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Abstract: Due to current trends in automation technology such as mass customization and an increasing 

variety of products, control software (SW) in automated Production Systems (aPS) is becoming increas-

ingly complex. Thus, the need for suitable modularization strategies as a prerequisite for planned reuse 

increases. In classical high-level language programming, frequently recurring problems are often solved 

through reusable design patterns. In the control SW development of aPS, however, this approach is still 

not widely spread. Hence, this paper investigates how design patterns can be used for evaluating modularity 

in the context of control SW architecture by proposing criteria for classifying and formalizing patterns in 

aPS SW structure. On that basis, a prototypical implementation is proposed to evaluate the concept and to 

enable an automated pattern identification and interpretation in an industrial context. 
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1. INTRODUCTION 

Automated Production Systems (aPS) are complex mecha-

tronic systems that face increasingly demanding challenges, 

such as global competition and new technologies. As a result, 

the development of control software (SW) in aPS is subject to 

great time and cost pressure, leading to uncontrolled reuse 

strategies such as Copy, Paste & Modify, which hamper mod-

ularized SW architectures. However, numerous experts from 

industry and academia agree that modularity is a key prerequi-

site for high SW quality and efficient development processes. 

To enable modularity and systematic reuse of SW, computer 

science has promising approaches like object-oriented (OO) 

programming or reuse of design patterns, which, however, 

have so far hardly made their way into automation technology.  

Previous work (see Fuchs et al. (2014)) has already identified 

design patterns in industrial aPS SW, but detailed research on 

how to formalize these patterns to assess modularity in the 

scope of a holistic SW architecture analysis is still lacking. 

Therefore, the main contribution of this paper is an approach 

for a comprehensive architecture analysis of aPS control SW 

using automated SW pattern identification. Based on criteria 

to describe and formalize typical structural patterns in aPS 

SW, an implementation is introduced to evaluate the concept 

and to enable automatic pattern identification in industrial SW. 

To assess SW architecture, the influence on modularity of the 

patterns’ presence and absence is discussed. Besides, addi-

tional data not emerging from code analysis, but required for a 

holistic architecture evaluation, is identified. 

The remainder of the paper is structured as follows: Section 2 

presents the state of the art in the field of SW architecture and 

software patterns. Next, Section 3 describes the method for us-

ing design patterns to assess aPS SW modularity. Section 4 

introduces a prototypical implementation to evaluate the con-

cept. The evaluation results are discussed in Section 5. The pa-

per closes with a summary and outlook in Section 6. 

2. STATE OF THE ART: SW ARCHITECTURE IN APS 

This Section presents architecture definitions from computer 

science, architectural constraints of aPS and patterns in aPS. 

2.1  Software Architecture in Computer Science 

In computer science, several definitions of SW architecture are 

available. Reussner et al. (2019) e.g., describe SW architecture 

by “the general structure  of  a  system,  usually  expressed  in 

components, interfaces, and their interconnection”. Meyer 

(1997) identified flexible system architectures as a crucial pre-

requisite to ensure extendibility and reusability. These archi-

tectures are characterized by “autonomous elements connected 

by a coherent, simple structure”, i.e. modules. Cámara et al. 

(2017) describe SW architecture by means of structural con-

straints (e.g., predefined connections between components) 

and a set of concrete architectural element definitions (e.g., in-

stances of components to realize the architecture). These ap-

proaches represent only an extract of the work on evaluating 

and classifying SW architecture in computer science. How-

ever, in the field of aPS, SW architecture has to meet different 

requirements due to fundamentally different boundary condi-

tions. Hence, the considerations above cannot be transferred 

one-to-one to SW architecture in aPS. 
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2.2  Software Architecture in automated Production Systems 

To structure the control SW architecture of aPS into reusable 

parts, the standard IEC 61131-3 proposes Program Organiza-

tion Units (POUs) to encapsulate functionality and enable re-

use. POUs are either Functions (FC) that return the same out-

put value for the same input values, Function Blocks (FB) that 

have an internal data storage and must be instantiated for use, 

and Programs (PRG) that describe a control function sequence 

and usually form the head of the application program. Usually, 

aPS are controlled by Programmable Logic Controllers 

(PLC), which are characterized by a cyclic program execution 

with fixed cycle times to ensure process stability. PLCs are 

mainly programmed in accordance to the IEC 61131-3 stand-

ard that comprises three graphical and two textual languages.  

Vogel-Heuser et al. (2015) identified five architectural levels 

in aPS SW each containing SW modules controlling a certain 

area of a machine or plant, ranging from plant modules con-

trolling whole production plants to basic and atomic basic 

modules reading individual sensors or controlling actuators 

that cannot be decomposed any further. In this context and 

within this paper, the term module refers to an individual POU 

in the PLC control SW (cf. Fig. 1).   

