

Formalization of Design Patterns and Their Automatic Identification in PLC

Software for Architecture Assessment

Eva-Maria Neumann*, Birgit Vogel-Heuser*, Juliane Fischer*, Felix Ocker*, Sebastian Diehm**, Michael Schwarz**

*Technical University of Munich, Institute of Automation and Information Systems, Garching, Germany

e-mail: {eva-maria.neumann | vogel-heuser | juliane.fischer | felix.ocker }@tum.de

**Schneider Electric Automation GmbH, Marktheidenfeld, Germany

e-mail: {sebastian.diehm | michael.schwarz}@se.com

Abstract: Due to current trends in automation technology such as mass customization and an increasing

variety of products, control software (SW) in automated Production Systems (aPS) is becoming increas-

ingly complex. Thus, the need for suitable modularization strategies as a prerequisite for planned reuse

increases. In classical high-level language programming, frequently recurring problems are often solved

through reusable design patterns. In the control SW development of aPS, however, this approach is still

not widely spread. Hence, this paper investigates how design patterns can be used for evaluating modularity

in the context of control SW architecture by proposing criteria for classifying and formalizing patterns in

aPS SW structure. On that basis, a prototypical implementation is proposed to evaluate the concept and to

enable an automated pattern identification and interpretation in an industrial context.

Keywords: Embedded computer control systems and applications, Logical design, physical design, imple-

mentation of embedded computer systems, Programmable logic controllers

1. INTRODUCTION

Automated Production Systems (aPS) are complex mecha-

tronic systems that face increasingly demanding challenges,

such as global competition and new technologies. As a result,

the development of control software (SW) in aPS is subject to

great time and cost pressure, leading to uncontrolled reuse

strategies such as Copy, Paste & Modify, which hamper mod-

ularized SW architectures. However, numerous experts from

industry and academia agree that modularity is a key prerequi-

site for high SW quality and efficient development processes.

To enable modularity and systematic reuse of SW, computer

science has promising approaches like object-oriented (OO)

programming or reuse of design patterns, which, however,

have so far hardly made their way into automation technology.

Previous work (see Fuchs et al. (2014)) has already identified

design patterns in industrial aPS SW, but detailed research on

how to formalize these patterns to assess modularity in the

scope of a holistic SW architecture analysis is still lacking.

Therefore, the main contribution of this paper is an approach

for a comprehensive architecture analysis of aPS control SW

using automated SW pattern identification. Based on criteria

to describe and formalize typical structural patterns in aPS

SW, an implementation is introduced to evaluate the concept

and to enable automatic pattern identification in industrial SW.

To assess SW architecture, the influence on modularity of the

patterns’ presence and absence is discussed. Besides, addi-

tional data not emerging from code analysis, but required for a

holistic architecture evaluation, is identified.

The remainder of the paper is structured as follows: Section 2

presents the state of the art in the field of SW architecture and

software patterns. Next, Section 3 describes the method for us-

ing design patterns to assess aPS SW modularity. Section 4

introduces a prototypical implementation to evaluate the con-

cept. The evaluation results are discussed in Section 5. The pa-

per closes with a summary and outlook in Section 6.

2. STATE OF THE ART: SW ARCHITECTURE IN APS

This Section presents architecture definitions from computer

science, architectural constraints of aPS and patterns in aPS.

2.1 Software Architecture in Computer Science

In computer science, several definitions of SW architecture are

available. Reussner et al. (2019) e.g., describe SW architecture

by “the general structure of a system, usually expressed in

components, interfaces, and their interconnection”. Meyer

(1997) identified flexible system architectures as a crucial pre-

requisite to ensure extendibility and reusability. These archi-

tectures are characterized by “autonomous elements connected

by a coherent, simple structure”, i.e. modules. Cámara et al.

