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Abstract: Motion control of robotic manipulators is frequently realized by independent control
of the DC motors actuating robot joints. Namely, nonlinearities, coupling between actuators
and other complex dynamics are neglected if high gear ratios between the actuators and robot
joints are considered. This paper proposes a fractional-order lag network or a fractional-order PI
controller to control the position of the actuators shafts. The introduced fractional compensators
are designed by using the symmetrical optimum principle and by parameters optimization or by
frequency-domain loop shaping, respectively. Simulation results and frequency response show
effectiveness and robustness of the approach.
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1. INTRODUCTION

Robotics is a large inter-disciplinary field that is contin-
uously growing and finding new applications. It requires
knowledge of mechanical and electrical engineering, sys-
tems and control theory, and new technology. Research is
stimulated by different applications and by the increasing
demand in better performance of robotic systems. For
example, robotic manipulators are spread in industry but
present many issues in motion control because their dy-
namics is highly nonlinear, time-varying, and often subject
to parametric uncertainty. To achieve a better compromise
between performance and robustness, fractional-order con-
trol can provide a strategic hand to solve complex issues.

Industrial manipulators in automated factories must ex-
ecute tasks with high accuracy and repeatability, and
should be deployed to allow mass production and quality
of products [5]. Although control is complex, manipulators
can be controlled in a linear way if their dynamic model
is assumed linear because of high gear ratios, gravity com-
pensation devices, etc., or is linearized by feedback [26].
Then, nonlinear phenomena as well as dynamic coupling
effects from the motion of other joints are neglected. In
this way, the robot control problem can be decoupled into
independent joint control. So, PID controllers are usually
employed for the stabilization of manipulators [17].

In the last decades, application of fractional calculus
to control problems has demonstrated several benefits

[20; 22; 23; 25; 19]. Namely, fractional-order controllers
have at disposal the fractional orders of integration and/or
differentiation that can be used as additional degrees
of freedom in controller design. In this way, not only
performance can be increased, but especially robustness
of the control loop is improved. To this aim, the seminal
Bode’s idea of the ideal open-loop gain based on a non-
integer order integrator is fundamental [1]. Moreover,
the compact structure of the controller is based on few
parameters (tuning knobs) that allow to achieve similar or
better results than integer-order controllers of high order.
Literature shows successful applications to robot control
[24; 18; 7; 29]. For example, robust path planning in 3-
D space is achieved despite UAV mass variations [18]. In
details, fractional attractive forces were introduced based
on velocity fractional derivative.

In this paper, two types of fractional-order controllers of
a robot manipulator are compared. A fractional-order lag
network (FOLaN) is designed to achieve reference step re-
sponse with no overshoot and iso-damping property, such
that it is robust to large process gain variations. This prop-
erty is very important in position control. Since FOLaN
cannot reject disturbances completely, a fractional-order
PI (FOPI) controller is designed with that purpose. It
makes a compromise between performance and robustness,
i.e. it is more sensitive to process gain variations, but
disturbance is rejected with zero steady-state error. The
two controllers are chosen because they are comparable
and give similar results for the same design specifications,
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Fig. 1. Block scheme of the DC motor.

as shown by simulation, and require a lower design com-
plexity than a fractional-order PID (FOPID) controller.

The paper is organized as follows. Section 2 describes
the considered manipulator and derives its mathematical
model. Section 3 explains how the introduced FOLaN and
FOPI controllers are optimized and designed. Section 4
gives simulation results based on a linear dynamic model
of a real manipulator. Section 5 gives some conclusions.

2. THE ROBOTIC MANIPULATOR

The robot manipulator consists of a sequence of mechani-
cal rigid bodies (links) that are connected by joints. Here,
the Rodriquez approach is used to obtain the equations of
motion. The reader is referred to [6] for details regarding
the mechanical model representing a chain of rigid bodies.
If the kinetic energy is expressed in terms of generalized
coordinates and their derivatives, then the system dynamic
equations are written in terms of Lagrange equations of the
second kind. The motion imposed to a joint is realized by
an actuating system, which usually consists of a DC motor
and a transmission (gear). After some transformations,
the equations of motion of a rigid robot together with an
actuating system can be written as:

[A(q)+N2 Jm] q̈+[C(q, q̇)+N2 Bm] q̇−Qg = Qm , (1)

where, given the number n of bodies in the system,
q(t) ∈ Rn is the vector of the generalized coordinates,
A(q) ∈ Rn×n is the basic metric tensor (inertia matrix),
C(q, q̇) ∈ Rn×n includes centrifugal and Coriolis effects,
Qg ∈ Rn and Qm ∈ Rn are the gravity and torque terms
applied to the joints, N is a n×n diagonal matrix of gear
ratios, Jm is a n×n diagonal matrix of motor inertias, and,
finally, Bm is a n × n diagonal matrix of viscous friction
coefficients of the motors. Matrices A(q) and C(q, q̇) are
calculated as shown in [6]. The torques Qm are supplied
by n actuators. For a rigid robot, the equations describing
the transmission of the gears are:

qm = N q and Qm = N τi , (2)

where qm represents the positions of the actuators shafts
and τi = (N2)−1 [A(q) q̈m + C(q, q̇) q̇m]−N−1 Qg is the
vector of torques resulting from the robot manipulator and
acting on the motors shafts. Combination of (1) with (2)
yields the following model of the actuators system

Jm q̈m +Bm q̇m = τm − τi , (3)

where τm is the vector of torques supplied by the actua-
tors. Figure 1 shows a block scheme that represents the
mechanical part of the DC motors by the model in (3).
The positions of the actuators shafts are the controlled
variables.

Two main advantages of the proposed approach are lin-
earity and decoupling of the actuators model, which will
be used for the controller design. Another key advantage
is that the torque τl resulting from the robot links can be
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Fig. 2. The control scheme.

considered as a disturbance. This assumption is justified
if actuators with high gear ratios are used, namely N
typically takes on values from a few tens to a few hundreds.
Then the robot nonlinear dynamics can be neglected.

Finally, since the robot is commanded by voltage signals,
a more realistic model must include the electrical part of
the actuators as shown in Figure 1. Namely, the electrical
model of the DC motor is given by

R i+ L
di

dt
+Ke

dqm

dt
= u , (4)

where R is the n × n diagonal matrix containing the
resistances of the armature circuits, i ∈ Rn is the vector
of the armature currents, L is the diagonal matrix of
the armature inductances, Ke is the diagonal matrix
containing the back EMF constants, and u is the vector
of the armature input voltages. The vector of torques
supplied by the actuators is

τm = Km i , (5)

where Km is the diagonal matrix of the torque constants.

To conclude the model, note that the robotic nonlinear
system results into n linear, decoupled subsystems. Then,
it is sufficient to analyze one arbitrary actuator (joint),
perform its controller design, and extend the results to
the other joints. On this basis, by Figure 1, the transfer
function between the control input u and the position
output of the j-th actuator, for j = 1, ..., n, is given by

Gp(s) =
km

(l s+ r) (jm s+ bm) + km ke

1

s
≈ K

s (1 + T s)
,

(6)
in which km ∈ Km, l ∈ L, r ∈ R, jm ∈ Jm, bm ∈ Bm,
ke ∈ Ke, bm ≈ 0, K = 1

ke
, T = jm r

km ke
. The approximation

by a first-order system plus an integrator is motivated by
the fact that one of the two poles from (l s + r) (jm s +
bm) + km ke = 0 is dominant on the other one.

3. CONTROLLER DESIGN

The control scheme is illustrated in Fig. 2, where Gp(s)
is the plant model, Gc(s) is the employed controller, and
Gf (s) is a filter used to reduce overshoot and improve re-
sponse to reference r(t). Moreover, rejection of disturbance
d(t) must be achieved. Measurement noise is neglected.

The design of the considered controllers is based on the
plant model given by:

Gp(s) =
K

s (1 + T s)
, (7)

where K is the dc-gain and T is the time constant of
the plant model. Time delays could be also compensated
[10; 4].

The FOLaN and FOPI controllers are comparable. The
difference between them is that FOPI rejects disturbance
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signals with zero error, while FOLaN is more robust to
variations in the process gain. Which controller is going
to be used in certain situations depends on what are the
primary design requirements. Obviously, a FOPID with
more parameters to tune would provide better results, but
its design is more complex and is not the goal of this paper.

3.1 Synthesis of Fractional-Order Lag Network

Generally speaking, the system transient response and
robustness can be improved with fractional-order lead/lag
controllers because they have more flexibility than integer-
order controllers. Fractional compensators are more conve-
nient to shape the frequency response and adjust the phase
and gain margins in a sufficiently wide range around the
crossover frequency. Moreover, it is well known that the
phase margin affects the relative stability and the transient
response characteristics, while the speed of response is
determined by the bandwidth of the system. So, one could
reshape the bandwidth and response speed by changing
the gain crossover frequency. One could provide an en-
hanced robustness to gain variations and an iso-damping
of the step response by obtaining a nearly constant phase
around the crossover, thus a nearly constant phase margin.