 

Fig. 1. Fault handling in aPS SW identified in an industrial 

case study, distributed to the five architectural levels identified 

by Vogel-Heuser et al. (2015) 

OO programming has proven as highly beneficial for the man-

agement of SW development tasks and for flexible, reusable 

SW architectures. For selected runtime environments, tools 

supporting the OO extension of IEC 61131-3 are available, see 

Werner (2009). But, a survey with 68 companies from machine 

and plant manufacturing revealed that 42% do not use OO IEC 

61131-3, see Vogel-Heuser and Ocker (2018). 

2.3  Architectural Patterns in automated Production Systems 

According to Alexander (1979), a pattern in the context of the 

architecture of buildings is defined as a “three-part rule, which 

expresses a relation between a certain context, a problem, and 

a solution”. The Gang of Four (GoF), see Gamma et al. (2011), 

originally defined 23 design patterns as solution approaches 

for recurring problems in OO programming and distinguish 

between creational, structural and behavioural patterns. Con-

trary to desired design patterns, anti-patterns describe bad 

practices causing development issues, but also include meth-

ods to transform SW development problems into opportuni-

ties, see Brown (1998). 

Fantuzzi et al. (2011) developed a design pattern to transfer 

UML models into IEC 61131-3 based control SW especially 

considering characteristics of the packaging domain. Bonfè et 

al. (2012) investigated the benefits of design patterns as refer-

ence examples for solving issues in aPS domain focusing on 

OO programming. However, neither of the two approaches 

evaluates the design patterns in regard to the SW architecture.  

Fuchs et al. (2014) developed a method to visualize SW struc-

tures with a graphical representation comprising nodes and 

edges (cf. line “solution” in Tab. 1). They distinguish between 

direct data exchange (DDE) between POUs via calls and indi-

rect data exchange (IDE) by writing values into and reading 

values from global variables. Fuchs et al. (2014) introduce two 

independent views, i.e. a call graph for IDE and one for DDE. 

They identified the following five patterns in industrial aPS 

SW: The Tree pattern, where each POU in the pattern is called 

by only one POU at a time via DDE. The Cornflower occurs 

when one central POU calls several adjacent POUs. On the 

contrary, a Central Unit occurs when multiple POUs call one 

central POU. The Cuckoo pattern is usually an unwanted struc-

ture that occurs when POUs exchange data in the IDE view, 

but not in the DDE view. Finally, the Uniform Complexity pat-

tern refers to a SW structure in which the complexity is evenly 

distributed among the involved POUs. Although Fuchs et al. 

(2014) have already manually evaluated these patterns via in-

dustrial PLC code analysis, they have neither evaluated the 

overall SW architecture nor formalized the patterns to enable 

their automatic identification. Fahimi Pirehgalin et al. (2019) 

investigated how similarities in aPS SW can be found based 

on the Central Unit pattern by Fuchs et al. (2014) to identify 

parts in PLC SW variants, which seem suitable for planned re-

use, by comparing two projects and not considering other ar-

chitectural aspects.  

So far, the patterns defined by Fuchs et al. (2014) still lack a 

clear description using suitable criteria as a basis for formali-

zation. Sanz and Zalewski (2003) transferred the original def-

inition of design patterns to the domain of control engineering 

and developed schemata to describe patterns but did not focus 

on SW patterns to enhance modularity. Fay et al. (2015) fo-

cused on design patterns in the context of Non-Functional Re-

quirements (NFR) of aPS and defined categories for describing 

function and deployment patterns including the application 

context, the solution, and advantages/disadvantages of using a 

specific pattern. The categories of Fay et al. (2015) have 

proven to be useful for accurately describing patterns and are, 

therefore, adopted in the concept part of this paper to describe 

and formalize structural SW patterns. 

3. CONCEPT OF UTILIZING PATTERNS TO ASSESS 

aPS SOFTWARE ARCHITECTURE 

This section presents influencing factors on aPS SW architec-

ture and, subsequently, describes how design patterns can be 

used as indicators for aPS SW architecture and modularity.  
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3.1  Influencing Factors of aPS Software Architecture 

As a preliminary work to understand aPS SW architecture, it 

was first examined which factors affect architecture and how 

these influences are related. For this purpose, a literature 

search was first conducted, which was then adapted and ex-

tended based on expert feedback from the field of industrial 

automation. In this way, the following eight main categories of 

influencing factors on aPS SW architecture were identified: 

Company-specific Factors 

Based on the results of three comprehensive industrial surveys 

by Vogel-Heuser et al. (2017) and Vogel-Heuser and Ocker 

(2018), it could be observed that SW architecture is highly de-

pendent on individual company-specific constraints such as 

the location(s) of the company or the educational background 

of engineers or technicians. 