(2017) describe SW architecture by means of structural con-

straints (e.g., predefined connections between components)

and a set of concrete architectural element definitions (e.g., in-

stances of components to realize the architecture). These ap-

proaches represent only an extract of the work on evaluating

and classifying SW architecture in computer science. How-

ever, in the field of aPS, SW architecture has to meet different

requirements due to fundamentally different boundary condi-

tions. Hence, the considerations above cannot be transferred

one-to-one to SW architecture in aPS.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 7917

2.2 Software Architecture in automated Production Systems

To structure the control SW architecture of aPS into reusable

parts, the standard IEC 61131-3 proposes Program Organiza-

tion Units (POUs) to encapsulate functionality and enable re-

use. POUs are either Functions (FC) that return the same out-

put value for the same input values, Function Blocks (FB) that

have an internal data storage and must be instantiated for use,

and Programs (PRG) that describe a control function sequence

and usually form the head of the application program. Usually,

aPS are controlled by Programmable Logic Controllers

(PLC), which are characterized by a cyclic program execution

with fixed cycle times to ensure process stability. PLCs are

mainly programmed in accordance to the IEC 61131-3 stand-

ard that comprises three graphical and two textual languages.

Vogel-Heuser et al. (2015) identified five architectural levels

in aPS SW each containing SW modules controlling a certain

area of a machine or plant, ranging from plant modules con-

trolling whole production plants to basic and atomic basic

modules reading individual sensors or controlling actuators

that cannot be decomposed any further. In this context and

within this paper, the term module refers to an individual POU

in the PLC control SW (cf. Fig. 1).

Fig. 1. Fault handling in aPS SW identified in an industrial

case study, distributed to the five architectural levels identified

by Vogel-Heuser et al. (2015)

OO programming has proven as highly beneficial for the man-

agement of SW development tasks and for flexible, reusable

SW architectures. For selected runtime environments, tools

supporting the OO extension of IEC 61131-3 are available, see

Werner (2009). But, a survey with 68 companies from machine

and plant manufacturing revealed that 42% do not use OO IEC

61131-3, see Vogel-Heuser and Ocker (2018).

2.3 Architectural Patterns in automated Production Systems

According to Alexander (1979), a pattern in the context of the

architecture of buildings is defined as a “three-part rule, which

expresses a relation between a certain context, a problem, and

a solution”. The Gang of Four (GoF), see Gamma et al. (2011),

originally defined 23 design patterns as solution approaches

for recurring problems in OO programming and distinguish

between creational, structural and behavioural patterns. Con-

trary to desired design patterns, anti-patterns describe bad

practices causing development issues, but also include meth-

ods to transform SW development problems into opportuni-

ties, see Brown (1998).

Fantuzzi et al. (2011) developed a design pattern to transfer

UML models into IEC 61131-3 based control SW especially

considering characteristics of the packaging domain. Bonfè et

al. (2012) investigated the benefits of design patterns as refer-

ence examples for solving issues in aPS domain focusing on

OO programming. However, neither of the two approaches

evaluates the design patterns in regard to the SW architecture.

Fuchs et al. (2014) developed a method to visualize SW struc-

tures with a graphical representation comprising nodes and

edges (cf. line “solution” in Tab. 1). They distinguish between

direct data exchange (DDE) between POUs via calls and indi-

rect data exchange (IDE) by writing values into and reading

values from global variables. Fuchs et al. (2014) introduce two

independent views, i.e. a call graph for IDE and one for DDE.

They identified the following five patterns in industrial aPS

SW: The Tree pattern, where each POU in the pattern is called

by only one POU at a time via DDE. The Cornflower occurs

when one central POU calls several adjacent POUs. On the

contrary, a Central Unit occurs when multiple POUs call one

central POU. The Cuckoo pattern is usually an unwanted struc-

ture that occurs when POUs exchange data in the IDE view,

but not in the DDE view. Finally, the Uniform Complexity pat-

tern refers to a SW structure in which the complexity is evenly

distributed among the involved POUs. Although Fuchs et al.

(2014) have already manually evaluated these patterns via in-

dustrial PLC code analysis, they have neither evaluated the

overall SW architecture nor formalized the patterns to enable

their automatic identification. Fahimi Pirehgalin et al. (2019)

investigated how similarities in aPS SW can be found based

on the Central Unit pattern by Fuchs et al. (2014) to identify

parts in PLC SW variants, which seem suitable for planned re-

use, by comparing two projects and not considering other ar-

chitectural aspects.