The FOLaN is commonly used to improve tracking perfor-
mance and disturbance attenuation at low frequencies. A
lead network is used to improve phase margin and increase
response speed. In this paper, a FOLaN is designed to en-
hance closed-loop performance of the robot manipulator.

The fractional-order lag network is specified by:

Gc1(s) = Kc

(
1 + a s

1 + b s

)α

, (8)

where Kc is the dc gain, a and b are the zero and pole time
constants thus determining the zero and pole locations
(−1/a and −1/b, respectively), with a < b for a lag
network, and α > 0 is the fractional order.

Note that a proper choice of α is important because it
affects the maximum delay and attenuation provided by
the network. See [15] for similar arguments regarding a
lead network. Namely, since

Gc1(jω) = Kc

(
1 + a jω

1 + b jω

)α

, (9)

it is easy to find that

|Gc1(jω)| = Kc

(
1 + (aω)2

1 + (b ω)2

)0.5α

(10)

and, since ∠Gc1(jω) = α [arctan(aω)− arctan(b ω)],

∠Gc1(jω) = α arctan

(
ω (a− b)

1 + ω2 a b

)
. (11)

Phase and amplitude minimization are obtained at fre-
quency ωmin = 1√

a b
such that

φmin = min∠Gc1(jω) = α arctan

(
1−∆

2
√
∆

)
, (12)

which is negative for all ω, and

Mmin = min |Gc1(jω)| = Kc ∆
−0.5α , (13)

which is less than 1 for all ω, with ∆ = b
a > 1.

However, it is important to note that although α may
change, the phase stays nearly constant around ωmin,

which is remarkable to achieve robustness and the iso-
damping property of the control system [23; 25; 19]. Note
that the lower is α, the wider is the frequency range in
which the phase of the compensated system is flat.

Most of the methods for tuning linear controllers are based
on solving specific optimization problems that consider
the main four sensitivity functions [27]. Other alternative
methods such as the symmetrical optimum method have
been developed [8] and successively adapted to fractional-
order controllers design [16]. The main characteristic of
this method is to make the Bode diagram of the open-
loop frequency response G(jω), then the phase margin
behaviour PM(ω) = ∠G(jω)+π = φ(ω)+π, symmetrical
with respect to the gain crossover frequency ωgc.

Herein the FOLaN will be designed by using the principle
of the symmetrical optimum method, which may be stated
by specifying that several odd-order derivatives of the
phase characteristic of G(jω) should tend to zero in ωgc:

µp =
∂pφ(ω)

∂ωp
|ω=ωgc = 0 p = 1, 3, 5, ... (14)

Here only p = 1, 3 will be considered because (14) cannot
hold for all values of p. However, a sufficient degree of
symmetry around ωgc will be achieved.

Another constraint is to achieve a desired phase margin
PMs in a specified ωgc:

PMs = ∠G(jωgc) + π with |G(jωgc)| = 1 . (15)

Then, the parameters Kc, a, b, and α of the FOLaN are
obtained by solving an optimization problem [28; 2]:

min(µ3)
2 (16)

subject to

|G(jωgc)| = 1 (17)

PMs = ∠G(jωgc) + π (18)

µ1(Kc, a, b, α) = 0 (19)

To this aim, some standard nonlinear optimization meth-
ods are used by empirically selecting initial parameter
values.

3.2 Synthesis of Fractional-Order PI controller

The fractional-order PI controller is defined by:

Gc2(s) = Kp2 +
Ki2

sν
=

Kp2 (1 + Ti2 s
ν)

Ti2 sν
, (20)

with Ti2 =
Kp2

Ki2
. Then the open-loop transfer function is:

G2(s) = Gc2(s)Gp(s) =
Ki2 K (1 + Ti2 s

ν)

s1+ν (1 + T s)
. (21)

It can be designed by an efficient procedure [9; 10] that
shapes the open-loop frequency response

G2(jω) =
Ki2 K [1 + Ti2 ω

ν (C + jS)]

ω1+ν (−S + jC) (1 + j ω T )
(22)

around the gain crossover frequency ωgc, where C =
cos(0.5π ν) and S = sin(0.5π ν). The response G2(jωgc)
is manipulated to obtain a desired constant phase margin

PMs =
π

2
(1− ν) , (23)

which is strictly associated to the choice of ν. By (23),
ν < 1 should hold to obtain 0 < PM < π/2. Moreover,
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Fig. 3. The robotic manipulator.