Type of Automated Processes 

Different process types require different SW architectures. 

Within the process domain, e.g., continuous processes are pre-

dominant leading to strong dependencies and hampered mod-

ularity. Contrary, discrete processes, which occur, e.g., in the 

logistics domain, are characterized by universal, well-defined 

interfaces supporting a modular, reusable SW architecture. 

Software Engineering Process 

Dependent on factors like the applied reuse strategies or size 

of development teams, different types of architectures are ben-

eficial. In some companies, e.g., SW is developed by small 

teams enabling immediate exchange, whereas larger compa-

nies employ more than hundred application engineers in dif-

ferent groups leading to a higher need for a clear structure of 

the SW architecture, as there may not be a direct exchange be-

tween the project team members. 

Boundary Conditions from other Disciplines 

aPS are mechatronic systems and, therefore, SW architecture 

is also dependent on constraints from electrics/electronics and 

mechanics. In case, e.g., a mechanical or electrical hardware 

component is exchanged or replaced, this usually causes a 

change of SW in the form of adapted or new POUs. 

Characteristics of PLC Software 

As aPS are usually controlled by PLCs, the SW architecture 

has to cope with different boundary conditions compared to, 

e.g., embedded systems SW from the field of computer science 

due to restrictions in size (storage), calculation power or lim-

ited time for the control tasks to run the program in one cycle 

to ensure process stability.  

Data Exchange between Modules 

Code analysis of several industrial companies has shown that 

SW architecture depends to a large extent on the way data is 

exchanged. If, e.g., a company only uses global variables to 

exchange data, the possibilities of the architecture are more 

limited, since complex architectures with many call levels 

would cause a loss of clarity and control. 

Modularity and Software Hierarchy Levels 

In the field of batch control, ISA-88 specifies the hierarchy of 

a company’s physical assets. Based on survey results, Vogel-

Heuser et al. (2017), corresponding SW hierarchies and vari-

ous strategies of modularization were observed in different 

companies from the field of aPS leading to distinct SW archi-

tectures. In some companies, SW is modularized according the 

physical structure of the machine layout. On the other hand, 

companies use different approaches regarding the level of 

standardization and reuse on different architectural levels. 

Use of Agents, Service-oriented Architectures (SoA), CPPS 

Depending on whether or not these types of SW structures are 

implemented, different architectures occur, see Legat and Vo-

gel-Heuser (2015), e.g., SoA are characterized by high reusa-

bility, scalability, and interoperability and thus have positive 

impact on SW architecture. 

To prioritize which of the factors should be addressed first for 

SW architecture assessment, it is necessary to identify the fac-

tors with the most critical influence on the aPS SW architec-

ture. Hence, an influence matrix as proposed by Vester (2007) 

is applied to determine factors which have a high impact on 

but are also strongly influenced by other factors as a first start-

ing point to evaluate architecture. Therefore, for each factor 

the cumulative influence on as well as the influenceability by 

all other factors were determined. The results were confirmed 

by industrial experts. Subsequently, an influence matrix was 

derived to classify the identified influencing factors into ac-

tive, passive, buffering and critical factors (cf. Fig. 2).  

 

Fig. 2. Resulting Influence Matrix by comparing the eight 

main influencing factors on SW architecture 

Active factors located in the right lower corner are character-

ized by strong impact on other factors, but can hardly be 

changed. Contrary, passive factors (left upper corner) have 

only a small influence, but can easily be influenced. Buffering 

factors (left lower corner) are characterized by low influence 

and influenceability. Critical factors (right upper corner) rep-

resent the most strongly interconnected influencing factors. 

Hence, these factors have a decisive impact on the system, 

whereby they are also subject to strong influenceability. As it 

is apparent from Fig. 2, Modularity and hierarchy levels rep-

resent the most critical influencing factor on aPS SW architec-

ture. This result confirms findings from previous work by Vo-
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gel-Heuser et al. (2017) as well as the expectation of the in-

volved industrial experts who identified modularity as one of 

the key challenges in the field of industrial automation.  