So far, the patterns defined by Fuchs et al. (2014) still lack a

clear description using suitable criteria as a basis for formali-

zation. Sanz and Zalewski (2003) transferred the original def-

inition of design patterns to the domain of control engineering

and developed schemata to describe patterns but did not focus

on SW patterns to enhance modularity. Fay et al. (2015) fo-

cused on design patterns in the context of Non-Functional Re-

quirements (NFR) of aPS and defined categories for describing

function and deployment patterns including the application

context, the solution, and advantages/disadvantages of using a

specific pattern. The categories of Fay et al. (2015) have

proven to be useful for accurately describing patterns and are,

therefore, adopted in the concept part of this paper to describe

and formalize structural SW patterns.

3. CONCEPT OF UTILIZING PATTERNS TO ASSESS

aPS SOFTWARE ARCHITECTURE

This section presents influencing factors on aPS SW architec-

ture and, subsequently, describes how design patterns can be

used as indicators for aPS SW architecture and modularity.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7918

3.1 Influencing Factors of aPS Software Architecture

As a preliminary work to understand aPS SW architecture, it

was first examined which factors affect architecture and how

these influences are related. For this purpose, a literature

search was first conducted, which was then adapted and ex-

tended based on expert feedback from the field of industrial

automation. In this way, the following eight main categories of

influencing factors on aPS SW architecture were identified:

Company-specific Factors

Based on the results of three comprehensive industrial surveys

by Vogel-Heuser et al. (2017) and Vogel-Heuser and Ocker

(2018), it could be observed that SW architecture is highly de-

pendent on individual company-specific constraints such as

the location(s) of the company or the educational background

of engineers or technicians.

Type of Automated Processes

Different process types require different SW architectures.

Within the process domain, e.g., continuous processes are pre-

dominant leading to strong dependencies and hampered mod-

ularity. Contrary, discrete processes, which occur, e.g., in the

logistics domain, are characterized by universal, well-defined

interfaces supporting a modular, reusable SW architecture.

Software Engineering Process

Dependent on factors like the applied reuse strategies or size

of development teams, different types of architectures are ben-

eficial. In some companies, e.g., SW is developed by small

teams enabling immediate exchange, whereas larger compa-

nies employ more than hundred application engineers in dif-

ferent groups leading to a higher need for a clear structure of

the SW architecture, as there may not be a direct exchange be-

tween the project team members.

Boundary Conditions from other Disciplines

aPS are mechatronic systems and, therefore, SW architecture

is also dependent on constraints from electrics/electronics and

mechanics. In case, e.g., a mechanical or electrical hardware

component is exchanged or replaced, this usually causes a

change of SW in the form of adapted or new POUs.

Characteristics of PLC Software

As aPS are usually controlled by PLCs, the SW architecture

has to cope with different boundary conditions compared to,

e.g., embedded systems SW from the field of computer science

due to restrictions in size (storage), calculation power or lim-

ited time for the control tasks to run the program in one cycle

to ensure process stability.

Data Exchange between Modules

Code analysis of several industrial companies has shown that

SW architecture depends to a large extent on the way data is

exchanged. If, e.g., a company only uses global variables to

exchange data, the possibilities of the architecture are more

limited, since complex architectures with many call levels

would cause a loss of clarity and control.

Modularity and Software Hierarchy Levels

In the field of batch control, ISA-88 specifies the hierarchy of

a company’s physical assets. Based on survey results, Vogel-

Heuser et al. (2017), corresponding SW hierarchies and vari-

ous strategies of modularization were observed in different

companies from the field of aPS leading to distinct SW archi-

tectures. In some companies, SW is modularized according the

physical structure of the machine layout. On the other hand,

companies use different approaches regarding the level of

standardization and reuse on different architectural levels.

Use of Agents, Service-oriented Architectures (SoA), CPPS

Depending on whether or not these types of SW structures are

implemented, different architectures occur, see Legat and Vo-

gel-Heuser (2015), e.g., SoA are characterized by high reusa-

bility, scalability, and interoperability and thus have positive

impact on SW architecture.

To prioritize which of the factors should be addressed first for

SW architecture assessment, it is necessary to identify the fac-

tors with the most critical influence on the aPS SW architec-

ture. Hence, an influence matrix as proposed by Vester (2007)

is applied to determine factors which have a high impact on

but are also strongly influenced by other factors as a first start-

ing point to evaluate architecture. Therefore, for each factor

the cumulative influence on as well as the influenceability by

all other factors were determined. The results were confirmed

by industrial experts. Subsequently, an influence matrix was

derived to classify the identified influencing factors into ac-

tive, passive, buffering and critical factors (cf. Fig. 2).