(23) is obtained by adding π to the phase ∠G2(jωgc) and
equating to zero the phase arguments that add to π

2 (1−ν)
and depend on Ti2, ωgc and ν. This computation provides:

Ti2 =
ωgc T

ων
gc (S − ωgc T C)

, (24)

which is anyway positive (Ti2 > 0), while imposing a
unitary gain at the gain crossover frequency determines

Ki2 =
ων+1
gc

K

√
1 + ω2

gc T
2

1 + 2C ων
gc Ti2 + ω2ν

gc Ti2
. (25)

4. SIMULATION ANALYSIS

The robotic manipulator (Fig. 3) has six degrees of free-
dom: three revolute joints are used for positioning the end-
effector, other three joints form the spherical wrist orien-
tating the end-effector. Finally, there is the gripper. Herein
position control is examined, then the model is simplified
to three degrees of freedom (the first three joints).

Actually, two types of DC-motors are used for controlling
the robot. The bigger one (maxon RE36, 70 Watt), which
characteristics are used in simulation, is for motion control
of the first three robot links, one motor for each link.
The smaller type of motor (maxon A-max 22, 5 Watt)
controls the last three links. Based on the parameters
Jm = 65.2 g cm2, R = 1.71Ω, km = 44.5 · 10−3 Nm/A,
ke = 1/215 V/rpm, the three DC motors that actuate the
first three robot links are modeled by

Gp(s) =
22.5148

s (1 + 0.0055 s)
, (26)

and three controllers are based on this same plant model.
The mechanical coupling between each DC motor and the
actuated joint is realized by a pair of spur gears. The
gear reduction ratio for each of the first three links is
230. A high reduction ratio tends to linearize the system
and neglect the nonlinear coupling terms in the dynamic
model.

The proposed fractional controllers are tested and com-
pared in executing a position control task. Integer-order PI
controllers are not considered because it is expectable they
give worst results, as shown in [9; 10]. The following speci-

fications were considered (for both kind of motors): steady-
state error ess = 0, ωgc = 10 rad/s, PM = 45◦. A higher
gain crossover frequency is not used because the step
response of motor and robot link would be much faster,
which is not desirable due to the robot-human interaction.
Moreover, the chosen ωgc is close to the crossover fre-
quency (22.3 rad/s) of the uncompensated motor transfer
function. Even with that frequency, a fast response of links
will be obtained, then a pre-filter is necessary to decrease
the response speed and the control signal magnitude.

The controllers have the parameters shown in Table 1.
Note that both FOLaN and FOPI controllers are real-
ized by rational transfer functions that approximate the
irrational transfer functions. To this aim, a Padé approx-
imation [3] or other techniques [21; 11; 12; 13; 14] can be
used. For the FOLaN, a Padé approximation provided the
following controller realization:

Gc1(s) = 0.1693
(s+ 37.26) (s+ 5.671)

(s+ 12.87) (s+ 2.792)
×

× (s+ 1.435) (s+ 0.3107)

(s+ 0.7053) (s+ 0.1076)
.

(27)

For the FOPI controller, the realization was:

Gc2(s) = 0.0343
(s+ 693.9) (s+ 17.32) (s+ 1.019)

s (s+ 94.72) (s+ 5.279)
, (28)

where the integrator 1
s appears by putting 1

sν = s1−ν

s

in the controller, so that the operator s1−ν is actually
approximated. In this way, the controller allows to achieve
a zero steady-state error if a step disturbance is applied.

Finally, note that a reference command filter was used to
reduce overshoot:

Gf (s) =
1

1 + 0.5 s
. (29)

The time constant of the filter was adjusted by trial and er-
ror to obtain a reference step response without overshoot,
which is important for various positioning tasks.

Simulation is performed by Simulink and results are illus-
trated below. The response to a reference step input and to
a step disturbance applied at t = 5 s is shown in Fig. 4. The
disturbance value was selected based on massive simula-
tions of robot motion. The actual load disturbance varies
with the robot configuration and depends on the torque
that is due to the gravity force of the robot links and to the
payload. The maximum value of disturbance during the
transient operation is about 0.05 Nm, and the mean value,
which is used here, is much lower and around 0.02 Nm.

The reference step response by the FOLaN network and
the FOPI controller are approximately the same and
achieve no overshoot. Note that overshoot is usually not
desirable, then it is one of the primary design goals for
robot position control, hence also in this paper. Namely,
in case of overshoot, robot can hit and damage the manip-

Table 1. Controllers parameters settings.