3.2.  Software Patterns as Indicators for Software Modularity 

Structural SW patterns address influencing factors on modu-

larity including data exchange, interfaces between POUs, and 

POU size. Hence, the starting point for architecture evaluation 

is the identification and interpretation of typical aPS SW pat-

terns through static code analysis and expert knowledge. The 

expert evaluations have shown that code analysis results are 

often ambiguous when it comes to interpret how the use of a 

particular pattern affects SW architecture, e.g. because the call 

graph by itself does not show what functionality is imple-

mented with a particular pattern. Thus, additional input such 

as naming conventions, programming guidelines or infor-

mation regarding the interaction of the controlled hardware is 

required to check if the overall SW architecture is consistent.  

For an effective use of pattern analyses in the context of a ho-

listic architecture assessment, it is first necessary to classify 

the patterns to be examined based on suitable criteria. There-

fore, the criteria of Fay et al. (2015) are adopted (cf. Tab. 1): 

The pattern type indicates whether the given structure is a pat-

tern or an anti-pattern and if it is characterized by data ex-

change or by other factors, such as the size or complexity of 

the involved POUs. The pattern category indicates in which of 

the GoF categories the pattern can be classified, whereby the 

patterns to be examined in this paper are exclusively structural 

patterns. The Solution shows the graphical representation of 

the patterns and a short description. Moreover, it comprises in-

formation regarding which parts of the pattern comprise appli-

cation-specific or standardized SW parts. The associate auto-

mation functions describe for which typical functions in the 

field of automation the respective pattern is suitable. To enable 

an automated identification of the design patterns, several pa-

rameters are required to formally describe the patterns. Fi-

nally, the expected advantages and disadvantages regarding 

SW quality attributes in case a pattern is used are included. 

Fuchs et al. (2014) did not follow a formal pattern description 

using appropriate categories but mainly focused on their 

graphical representation. Therefore, each of the patterns iden-

tified by Fuchs et al. (2014) is enlarged, formalized and clas-

sified using the criteria described above based on expert 

knowledge from the domain of aPS (cf. Tab. 1). 

The implementation of an automated pattern identification (cf. 

Step (1) in Fig. 3) is a crucial prerequisite to enable pattern 

interpretation in aPS software and represents an important en-

largement of previous work (see Fuchs et al. (2014)). Details 

regarding Step (1) are described in Section 4. In the following, 

the conceptual part of the approach (cf. Step (2) and (3) in Fig. 

3) is derived, i.e. the results from previous work (see Fuchs et 

al. (2014)) are enlarged by formalizing and annotating infor-

mation to the design patterns to enrich the analysis of aPS SW 

architecture (Step (2) in Fig. 3) and it is derived, which con-

clusions can be drawn regarding aPS SW architecture in case 

the respective patterns are present or absent in the SW (Step 

(3), Fig. 3). The results were developed by analysing the SW 

architecture of five use cases of machine and plant manufac-

turing applications in combination with industrial and aca-

demic expert discussions. 

 

Fig. 3. Positioning pattern analysis in the context of influenc-

ing factors on SW architecture in aPS 

Central Unit 

The presence of Central Units indicates high reusability and 

standardized interfaces of the called POU. Hence, the exist-

ence of the pattern is usually desirable and implies mature 

structures in the SW architecture. Moreover, Central Units of-

ten indicate that so-called infrastructural tasks are organized 

centrally. Infrastructural tasks represent implementation parts, 

which fulfil basic tasks that are not part of the application SW 

of the machine, e.g., error handling or change of operation 

modes. However, the existence of the pattern is not sufficient 

to indicate what kind of infrastructural task the respective SW 

part executes. Thus, to specify the role of the respective Cen-

tral Unit, an annotation of the task type implemented by the 

called centre POU and by the calling ones is needed. In one of 

the analysed use cases, e.g., several drive components use the 

same alarm function. If data is mainly exchanged via global 

variables, the Central Unit could be a reference to a central da-

tabase in which, e.g., a certain recipe is stored. Overall, a large 

proportion of Central Units is expected to indicate well modu-

larized SW architecture.  

Based on the experts’ experience, it is exceptionally rare that 

no Central Unit appears in the SW. A lack of the pattern may 

indicate that infrastructure tasks are not implemented 

with/through/via/in reusable library modules, but rather decen-

trally in the respective application modules or outsourced to 

separate, non-reused modules. This prevents recurring, similar 

functionalities from being made reusable and hence, with re-

gard to the SW architecture, it can be concluded that the SW 

is not modularized in a function-oriented way. Moreover, the 

absence indicates a lack of planned reuse with library modules.  

Tree 

The Tree Pattern is usually an indicator for a hierarchical mod-

ularization approach oriented towards the hardware structure. 