Fig. 2. Resulting Influence Matrix by comparing the eight

main influencing factors on SW architecture

Active factors located in the right lower corner are character-

ized by strong impact on other factors, but can hardly be

changed. Contrary, passive factors (left upper corner) have

only a small influence, but can easily be influenced. Buffering

factors (left lower corner) are characterized by low influence

and influenceability. Critical factors (right upper corner) rep-

resent the most strongly interconnected influencing factors.

Hence, these factors have a decisive impact on the system,

whereby they are also subject to strong influenceability. As it

is apparent from Fig. 2, Modularity and hierarchy levels rep-

resent the most critical influencing factor on aPS SW architec-

ture. This result confirms findings from previous work by Vo-

Company-specific
factors

Type of automated
process

software
engineering

process

Boundary conditions
from other disciplines

Characteristics
PLC Software

Data exchange
between modules

Modularity and
hierarchy levels

Use of agents,
SoA, CPPS

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

C
u
m

u
la

ti
v
e
 i

n
fl
u
e
n
c
e

a
b

ili
ty

Cumulative influence

passive

activebuffering

critical

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7919

gel-Heuser et al. (2017) as well as the expectation of the in-

volved industrial experts who identified modularity as one of

the key challenges in the field of industrial automation.

3.2. Software Patterns as Indicators for Software Modularity

Structural SW patterns address influencing factors on modu-

larity including data exchange, interfaces between POUs, and

POU size. Hence, the starting point for architecture evaluation

is the identification and interpretation of typical aPS SW pat-

terns through static code analysis and expert knowledge. The

expert evaluations have shown that code analysis results are

often ambiguous when it comes to interpret how the use of a

particular pattern affects SW architecture, e.g. because the call

graph by itself does not show what functionality is imple-

mented with a particular pattern. Thus, additional input such

as naming conventions, programming guidelines or infor-

mation regarding the interaction of the controlled hardware is

required to check if the overall SW architecture is consistent.

For an effective use of pattern analyses in the context of a ho-

listic architecture assessment, it is first necessary to classify

the patterns to be examined based on suitable criteria. There-

fore, the criteria of Fay et al. (2015) are adopted (cf. Tab. 1):

The pattern type indicates whether the given structure is a pat-

tern or an anti-pattern and if it is characterized by data ex-

change or by other factors, such as the size or complexity of

the involved POUs. The pattern category indicates in which of

the GoF categories the pattern can be classified, whereby the

patterns to be examined in this paper are exclusively structural

patterns. The Solution shows the graphical representation of

the patterns and a short description. Moreover, it comprises in-

formation regarding which parts of the pattern comprise appli-

cation-specific or standardized SW parts. The associate auto-

mation functions describe for which typical functions in the

field of automation the respective pattern is suitable. To enable

an automated identification of the design patterns, several pa-

rameters are required to formally describe the patterns. Fi-

nally, the expected advantages and disadvantages regarding

SW quality attributes in case a pattern is used are included.

Fuchs et al. (2014) did not follow a formal pattern description

using appropriate categories but mainly focused on their

graphical representation. Therefore, each of the patterns iden-

tified by Fuchs et al. (2014) is enlarged, formalized and clas-

sified using the criteria described above based on expert

knowledge from the domain of aPS (cf. Tab. 1).

The implementation of an automated pattern identification (cf.

Step (1) in Fig. 3) is a crucial prerequisite to enable pattern

interpretation in aPS software and represents an important en-

largement of previous work (see Fuchs et al. (2014)). Details

regarding Step (1) are described in Section 4. In the following,

the conceptual part of the approach (cf. Step (2) and (3) in Fig.

3) is derived, i.e. the results from previous work (see Fuchs et

al. (2014)) are enlarged by formalizing and annotating infor-

mation to the design patterns to enrich the analysis of aPS SW

architecture (Step (2) in Fig. 3) and it is derived, which con-

clusions can be drawn regarding aPS SW architecture in case

the respective patterns are present or absent in the SW (Step

(3), Fig. 3). The results were developed by analysing the SW

architecture of five use cases of machine and plant manufac-

turing applications in combination with industrial and aca-

demic expert discussions.

