constraint and under fault of a unique stuck rotor, the
rotating speed of the ith rotor is modeled through:

Ωi “

"

satpΩi,r|Ωmaxq, under nominal condition,

Ωi,α, under stuck fault,
(7)

with Ωi,r P Rě0 the speed reference of the ith rotor,
ωmax ą 0 the maximum rotor speed. The saturation
function satp¨q is simply taken as:

satpΩi,r|Ωmaxq “

"

Ωi,r, if |Ωi,r| ď Ωmax,

Ωmax, if |Ωi,r| ą Ωmax.
(8)

For consistency, the constant stuck value Ωi,α is expressed
in terms of 0 ď α ď 1 as a percentage of the maximum
rotor speed, i.e.:

Ωi,α “ αΩmax. (9)

Within this paper, we consider at most one rotor being
stuck at a time, so that the quadcopter can still track a
3D reference trajectory (in the sense of tracking the po-
sition component of the trajectory while losing command
over the yaw component). Having one stuck rotor means
that one degree of freedom is lost in the control of the
quadcopter system (1)-(5). Thus, considering the ith rotor
stuck at Ωi,f from (9) leads to a rotor speed vector written
as follows:

Ωi,α “ rΩ1 . . .Ωi,α . . .Ω4s
J. (10)

Consequently, (5) is rewritten as follows:

u “

"

MΩ2, under nominal condition,

MΩ2
i,α, the ith rotor under fault (stuck).

(11)

Let us introduce the notations of several variables em-
ployed within the paper to easily describe the system under
fault of the ith stuck rotor (i P t1 . . . 4u):

‚ xMi and |Mi, both in R3, gather the first and the
last three elements of the ith column of M in (6),
respectively.

xM1 “ rKT 0 ´ LKT s
J, |M4 “ rLKT 0 bsJ. (12)

‚ xM and |M , both in R3ˆ4, gather the first and the last

3 rows of M in (6) respectively. yM!i P R3ˆ3 gathers
the first 3 rows of all the other columns except the
ith column of M in (6). E.g.:

yM!2 “

»

–

KT

0
´LKT�

�
�
�@

@
@@

KT

´LKT

0

KT

0
LKT

KT

LKT

0

fi

fl . (13)

‚ The thrust, T , roll, τ φ, and pitch, τ θ, torques are
gathered into:

pu “ rT τ φ τ θsJ. (14)

‚ The four speed references from (7) are represented by:

Ωr “ rΩ1,r . . .Ω4,rs
J, (15)

while the three rotor speed references except the ith

stuck rotor are gathered into Ωr,!i P R3. E.g.:

Ωr,!2 “ rΩ1,r Ω3,r Ω4,rs
J. (16)

3. FAULT TOLERANT CONTROL DESIGN

Fig. 1 presents the hierarchical control scheme to counter-
act the influences of the fault induced by a single stuck
rotor. At high level, the position controller tracks the
reference 3D trajectory ξr “ rxr yr zrs

J by providing the
references of thrust, Tr, and roll, φr, pitch, θr, angles. We
apply the feedback linearization controller introduced in
our previous work (Nguyen et al., 2018) which provides
the references pTr, φr, θrq constrained as follows:

Tr ď Tmax and |φr|, |θr| ď εmax, (17)
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Fig. 1. Hierarchical FTC scheme for a quadcopter system.

where Tmax, the maximum thrust and εmax, the maximum
angle are parameters to be desired. The reader is referred
to (Nguyen et al., 2018) for more details on this feedback
linearization controller while we concentrate only on the
reconfiguration module design hereinafter.