Commonly, there are modules controlling machines or plant 

parts, which then call modules controlling standard drives. Un-

derneath the standard drives, usually auxiliary components are 

called. Preceding interviews in industry, see Vogel-Heuser et 
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al. (2017), have sh own that the control logic on higher archi-

tectural levels, which specifies, e.g., when which actuator will 

be activated, often differs and can, therefore, not be reasonably 

standardized. Contrary, at the lower levels there are often 

standard components such as sensors or drives that are reused 

in various applications and are, therefore, commonly standard-

ized. Hence, Trees often end in Central Units. The strict distri-

bution of functionality to separate branches enables reuse of 

individual branches, i.e. parts controlling certain sub-parts of 

machines – in case the structure is not broken up due to IDE 

among the POUs. To specify the SW architecture based on the 

identified Tree patterns, further information is needed regard-

ing the tasks, which are located on the respective call levels 

(cf. Fig. 1) to derive, which functionalities (application- or in-

frastructure-related) are implemented in a hierarchical way. 

The absence of the Tree pattern either indicates flat SW hier-

archies or long chains of single calls. Unless the applications 

Tab. 1.  Classification and formalization of SW patterns according to pattern criteria (abbreviations: HW = hardware, 

Compa = Compatibility, Compr = Comprehensibility, Main = Maintainability, Mat = Maturity of SW architecture, Mod 

= Modularity, Per = Performance, Re = Reusability, Rel = Reliability). All listed patterns belong to category “Structural”. 

 

Metric patterns

Pattern name Central Unit Tree Cornflower Cuckoo Uniform Complexity

Pattern type

Pattern based on data 

exchange

Pattern based on data 

exchange

Pattern based on data 

exchange

Anti-Pattern based on 

data exchange

Pattern based on module 

size/complexity

Scope

Standardizing of 

recurring functionailites 

to avoid double 

implementation

Separation of control 

logic and standardized 

functionality, 

hierarchical, HW-

oriented SW structure

Reusable POU groups to 

control recurring HW 

parts

Goal: Software should 

not contain Cuckoo 

patterns

If present: Hint for 

hidden dependencies

Divide monolithic SW 

into modules with 

appropriate 

size/complexity

One POU that 

implements a recurring, 

standardizable 

functionality is called 

by several others

POU call graph for 

controlling the machine 

behaviour resembles 

Tree structure 

(branching)

One POU comprising 

application specific 

parts calls many other 

(library) POUs

Data exchange between 

POUs in IDE view but 

no data exchange in 

DDE view

Scope/complexity of all 

POUs is nearly the same

Associated automation 

functions

Infrastructural tasks 

(HMI, Alarm, …)

Library POUs (e.g. 

control of standard 

drive)

Control of system 

behaviour (whole 

machines on higher 

levels, sensors and 

drives on lower levels)

Depending on the 

granularity: control of 

entire stations or control 

of drive groups

No direct correlation 

with certain automation 

functions

No direct correlation 

with certain automation 

functions

Parameters for formal 

description 

(# = number of)

ID node  = ID of nodes in  

call graph

c in = #incoming calls

c in,min  = minimum 

number of incoming 

calls

ID node 

l node = call level of the 

respective POU

c in = 1

b = number of branches

ID node

c out = # outgoing calls

c out,min  = minimum 

number of outgoing calls

ID node

#IDE edge  = # indirect 

data exchange per edge

#DDE edge  = # direct 

data exchange per edge 

with DIE

ID node

s node = metric result for 

size/complexity per 

node

Expected Advantage 

regarding SW quality 

attributes

(if pattern is used / 

anti pattern is not 

used)

+ Mod  ↑

+ Re  ↑

+ Mat  ↑

+ Mod  ↑, Compr  ↑:  

HW-oriented 

modularization

+ Re  ↑: reuse of tree 

branches

+ Mod  ↑, Re  ↑: 

potential for deriving 

new library modules 

based on the called 

POUs

+Compa  ↑: 

uncomplicated 

rearrangement of softare 

parts

+ Mod ↑, Mat ↑: well 

thought-out data 

exchange

+ Re ↑: reuse of SW 

parts not hindered by 

hidden dependencies

+ Compr ↑

+ Rel ↑:  decrease risk 

of errors

Mod ↑: well thought-

out, modular SW (no 

monolithic SW), no 

historically grown SW

+ Compr ↑

Expected 

Disadvantage 

regarding SW quality 

attirbutes

(if pattern is used / 

anti pattern is not 

used)