Fig. 3. Positioning pattern analysis in the context of influenc-

ing factors on SW architecture in aPS

Central Unit

The presence of Central Units indicates high reusability and

standardized interfaces of the called POU. Hence, the exist-

ence of the pattern is usually desirable and implies mature

structures in the SW architecture. Moreover, Central Units of-

ten indicate that so-called infrastructural tasks are organized

centrally. Infrastructural tasks represent implementation parts,

which fulfil basic tasks that are not part of the application SW

of the machine, e.g., error handling or change of operation

modes. However, the existence of the pattern is not sufficient

to indicate what kind of infrastructural task the respective SW

part executes. Thus, to specify the role of the respective Cen-

tral Unit, an annotation of the task type implemented by the

called centre POU and by the calling ones is needed. In one of

the analysed use cases, e.g., several drive components use the

same alarm function. If data is mainly exchanged via global

variables, the Central Unit could be a reference to a central da-

tabase in which, e.g., a certain recipe is stored. Overall, a large

proportion of Central Units is expected to indicate well modu-

larized SW architecture.

Based on the experts’ experience, it is exceptionally rare that

no Central Unit appears in the SW. A lack of the pattern may

indicate that infrastructure tasks are not implemented

with/through/via/in reusable library modules, but rather decen-

trally in the respective application modules or outsourced to

separate, non-reused modules. This prevents recurring, similar

functionalities from being made reusable and hence, with re-

gard to the SW architecture, it can be concluded that the SW

is not modularized in a function-oriented way. Moreover, the

absence indicates a lack of planned reuse with library modules.

Tree

The Tree Pattern is usually an indicator for a hierarchical mod-

ularization approach oriented towards the hardware structure.

Commonly, there are modules controlling machines or plant

parts, which then call modules controlling standard drives. Un-

derneath the standard drives, usually auxiliary components are

called. Preceding interviews in industry, see Vogel-Heuser et

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7920

al. (2017), have sh own that the control logic on higher archi-

tectural levels, which specifies, e.g., when which actuator will

be activated, often differs and can, therefore, not be reasonably

standardized. Contrary, at the lower levels there are often

standard components such as sensors or drives that are reused

in various applications and are, therefore, commonly standard-

ized. Hence, Trees often end in Central Units. The strict distri-

bution of functionality to separate branches enables reuse of

individual branches, i.e. parts controlling certain sub-parts of

machines – in case the structure is not broken up due to IDE

among the POUs. To specify the SW architecture based on the

identified Tree patterns, further information is needed regard-

ing the tasks, which are located on the respective call levels

(cf. Fig. 1) to derive, which functionalities (application- or in-

frastructure-related) are implemented in a hierarchical way.

The absence of the Tree pattern either indicates flat SW hier-

archies or long chains of single calls. Unless the applications

Tab. 1. Classification and formalization of SW patterns according to pattern criteria (abbreviations: HW = hardware,

Compa = Compatibility, Compr = Comprehensibility, Main = Maintainability, Mat = Maturity of SW architecture, Mod

= Modularity, Per = Performance, Re = Reusability, Rel = Reliability). All listed patterns belong to category “Structural”.

Metric patterns

Pattern name Central Unit Tree Cornflower Cuckoo Uniform Complexity

Pattern type

Pattern based on data

exchange

Pattern based on data

exchange

Pattern based on data

exchange

Anti-Pattern based on

data exchange

Pattern based on module

size/complexity

Scope

Standardizing of

recurring functionailites

to avoid double

implementation

Separation of control

logic and standardized

functionality,

hierarchical, HW-

oriented SW structure

Reusable POU groups to

control recurring HW

parts

Goal: Software should

not contain Cuckoo

patterns

If present: Hint for

hidden dependencies

Divide monolithic SW

into modules with

appropriate

size/complexity

One POU that

implements a recurring,

standardizable

functionality is called

by several others

POU call graph for

controlling the machine

behaviour resembles

Tree structure

(branching)

One POU comprising

application specific

parts calls many other

(library) POUs

Data exchange between

POUs in IDE view but

no data exchange in

DDE view

Scope/complexity of all

POUs is nearly the same

Associated automation

functions

Infrastructural tasks

(HMI, Alarm, …)

Library POUs (e.g.

control of standard

drive)

Control of system

behaviour (whole

machines on higher

levels, sensors and

drives on lower levels)