3.1 FTC module

This section presents the FTC (Fault Tolerant Control)
module which consists of the attitude controller and the
speed calculator as shown in Fig. 1. The FTC law alter-
nates between the healthy and under fault modes. Each
of these correspond to a particular form of the NMPC
attitude controller and the speed calculator.
At first, the discretized rotation dynamics are required for
the prediction part of the NMPC. A typical example is to
apply Euler’s discretization method with sampling time
∆t to the continuous model given in (3):

η̄ps` 1q “ η̄psq `∆tW pη̄psqq Ω̄psq, (18a)

ω̄ps` 1q “ J´1
`

´ω̄psq ˆ pJΩ̄psqq ` τ̄ psq
˘

, (18b)

with η̄psq, the predicted angle and ω̄psq, the predicted
angle rate at time step s. Ω̄, J and W p¨q are given in (3).
The discrete dynamics (18) will be used in both healthy
and faulty modes of the FTC module detailed hereinafter.

Nominal functioning: Under nominal operation, the
healthy attitude controller tracks the three angle refer-
ences ηr “ rφr θr ψrs

J (with pφr, θrq obtained from the
position controller as in (17)) by providing three torque
references τ r “ rτ φr τ θr τψr s

J. Using the MPC strategy,
the torque references τ rpkq at time step k (i.e., time
instant k∆t) is obtained as the solution of the following
optimization problem over the prediction horizon Np:

τ rpkq “ arg min
τ̄

Np´1
ÿ

s“0

´

pη̄psq ´ ηrpkqq
JQηpη̄psq ´ ηrpkqq

` pτ̄ ps` 1q ´ τ̄ psqqJQ∆τ pτ̄ ps` 1q ´ τ̄ psqq
¯

, (19)

subject to

$

&

%

dynamics (18),

τ̄ psq P SpTrpkqq, @s P t0 . . . Np ´ 1u,

η̄p0q “ ηpkq, Ω̄p0q “ Ωpkq,

with the references, ηrpkq and Trpkq, obtained from the
high level controller. ηpkq and Ωpkq are the actual values
of the angles and angle rates at time step k. The set
SpTrpkqq Ă R3 is given by:

SpTrpkqq “
"

τ r P R3
ˇ

ˇ

ˇ
0 ďM´1

„

Trpkq
τ r



ď ω2
max

*

, (20)

with M in (6) and ωmax the maximum value of the rotor
speed in (7). The set SpTrpkqq from (20) is constructed
based on (11) and it gathers all the feasible values of
τ r P R3 such that the resulted reference rotor speeds Ωr

as in (15) respect the rotor speed saturation.

Next, at time step k, the speed calculator block provides
the reference rotor speeds ωrpkq given by:

Ω2
rpkq “M´1urpkq, (21)

where urpkq “ rTrpkq τJr pkqsJ with Trpkq from (17) and
τ rpkq from (19). As τ rpkq P SpTrpkqq from (20), the
reference rotor speeds Ωrpkq calculated by (21) stay under
the maximum rotor speed Ωmax which ultimately lead to:

Ωpkq “ Ωrpkq, T pkq “ Trpkq, τ pkq “ τ rpkq, (22)

with Ωpkq from (7), T pkq and τ pkq from (11). This will be
used for designing the FDI module later.

Under fault functioning (ith rotor is stuck): Once the
fault is detected and isolated, the attitude controller
reconfigures to no longer control the yaw angle (recall also
Fig. 1). At time step k, it provides only the references of
the roll, τ φr pkq, and pitch, τ θr pkq, torques to track the
angle references, φrpkq and θrpkq sent from the position
controller at the high level (17). Then, the speed calculator
block provides the three reference speeds Ωr,!ipkq (as
defined in (16)) for the three remaining healthy rotors
(except from the ith stuck rotor) as follows:

Ω2
r,!ipkq “

xM´1
!i purpkq ´ xM´1

!i
xMiΩ

2
i,α, (23)

with purpkq “ rTrpkq τ φr pkq τ θr pkqsJ, xMi P R3 from (12),
xM!i P R3ˆ3 from (13) and Ωi,α the stuck speed of the faulty
ith rotor as in (9). Then, by using the actual stuck speed
as reference for the faulty ith rotor, the four rotor speed
references are given by:

Ω2
rpkq “ I4,:iΩ

2
i,α ` I4,!iΩ

2
r,!ipkq, (24)

with I4,:i P R4 the ith column and I4,!i P R4ˆ3 the matrix
gathering the three columns beside the ith one of the
identity matrix I4 P R4ˆ4.
In order to avoid the saturation effects on Ωr,!ipkq from
(23), the torque references, τ φr

pkq and τ θr pkq, are re-
quired to be within the feasible set SipTrpkqq Ă R2:

SipTrpkqq “
#

„

τ φr

τ θr



P R2

ˇ

ˇ

ˇ

ˇ

(25)

0 ď xM´1
!i

«

Trpkq
τ φr

τ θr

ff

´ xM´1
!i

xMiΩ
2
i,α ď Ω2

max

+

.

Proposition 1. Assuming the ith rotor under fault, let us
constrain rτ φr pkq τ θr pkqsJ P SipTrpkqq as in (25). The
rotors track their speed references Ωrpkq from (24). Then,
the following hold:

i) the actual values of the four rotor speeds Ωpkq, of
thrust, T pkq, and of roll, τ φpkq, pitch, τ θpkq, torques
equal their references.

ii) the uncontrolled yaw torque τψpkq as in (18) is
calculated by the following formulation:

τψpkq “ 4M4,iΩ
2
i,α `M4:I4,!i

xM´1
!i purpkq, (26)

with M4,i the ith element of M4:, the 4th row of M ,
xM!i from (13), pur from (23) and Ωi,α the stuck speed
of the faulty ith rotor.

Proof. Since rτ φr pkq τ θr pkqsJ P SipTrpkqq from (25),
the speed references Ωrpkq from (24) do not exceed their
maximum value Ωmax. Thus, the actual rotor speeds under
fault Ωi,αpkq equal to their references Ωrpkq (i.e. the ith
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stuck rotor receives the actual stuck speed as its reference).
Then, the actual thrust and torques upkq in (11) are:

upkq “MΩ2
i,αpkq, (27)

which validates point i) and also provides τψpkq “

M4:Ω
2
pkq. Combining this with (23)-(24) leads to (26) (by

also using M4:

´

I4,:i ´ I4,!i
xM´1

!i
xMi

¯

“M4,i). ˝

Finally, the NMPC optimization problem at time step k
of the attitude controller under fault of the ith stuck rotor
is formulated as follows:

pτ rpkq “ arg min
xτ̄

Nf´1
ÿ

s“0

´

ppη̄psq ´ pηrpkqq
JQ

pηppη̄psq ´ pηrpkqq

`

´

pτ̄ ps` 1q ´ pτ̄ psq
¯J

Q∆pτ

´

pτ̄ ps` 1q ´ pτ̄ psq
¯¯

,

(28)

s.t.

$

’

’

’

&

’

’

’

%

dynamics (18),

τ̄ψpsq “ 4M4,iΩ
2
i,α `M4:I4,!i

xM´1
!i

pūpsq,
pτ̄ psq P SipTrpkqq, @s P t0 . . . Nf ´ 1u,

η̄p0q “ ηpkq, ω̄p0q “ ωpkq.

with pηrpkq “ rφrpkq θrpkqs
J the roll and pitch angle

references, Trpkq the thrust reference, all obtained from
the high level controller at time step k. Note that, by

constraining the whole predicted torques pτ̄ psq along the
prediction horizon Nf to stay within the set SipTrpkqq,
Proposition 1 is validated. Thus, the prediction model
of yaw torque τ̄ψpsq can be taken from (26) and the
resulted actual roll, pitch torques equal their references
pτ rpkq obtained from (28). Ultimately, the actual roll, pitch
angles pηpkq track their references pηrpkq and leads to the
stability of the whole hierarchical control scheme.