- Mod  ↓: depending on 

the functionality a lot of 

information from callers 

might be required → 

increasing data 

exchange

- Compa  ↓: changes to 

central unit may lead to 

many adaptations in 

calling POUs

- Main  ↓: issues 

regarding functions 

which do not fit into the 

HW hierarchy, e.g. error 

handling functions which 

must access nformation 

from different levels

- Mod  ↓: risk of high 

amount of data exchange 

between different 

cornflowers if too HW 

oriented and neglect of 

process logic

- Re  ↓: wrong cut 

between application 

specific and 

standardized levels → 

high degree of clone & 

own in cornflower

- Mod  ↓: POU 

interfaces to other POUs 

might increase if all data 

exchange is made direct 

and increased number of 

calls, if POU needs to 

access one variable 

value from another 

- Per  ↓: increasing 

amount of calls resulting 

in increased cylce time

- Mod  ↓: too fine-

grained level of 

modularity decreases 

comprehensibility

- Overall SW quality  ↓: 

Optimizing SW 

modularity towards 

individual metric values 

can lead to other 

characteristics of the 

SW being neglected, 

e.g. the program runtime

Solution

      Standardized 

functionality

      Application-specific 

SW parts

     both options 

possible

Data exchange patterns

IDE/ DDE
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are particularly small, and thus flat hierarchies are appropriate 

(which is rather rare due to the scale of industrial applications), 

this program structure hampers comprehensibility and main-

tainability. Thus, the tree pattern’s absence usually indicates 

weaknesses regarding SW modularization and architecture. 

Cornflower 

Since aPS SW is dependent on the controlled hardware, Corn-

flowers are often the result of certain requirements resulting 

from the mechatronic nature of the overall system. For safety 

reasons, e.g., only the area visible to the operator may be 

started from a console, which is usually implemented by a 

Cornflower pattern controlling the drive POUs from a higher 

level. The experts agreed that Cornflowers often indicate mod-

ule groups of different granularity, e.g. entire stations or indi-

vidual drives. Commonly, the nodes of the pattern jointly im-

plement a certain sequence which can be considered detached 

from the rest of the machine, whereby the application-specific 

parts of the implementation are usually encapsulated on higher 

level. In this case, the Cornflower represents a reusable unit 

with certain functionality, whereby the control of sensors and 

actuators is often implemented on the lower levels using li-

brary modules and the logic within the centre node can be 

adapted according to the application. The centre POU often 

shows standardized interfaces, whereas the called devices are 

often suitable for the definition of reusable library modules. 

However, to enable a detailed analysis of the SW architecture, 

information regarding the type of functionality implemented 

by means of the respective Cornflower is required. If, e.g., er-

ror management is implemented using a Cornflower, it can be 

concluded that the error reaction is passed through from top to 

bottom and then group alarms are formed at the lower level.  

In many cases, the entry point into the SW of a machine is 

implemented in the form of a Cornflower, see Vogel-Heuser 

et al. (2015), i.e. a PRG, which then calls other POUs. Hence, 

the absence of Cornflowers is very unusual, but could be an 

indication that the process does not allow for encapsulating 

functionality by distributing it among multiple POUs.  

Cuckoo 

According to the definition of Brown (1998), the Cuckoo pat-

tern represents an anti-pattern. The expert evaluation con-

firmed that the presence of Cuckoos often refers to weaknesses 

in the SW architecture: IDE is critical, as it creates connections 

between POUs that may not have been intended in the original 

structure of the programmer, especially in case these connec-

tions are not visible in the DDE view. Therefore, the pattern 

often hints at risky parts regarding modularization. 

The absence of the Cuckoo pattern indicates well thought-out 

and structured SW, which is a key prerequisite for modulari-

zation. However, this case is barely found in reality. If the pat-

tern is present, it has to be differentiated which amount of data 

is exchanged via global variables and how many Cuckoos can 

be found in the overall SW. It also has to be considered 

whether the exchange of information via global variables is 

beneficial compared to a solution with DDE. Overall, it can be 

concluded that the Cuckoo pattern usually indicates a defective 

SW architecture, but individual cases must be differentiated 

regarding the number of Cuckoos, the amount of data ex-

changed and the intention behind using global variables. Gen-

erally, Cuckoo patterns increase the risk of errors as the SW 

does not follow the rule of explicit interfaces, see (Meyer, 

1997), which is a prerequisite for modularity. However, for 

some applications, IDE is required to avoid an “inflation” of 

interfaces leading to increased cycle times. Thus, even if a SW 

architecture without Cuckoos seems to be ideally modularized, 

this may not be suitable for efficient debugging and mainte-

nance or to fulfil hard real-time requirements, if, e.g., the com-

puting load is too high. The presence of the pattern should 

therefore not be classified in advance as a weakness in the ar-

chitecture. For definite conclusions, it is required to annotate 

if an identified Cuckoo pattern is intended (and why) or not. 