Depending on the

granularity: control of

entire stations or control

of drive groups

No direct correlation

with certain automation

functions

No direct correlation

with certain automation

functions

Parameters for formal

description

(# = number of)

ID node = ID of nodes in

call graph

c in = #incoming calls

c in,min = minimum

number of incoming

calls

ID node

l node = call level of the

respective POU

c in = 1

b = number of branches

ID node

c out = # outgoing calls

c out,min = minimum

number of outgoing calls

ID node

#IDE edge = # indirect

data exchange per edge

#DDE edge = # direct

data exchange per edge

with DIE

ID node

s node = metric result for

size/complexity per

node

Expected Advantage

regarding SW quality

attributes

(if pattern is used /

anti pattern is not

used)

+ Mod ↑

+ Re ↑

+ Mat ↑

+ Mod ↑, Compr ↑:

HW-oriented

modularization

+ Re ↑: reuse of tree

branches

+ Mod ↑, Re ↑:

potential for deriving

new library modules

based on the called

POUs

+Compa ↑:

uncomplicated

rearrangement of softare

parts

+ Mod ↑, Mat ↑: well

thought-out data

exchange

+ Re ↑: reuse of SW

parts not hindered by

hidden dependencies

+ Compr ↑

+ Rel ↑: decrease risk

of errors

Mod ↑: well thought-

out, modular SW (no

monolithic SW), no

historically grown SW

+ Compr ↑

Expected

Disadvantage

regarding SW quality

attirbutes

(if pattern is used /

anti pattern is not

used)

- Mod ↓: depending on

the functionality a lot of

information from callers

might be required →

increasing data

exchange

- Compa ↓: changes to

central unit may lead to

many adaptations in

calling POUs

- Main ↓: issues

regarding functions

which do not fit into the

HW hierarchy, e.g. error

handling functions which

must access nformation

from different levels

- Mod ↓: risk of high

amount of data exchange

between different

cornflowers if too HW

oriented and neglect of

process logic

- Re ↓: wrong cut

between application

specific and

standardized levels →

high degree of clone &

own in cornflower

- Mod ↓: POU

interfaces to other POUs

might increase if all data

exchange is made direct

and increased number of

calls, if POU needs to

access one variable

value from another

- Per ↓: increasing

amount of calls resulting

in increased cylce time

- Mod ↓: too fine-

grained level of

modularity decreases

comprehensibility

- Overall SW quality ↓:

Optimizing SW

modularity towards

individual metric values

can lead to other

characteristics of the

SW being neglected,

e.g. the program runtime

Solution

 Standardized

functionality

 Application-specific

SW parts

 both options

possible

Data exchange patterns

IDE/ DDE

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7921

are particularly small, and thus flat hierarchies are appropriate

(which is rather rare due to the scale of industrial applications),

this program structure hampers comprehensibility and main-

tainability. Thus, the tree pattern’s absence usually indicates

weaknesses regarding SW modularization and architecture.

Cornflower

Since aPS SW is dependent on the controlled hardware, Corn-

flowers are often the result of certain requirements resulting

from the mechatronic nature of the overall system. For safety

reasons, e.g., only the area visible to the operator may be

started from a console, which is usually implemented by a

Cornflower pattern controlling the drive POUs from a higher

level. The experts agreed that Cornflowers often indicate mod-

ule groups of different granularity, e.g. entire stations or indi-

vidual drives. Commonly, the nodes of the pattern jointly im-

plement a certain sequence which can be considered detached

from the rest of the machine, whereby the application-specific

parts of the implementation are usually encapsulated on higher

level. In this case, the Cornflower represents a reusable unit

with certain functionality, whereby the control of sensors and

actuators is often implemented on the lower levels using li-

brary modules and the logic within the centre node can be

adapted according to the application. The centre POU often

shows standardized interfaces, whereas the called devices are

often suitable for the definition of reusable library modules.

However, to enable a detailed analysis of the SW architecture,

information regarding the type of functionality implemented

by means of the respective Cornflower is required. If, e.g., er-

ror management is implemented using a Cornflower, it can be

concluded that the error reaction is passed through from top to

bottom and then group alarms are formed at the lower level.