Controller Parameters

FOLaN Kc = 6.6517 a = 0.0114 b = 21.7816 α = 0.5032
FOPI Kp2 = 0.0343 Ti2 = 0.0258 Ki2 = 1.3279 ν = 0.5
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Fig. 4. Reference step response and disturbance rejection.

Fig. 5. Robustness to gain changes.

ulated object before it reaches the steady state, or it can be
unsafe and dangerous in human-robot interaction. More-
over, because of the robustness of the fractional controllers,
the no-overshoot response (or the iso-damping property)
can be guaranteed with large variations in the process
gain, which is an obvious and huge advantage over the
classical PI controller. Namely, the FOLAN control system
response was tested for different values of the process gain,
which was increased 10, 50 and 60 times. The results
are shown in Fig. 5. This benefit can be verified by the
compensated Bode diagram, in which flatness of the phase
curve around ωgc (see Fig. 7) guarantees the obtained
behavior for wide variations in the process gain.

Disturbance is properly rejected by the FOPI controller
that includes an integrator to achieve a zero steady-state
error, as previously shown. Instead, the FOLaN shows a
static error. Namely, FOLaN is not primarily designed to
reject disturbance signals. Instead, it is designed to achieve
reference step response with no overshoot and with zero
steady-state error, and more importantly, to maintain the
iso-damping property even with large variations in the
process gain (the same idea was presented in [23]). Future
work will consider design of a fractional compensator with
an integrator in its structure, so that disturbance signals
are adequately rejected. Note that the static error becomes
negligible if the gear ratio between the motor and robot
is sufficiently high, hence the disturbance effect resulting
from the robot and acting on the motor shaft becomes
very small. Moreover, the undershoot is significant because
a step disturbance is applied and the settling time is
not optimized. These characteristics can be improved if
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Fig. 6. Control signal.
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Fig. 7. Bode diagrams of the compensated system with a
FOLaN and a FOPI controller.

disturbance is taken into account in the controller design.
An explicit disturbance compensation can be made by
considering a robot dynamic model that includes the
mechanical coupling and by taking into account the robot
position, velocity, and acceleration. However, this is not
the aim of this paper and is matter of further work.

The control signal by the FOLaN and FOPI controllers
is illustrated in Fig. 6. As it can be verified, the two
signals, hence the related control efforts, are very similar.
Moreover, the command signal shows no extreme peak val-
ues that can bring actuator to saturation. The maximum
control input value for the DC motor is 32 V. However, the
controller is not designed to be optimal from the control
input value point of view. In practical implementation, an
anti-windup scheme is used to ensure good response in case
of control input saturation.

The frequency response characteristics are shown by the
Bode diagrams in Fig. 7. The plots clearly indicate that
the phase and magnitude specifications are met in the
gain crossover frequency ωgc = 10 rad/s: magnitude is
1 and phase is about −136◦ for a phase margin of 44◦.
The FOLaN and FOPI controllers provide a flat phase
diagram around ωgc, so that the phase margin stays nearly
constant if the process gain (and ωgc) changes, which
gives robustness to the loop with fractional compensators.
Moreover, the FOPI controller shows a gain margin GM ≈
36 dB in the phase crossover frequency of 150 rad/s.
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5. CONCLUSION

This paper proposed the design of a FOLaN or a FOPI
controller for motion control of three revolute joints of a
robotic manipulator. Design of the FOLaN was by param-
eters optimization and based on the symmetrical optimum
principle. Design of the FOPI was by a frequency-domain
loop shaping technique. In both cases, specifications on
the gain crossover frequency and phase margin were con-
sidered. The two controllers showed their effectiveness in
obtaining the performance and robustness specifications.
Flatness of the Bode phase diagram around the gain
crossover is important and gives robustness to the loop
with the FOLaN or the FOPI controller. Future work will
perform experiments that were temporarily not possible.

ACKNOWLEDGEMENTS

This paper is based upon work from COST Action
CA15225, a network supported by COST (European Co-
operation in Science and Technology), and is also sup-
ported by the Serbia-Italy bilateral project “Advanced Ro-
bust Fractional Order Control of Dynamical Systems: New
Methods for Design and Realization ADFOCMEDER”.

REFERENCES

[1] H.-W. Bode. Network Analysis and Feedback Ampli-
fier Design. Van Nostrand, New York, 1945.
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[27] T. B. Šekara. Modern methods of design, analysis,
optimization and implementation of conventional con-
trol algorithms for processes with finite and infinite
degrees of freedom. Int. Journal of Electrical Engi-
neering and Computing, 1 (1), 11–20, 2017.
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