Uniform Complexity 

Monolithic SW is difficult to maintain and to comprehend, 

thus it is reasonable to distribute functionality between differ-

ent POUs that exchange data with each other. The choice of a 

suitable POU granularity is a compromise: small POUs are of-

ten easier to standardize, resulting in better reusability but also 

in POUs exchanging a lot of data thus the rule of small inter-

faces, see Meyer (1997), is violated. In contrast, larger POUs 

often have smaller interfaces (less  data exchange), but tend to 

be less reusable, see Maga et al. (2011). Generally, for reasons 

of clarity and maintainability uniform POU sizes are desirable. 

In case complexity is distributed in a uniform way, it can be 

assumed that the architecture is well thought-out and hence, 

the SW is not affected by typical aPS problems such as histor-

ically grown SW due to using Copy, Paste and Modify. How-

ever, it has to be considered whether the chosen granularity is 

appropriate for the application, and, naturally, the complexity 

is HW-dependent meaning that differences cannot be avoided 

completely, but should be kept to a minimum. 

An absence of the pattern indicates that the complexity is not 

evenly distributed among the POUs and, hence, a reconsidera-

tion of the functionality distribution among the modules might 

be beneficial. Moreover, the absence of the Uniform Complex-

ity pattern can be a hint that the SW is not modularized ori-

ented towards the complexity of POUs or towards the scope of 

encapsulated functionality. Additional data from the user con-

cerning the applied modularization approach, e.g. whether the 

SW is organized towards the hardware, is needed.  

4. PROTOTYPICAL IMPLEMENTATION 

An automated pattern identification is a key prerequisite to use 

pattern analysis in an industrial workflow. Hence, a prototypi-

cal implementation (cf. Step (1) in Fig. 2) using SPARQL Pro-

tocol and RDF Query Language (SPARQL), i.e. a graph-based 

query language, see W3C (2013) is proposed. A SPARQL 

query comprises three elements, i.e. the namespace definitions 

that are used for the query, the identifier of the query type, and 

the pattern to be matched. The SPARQL queries are applied to 

graph-based code representations based on the Dependency 

Model of Schneider Electric, see Feldmann et al. (2016), 

which allows the representation of characteristics of an IEC 

61131-3 project with nodes and edges. The prototypical imple-

mentation comprises the identification of Cornflowers and 
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Central Units in the DDE view. To automatically identify both 

patterns, the following algorithms were implemented: 

Currently, the implementation does not include a possibility 

for the programmer to enter additional information, but some 

options were considered in joint brainstorming sessions with 

industry experts, such as asking the user to annotate details re-

garding the intention behind the identified patterns by means 

of a Graphical User Interface or by providing information such 

as programming guidelines or naming conventions by means 

of additional files that can be read by the implementation. 

5. EVALUATION: INDUSTRIAL EXAMPLE PROJECT 

The proposed approach (cf. Fig. 2) is evaluated in two steps: 

First, the automated pattern identification by means of 

SPARQL queries (see Section 4) is applied to an IEC 61131-3 

project controlling a showcase demonstrator. Then, it is vali-

dated by means of manual analysis whether the implemented 

functionality of the identified patterns meets the expectations 

formulated in Tab. 1. Second, the occurrence of Central Units 

and their percentage share in real machine and plant control 

software is manually analysed for six industrial PLC projects. 

The demonstrator used for the first part of the evaluation rep-

resents a robot system serving beverages to users. The ana-

lysed project comprises 18 PRGs, 119 FBs, and 75 FCs. The 

execution of the project is initiated by the MainMachine PRG 

which calls three sub-programs. For identifying Cornflowers 

and Central Units in the example projects, the parameters 

cout,min and cin,min are set to ten.  

By applying the prototypical implementation to the example 

project, 19 Cornflowers are identified using SPARQL queries 

and analysed manually. As expected, nine of the ten nodes 

with most outgoing calls are PRGs. Moreover, all identified 

Cornflowers belong to the application-specific part of the pro-

ject, which corresponds to the expectations. 

Eight of the identified Cornflowers are also detected when ex-

ecuting the query for Central Units, i.e. these program parts 

have at least ten outgoing and ten ingoing calls. This observa-

tion confirms the assumption that Cornflowers often represent 

a reusable POU implementing a specific functionality, which 

is then called by other modules. In the case of the analysed 

example project, the elements that fulfil both the criteria of a 

Cornflower and a Central Unit are mainly PRGs implementing 

application-specific tasks. One of the identified PRGs (PRG1), 

e.g., controls seven axes of the machine for serving trays to the 

user. In total, 151 outgoing calls were counted for PRG1. On 

the other hand, the MainMachine PRG node and the corre-

sponding sub-nodes call PRG1 47 times, but do not call the 

axes controlled by it. Hence, PRG1 represents a central inter-

face to access the axis control of the robot system (cf. Fig. 4). 