In many cases, the entry point into the SW of a machine is

implemented in the form of a Cornflower, see Vogel-Heuser

et al. (2015), i.e. a PRG, which then calls other POUs. Hence,

the absence of Cornflowers is very unusual, but could be an

indication that the process does not allow for encapsulating

functionality by distributing it among multiple POUs.

Cuckoo

According to the definition of Brown (1998), the Cuckoo pat-

tern represents an anti-pattern. The expert evaluation con-

firmed that the presence of Cuckoos often refers to weaknesses

in the SW architecture: IDE is critical, as it creates connections

between POUs that may not have been intended in the original

structure of the programmer, especially in case these connec-

tions are not visible in the DDE view. Therefore, the pattern

often hints at risky parts regarding modularization.

The absence of the Cuckoo pattern indicates well thought-out

and structured SW, which is a key prerequisite for modulari-

zation. However, this case is barely found in reality. If the pat-

tern is present, it has to be differentiated which amount of data

is exchanged via global variables and how many Cuckoos can

be found in the overall SW. It also has to be considered

whether the exchange of information via global variables is

beneficial compared to a solution with DDE. Overall, it can be

concluded that the Cuckoo pattern usually indicates a defective

SW architecture, but individual cases must be differentiated

regarding the number of Cuckoos, the amount of data ex-

changed and the intention behind using global variables. Gen-

erally, Cuckoo patterns increase the risk of errors as the SW

does not follow the rule of explicit interfaces, see (Meyer,

1997), which is a prerequisite for modularity. However, for

some applications, IDE is required to avoid an “inflation” of

interfaces leading to increased cycle times. Thus, even if a SW

architecture without Cuckoos seems to be ideally modularized,

this may not be suitable for efficient debugging and mainte-

nance or to fulfil hard real-time requirements, if, e.g., the com-

puting load is too high. The presence of the pattern should

therefore not be classified in advance as a weakness in the ar-

chitecture. For definite conclusions, it is required to annotate

if an identified Cuckoo pattern is intended (and why) or not.

Uniform Complexity

Monolithic SW is difficult to maintain and to comprehend,

thus it is reasonable to distribute functionality between differ-

ent POUs that exchange data with each other. The choice of a

suitable POU granularity is a compromise: small POUs are of-

ten easier to standardize, resulting in better reusability but also

in POUs exchanging a lot of data thus the rule of small inter-

faces, see Meyer (1997), is violated. In contrast, larger POUs

often have smaller interfaces (less data exchange), but tend to

be less reusable, see Maga et al. (2011). Generally, for reasons

of clarity and maintainability uniform POU sizes are desirable.

In case complexity is distributed in a uniform way, it can be

assumed that the architecture is well thought-out and hence,

the SW is not affected by typical aPS problems such as histor-

ically grown SW due to using Copy, Paste and Modify. How-

ever, it has to be considered whether the chosen granularity is

appropriate for the application, and, naturally, the complexity

is HW-dependent meaning that differences cannot be avoided

completely, but should be kept to a minimum.

An absence of the pattern indicates that the complexity is not

evenly distributed among the POUs and, hence, a reconsidera-

tion of the functionality distribution among the modules might

be beneficial. Moreover, the absence of the Uniform Complex-

ity pattern can be a hint that the SW is not modularized ori-

ented towards the complexity of POUs or towards the scope of

encapsulated functionality. Additional data from the user con-

cerning the applied modularization approach, e.g. whether the

SW is organized towards the hardware, is needed.

4. PROTOTYPICAL IMPLEMENTATION

An automated pattern identification is a key prerequisite to use

pattern analysis in an industrial workflow. Hence, a prototypi-

cal implementation (cf. Step (1) in Fig. 2) using SPARQL Pro-

tocol and RDF Query Language (SPARQL), i.e. a graph-based

query language, see W3C (2013) is proposed. A SPARQL

query comprises three elements, i.e. the namespace definitions

that are used for the query, the identifier of the query type, and

the pattern to be matched. The SPARQL queries are applied to

graph-based code representations based on the Dependency

Model of Schneider Electric, see Feldmann et al. (2016),

which allows the representation of characteristics of an IEC

61131-3 project with nodes and edges. The prototypical imple-

mentation comprises the identification of Cornflowers and

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7922

Central Units in the DDE view. To automatically identify both

patterns, the following algorithms were implemented:

Currently, the implementation does not include a possibility

for the programmer to enter additional information, but some

options were considered in joint brainstorming sessions with

industry experts, such as asking the user to annotate details re-

garding the intention behind the identified patterns by means

of a Graphical User Interface or by providing information such

as programming guidelines or naming conventions by means

of additional files that can be read by the implementation.