3.2 FDI module design

This section introduces the design of a fault diagnosis
module (as shown in Fig. 2) which can detect the stuck
fault, identify the ith stuck rotor and estimate its stuck
speed Ωi,α.
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Fig. 2. Fault diagnosis module.

Torque normalization:
We define the normalized torques as follows

rτ “
"

WΩ2, under nominal condition,

WΩ2
i,α, if the ith rotor stuck,

(29)

with Ω, Ωi,α from (11) and the matrix W given by:

W “

«

0 ´1 0 1
´1 0 1 0
´1 1 ´1 1

ff

. (30)

Next, by a similar way, we also construct the normalized
desired torques rτ d as follows:

rτ d “WΩ2
r, (31)

with Ωr the rotor speeds references obtained by (21) under
nominal functioning and by (24) under fault of the ith

stuck rotor.

Torque observer (yellow block in Fig. 2):
The observer estimate the value of the actual normalized
torque rτ as in (29) from the available angle rate ω based
on the Euler discretization of the rotation dynamics (18):

τ ppkq “ J

ˆ

ωpkq ´ ωpk ´ 1q

∆FDI

˙

` ωpkq ˆ pJωpkqq , (32)

with τ ppkq the estimated torque at time step k, ωpkq the
angle rate, ∆FDI the sampling time of the FDI module (can
be chosen smaller than the sampling time of the attitude
controller ∆t as in (18) to enhance the accuracy, but being
limited by the feedback rate of ω). Then, the normalized
estimated torque rτ p is calculated as follows:

rτ ppkq “ diag

"

1

LKT
,

1

LKT
,

1

b

*

τ ppkq, (33)

with L,KT , b the physical parameters from (5).

Residual vector and its functioning:
Recalling the FDI module scheme in Figure 2, the residual

vector d “ rd1 d2 d3s
J

is simply taken as follows:

d “ rτ p ´ rτ d, (34)

with rτ p, the estimated normalized torque as in (33) and
rτ d, the normalized desired torque as in (31), both taken
at the same time instants.

Proposition 2. (Fault detection). Let us consider the resid-
ual vector d calculated as in (34). The followings hold:

1) If the attitude controller given in Section 3.1 is
functioning in the appropriate mode, i.e., nominal
mode (19) under nominal case and under-fault mode
(28) corresponding to the right scenario (ith rotor
being stuck at Ωi,α), then the expectation of the norm
of the residual vector }d} is zero:

Er}d}s “ 0, (35)

with Erxs is the expectation of a variable x, some-
times called the mean value of x.

2) If the real rotor speeds are not tracking their refer-
ences, then, the norm of the residual vector }d} varies
around a non-zero value. More precisely, we consider
two following scenarios:
2a) If the attitude controller is functioning in the

nominal mode (19) and the ith rotor is stuck at
the speed of Ωi,α, then we have that:

Er}d}s “
?

2|Ω2
i,α ´ Ω2

i,r|, (36)

with Ωi,r the speed reference of the ith rotor.
2b) If the attitude controller is functioning in under-

fault mode (28) corresponding to the right ith
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stuck rotor but with the wrong stuck speed Ωi,αw

instead of the actual stuck speed Ωi,α, then:

Er}d}s “
?

2|Ω2
i,α ´ Ω2

i,αw
|. (37)

Proof. We assume that the torques estimator as in (32)–
(33) works properly and hence, the estimated normalized
torque rτ p from (33) varies around its actual value rτ from
(29), i.e. Errτ ps “ rτ . Then, we have that:

Erds “ rτ´rτ d “
"

W pΩ2
´Ω2

rq, under nominal case,

W pΩ2
i,α ´Ω2

rq, with ith stuck rotor,
(38)

with W from (30), Ωr, pΩ and Ωi,αq the references and
the actual rotor speeds under nominal and faulty cases.
For both scenarios under point 1), the actual rotor speeds
equal their references which leads to Erds “ 0 as in (35).
Next, regarding both scenarios considered at point 2), their
common problem is that the ith faulty rotor (i P t1, . . . , 4u)
becomes stuck and does not follow its reference. Hence, the
residual vector d varies around a non-zero value:

Erds “Wi∆Ω2
i , (39)

in which, Wi is the ith column of the matrix W from (30).
The term ∆Ω2

i describes the speed tracking mismatch of
the ith rotor and is defined as follows:

∆Ω2
i “

"

Ω2
i,α ´ Ω2

i,r, under point 2a,

Ω2
i,α ´ Ω2

i,αw
, under point 2b,

(40)

with Ωi,α, Ωi,r and Ωi,αw
given as in (36)–(37).

Due to the construction of W from (30), }Wi} “
?

2,@i P
t1, . . . , 4u which further provides Er}d}s “ }Wi}|∆Ω2

i | “?
2|∆Ω2

i | and hence, both (36)–(37) are validated. ˝

From Proposition 2, the two faulty scenarios 2a (36) and
2b (37) can be distinguished from the point 1 (35) and be
detected by checking (c.f. Figure 2):

}d} ą γ, (41)

with γ P R` the threshold designed as follows:

γ “
?

2βΩ2
max, (42)

with β P p0, 1q the tuning parameter describing the ratio of
the acceptable tracking error (e.g. |Ω2

i,α ´Ω2
i,r| as in (36))

to the maximum squared speed Ω2
max as in (7).

Proposition 3. (Fault isolation and estimation). Considering
two scenarios 2a (36) and 2b (37), after detecting the
faults, the ith faulty rotor can be isolated (i.e., re-checked
for scenario 2b) by using the look-up Table 1 in which
the residual vector d “ rd1 d2 d3s is from (34) and the
notation ∆Ω2

i is defined in (40). Next, after obtaining the

Table 1. Stuck rotor identification.

Stuck rotor 1 2 3 4

d1 0 ´∆Ω2
2 0 ∆Ω2

4

d2 ´∆Ω2
1 0 ∆Ω2

3 0

d3 ´∆Ω2
1 ∆Ω2

2 ´∆Ω2
3 ∆Ω2

4

index i, the actual stuck speed Ωi,α is estimated by:

Ω2
i,α “

"

p´1qid3 ` Ω2
i,r, under point 2a,

p´1qid3 ` Ω2
i,αw

, under point 2b,
(43)

of Proposition 2, with Ωi,α the actual stuck speed of the
ith rotor and Ωi,r, Ωi,αw two references under two cases 2a
(36) and 2b (37) of Proposition 2.

Proof. The look-up Table 1 is constructed by using the
relation Erds “Wi∆Ω2

i as in (39) with Wi the ith column
of W from (30). Then, by generalizing the last row of Table
1, we arrive to:

Erd3s “ p´1qi∆Ω2
i , (44)

with ∆Ω2
i as in (40), which further leads to the use as in

(43), completing the proof. ˝

Note that, due to realistic noises and implementation
mismatches, the isolation algorithm can be relaxed by only
checking the signs of the elements pd1, d2, d3q instead of
following exactly the indications given in Table 1.

4. SIMULATION RESULTS

In this section, we consider the simulation model (1)-(7)
of a quadcopter platform characterized by:

- m “ 0.028, Jx “ Jy “ 1.4ˆ 10´5, Jz “ 2.2ˆ 10´5;
- L “ 0.065, KT “ 3.16ˆ 10´10, b “ 7.94ˆ 10´12;
- each rotor has maximum speed ωmax “ 22000.