The POUs called by PRG1, i.e. FBs controlling the axes, rep-

resent instances of a library FB and, therefore, the assumption 

is confirmed that the called POUs of a Cornflower are or at 

least have the potential for reusable library modules. Similar 

observations were made for the other Cornflowers, which also 

meet the definition of a Central Unit. Hence, in the scope of 

the investigated exemplary project, the assumptions regarding 

the interpretation of Cornflowers can be confirmed.  

 
Fig. 4. Call graph extract to illustrate the search algorithm for 

Central Units (green, dotted lines) and Cornflowers (blue, con-

tinuous lines) in  showcase demonstrator PLC project  

In total, 32 Central Units were identified. Based on the applied 

naming conventions, it is apparent that 19 of the Central Units 

fulfil tasks for web visualization applications, three fulfil diag-

nosis tasks, and one implements exception handling. Hence, 

half of the identified Central Units implement infrastructural 

tasks, which is in accordance to the assumptions of the experts. 

The called POUs are mainly reusable POUs, which are either 

generated or library modules. This also supports the experts’ 

assumptions. In total, the investigated project shows a well 

thought-out, mature architecture, which is also indicated by the 

high number of Central Units in the SW. Hence, the assump-

tions regarding the presence of Central Units could be con-

firmed for the example project.  

In the second step of the evaluation, the formalized pattern de-

scription (cf. Tab. 1) was used to manually identify Central 

Units in six real industrial PLC SW projects controlling ma-

chines or plants by looking at the call graphs. Depending on 

the number of POUs in the considered projects, different em-

piric threshold values for cin,min are proposed (cf. Tab. 2): 

Tab. 2. Distribution of Central Units (CU) in the analysed in-

dustrial PLC SW projects  

Project #CU cin,min #POUs % of CU 

1 10 10 258 3,8% 

2 2 7 124 1,6% 

3 6 10 168 3,5% 

4 1 7 133 0,75% 

5 3 7 100 3% 

6 3 7 102 2,9% 

The manual analysis showed that Central Units occur in each 

of the analysed industrial projects. A high proportion of Cen-

tral Units indicates that more functionality is encapsulated in 

reusable POUs, and can thus be an indicator of a superior SW 

modularization. Hence, the resulting criteria and formalization 

of the patterns (cf. Tab. 1) in combination with the derived pat-

tern interpretation (cf. Section 3.2) are the basis for a holistic 

PLC SW architecture assessment. 

#Cornflowers 
for IDnode in project 

 count outgoing calls as cout 

 return if (cout > coutmin - 1) 

#Central Units 
for IDnode in project 

 count incoming calls as cin 

 return if (cin > cinmin - 1) 
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6. CONCLUSION AND OUTLOOK 

The paper describes an approach to use pattern analysis for SW 

modularity and architecture evaluation by providing criteria 

for classifying and formalizing typical aPS SW patterns. Fur-

thermore, the presence or absence of patterns was interpreted 

regarding SW architecture. It was discussed with industrial ex-

perts up to which limit information can be obtained from pure 

code analysis and which additional information is required 

from the user for a holistic architecture evaluation. A prototyp-

ical implementation for the automatic identification of Corn-

flowers and Central Units in aPS SW projects was developed 

to evaluate industrial example projects and to validate the con-

siderations regarding pattern interpretation. Additionally re-

quired information was analysed, e.g. the applied naming con-

ventions, but so far only manually or by discussions with pro-

grammers.  

Overall, the results of this paper lay the foundation for a com-

prehensive assessment of modularity in the context of aPS SW 

architecture. Nevertheless, further research is required to im-

plement pattern-based modularity assessment in large-scale in-

dustrial applications. To annotate additional information, e.g., 

the implementation of a user input mask that is intuitively un-

derstandable will be investigated to extract certain knowledge 

from the programmers’ minds to automate not only identifica-

tion of patterns but also their interpretation. Also, current chal-

lenges like OO programming will be addressed in future work. 

Moreover, the investigation of different ways of data exchange 

within and between SW parts implementing coherent automa-

tion functions, such as, e.g., fault handling, HMI linkage, op-

eration mode handling, or application-specific functionalities 

will be investigated to enlarge the derived SW patterns. Also, 

research will be done on how patterns can be described and 

formalized more precisely using appropriate quality and com-

plexity metrics to measure characteristics of involved POUs. 
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