The quadcopter tracks a feasible smooth trajectory which
respects the maximum rotor speed ωmax and other ini-
tial/final conditions. The yaw angle reference ψr is fixed
at zero. The fault scenario is as follows:
- From 0 to 2.5 seconds: nominal functioning;
- From 2.5 to 3 seconds: the 4th rotor is stuck at its previ-
ous rotating speed (as shown in Fig.3 with ω4,α1 “ α1Ωmax

with α1 “ 0.66);
- From 3 to 4 seconds: the 4th rotor is stuck at another
speed of ω4,α2 “ α2Ωmax with α2 “ 0.68.
The design parameters concerning the FTC controller are
gathered in Table 2. The position and attitude controllers
(cf. Fig.1) run at the frequencies of 10 Hz and 100 Hz,
respectively. The NMPC optimization problems are solved
using Pyomo (Hart et al., 2011) in Python 3.0.
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Fig. 3. Rotor speeds values under stuck fault simulation.

We firstly provide the results of the four rotor speeds
in Figure 3. After the nominal operation from 0 to 2.5
seconds, the 4th rotor is stuck at the previous speed
represented by α1 “ 0.66 from 2.5 to 3 seconds and at
α2 “ 0.68 from 3 to 4 seconds which is illustrated by the
blue line remaining constant at two different values.

The fault diagnosis module detailed in Section 3.2 succeeds
in detecting the stuck faults within two sampling time
periods (0.02 seconds) as given in Figure 4 by using the
threshold γ from (41) with β “ 10´2, i.e., providing
an acceptable speed tracking mismatch of 10% of the
maximum rotor speed Ωmax “ 22000 rpm. Note that, a
smaller value of γ can be employed but may result in
excessive sensitivity (i.e., false alarms). As a part of the
fault diagnosis module, the result of the torque observer
(32) is given in Figure 5. We provide only the estimated
value of the roll torque τ φp as in (32) plotted as a solid
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Fig. 4. Values of residual vector d “ rd1 d2 d3s
J.

green line since the estimated results are noisy due to the
usage of the backward Euler method in (32) (can be seen
from the enlarging circle) which significantly reduce the
clarity of the figure.
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Fig. 5. Torques results.
Using the information of the faults provided by the fault
diagnosis module, the proposed FTC scheme ensures the
trajectory tracking capability of the quadcopter system
as shown by the convergence of the 3D positions over
time in Figure 6. Finally, the computing time of the
NMPC attitude controllers is plotted in Figure 7. It can
be observed that under nominal cases, on average, the
NMPC controller (19) (plotted in red line) requires 49.5
milliseconds per step (given by blue line) to compute
while the NMPC scheme under fault as in (28) (plotted
in green line) yields the average computing time of 60
milliseconds. This is due to the use of the prediction
model for the yaw torque given by (26) and the longer
prediction horizon Nf “ 8 (w.r.t. Np “ 5 under nominal
functioning as given in Table 2). We also notice that the
computation times are higher than the sampling time (i.e.,
0.01 seconds) which would make the control strategy, in
its present form, unsuitable for implementation. However,
we are confident that further work (e.g., to refine the
algorithm’s implementation) and/or use advanced solving
techniques (Mayne et al., 2000) will mitigate the issue.
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Fig. 6. Position tracking results.

Table 2. Parameters of the attitude controller (cf. Fig.1).

Under nominal
functioning

Parameters Qη Q∆τ Np
Values I3 0.1I3 5

Under fault of a
unique stuck rotor

Parameters Q
pη Q

∆xτ Nf
Values I2 0.1I2 8
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Fig. 7. Computing time of the NMPC attitude controllers.

5. CONCLUSION

This paper presented the designs of a trajectory tracking
FTC (Fault Tolerant Control) controller for a quadcopter
system under rotor saturation constraints and fault of a
unique stuck rotor. The reconfiguration module employs
an NMPC scheme to ensure the constraints on the four
rotor speeds and functions in two different modes, i.e.,
nominal mode and ‘under-fault’ mode. The FDI (Fault
Detection and Isolation) module estimates the differences
between the references of torques and their actual values
in order to provide the speed tracking errors of the rotors
and then, to detect the stuck fault. The proposed methods
were validated through extensive simulations and show
promise for experimental tests. Future works will analyze
the impacts of measurement errors and of the internal
dynamics of the rotors.
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