5. EVALUATION: INDUSTRIAL EXAMPLE PROJECT

The proposed approach (cf. Fig. 2) is evaluated in two steps:

First, the automated pattern identification by means of

SPARQL queries (see Section 4) is applied to an IEC 61131-3

project controlling a showcase demonstrator. Then, it is vali-

dated by means of manual analysis whether the implemented

functionality of the identified patterns meets the expectations

formulated in Tab. 1. Second, the occurrence of Central Units

and their percentage share in real machine and plant control

software is manually analysed for six industrial PLC projects.

The demonstrator used for the first part of the evaluation rep-

resents a robot system serving beverages to users. The ana-

lysed project comprises 18 PRGs, 119 FBs, and 75 FCs. The

execution of the project is initiated by the MainMachine PRG

which calls three sub-programs. For identifying Cornflowers

and Central Units in the example projects, the parameters

cout,min and cin,min are set to ten.

By applying the prototypical implementation to the example

project, 19 Cornflowers are identified using SPARQL queries

and analysed manually. As expected, nine of the ten nodes

with most outgoing calls are PRGs. Moreover, all identified

Cornflowers belong to the application-specific part of the pro-

ject, which corresponds to the expectations.

Eight of the identified Cornflowers are also detected when ex-

ecuting the query for Central Units, i.e. these program parts

have at least ten outgoing and ten ingoing calls. This observa-

tion confirms the assumption that Cornflowers often represent

a reusable POU implementing a specific functionality, which

is then called by other modules. In the case of the analysed

example project, the elements that fulfil both the criteria of a

Cornflower and a Central Unit are mainly PRGs implementing

application-specific tasks. One of the identified PRGs (PRG1),

e.g., controls seven axes of the machine for serving trays to the

user. In total, 151 outgoing calls were counted for PRG1. On

the other hand, the MainMachine PRG node and the corre-

sponding sub-nodes call PRG1 47 times, but do not call the

axes controlled by it. Hence, PRG1 represents a central inter-

face to access the axis control of the robot system (cf. Fig. 4).

The POUs called by PRG1, i.e. FBs controlling the axes, rep-

resent instances of a library FB and, therefore, the assumption

is confirmed that the called POUs of a Cornflower are or at

least have the potential for reusable library modules. Similar

observations were made for the other Cornflowers, which also

meet the definition of a Central Unit. Hence, in the scope of

the investigated exemplary project, the assumptions regarding

the interpretation of Cornflowers can be confirmed.

Fig. 4. Call graph extract to illustrate the search algorithm for

Central Units (green, dotted lines) and Cornflowers (blue, con-

tinuous lines) in showcase demonstrator PLC project

In total, 32 Central Units were identified. Based on the applied

naming conventions, it is apparent that 19 of the Central Units

fulfil tasks for web visualization applications, three fulfil diag-

nosis tasks, and one implements exception handling. Hence,

half of the identified Central Units implement infrastructural

tasks, which is in accordance to the assumptions of the experts.

The called POUs are mainly reusable POUs, which are either

generated or library modules. This also supports the experts’

assumptions. In total, the investigated project shows a well

thought-out, mature architecture, which is also indicated by the

high number of Central Units in the SW. Hence, the assump-

tions regarding the presence of Central Units could be con-

firmed for the example project.

In the second step of the evaluation, the formalized pattern de-

scription (cf. Tab. 1) was used to manually identify Central

Units in six real industrial PLC SW projects controlling ma-

chines or plants by looking at the call graphs. Depending on

the number of POUs in the considered projects, different em-

piric threshold values for cin,min are proposed (cf. Tab. 2):

Tab. 2. Distribution of Central Units (CU) in the analysed in-

dustrial PLC SW projects

Project #CU cin,min #POUs % of CU

1 10 10 258 3,8%

2 2 7 124 1,6%

3 6 10 168 3,5%

4 1 7 133 0,75%

5 3 7 100 3%

6 3 7 102 2,9%

The manual analysis showed that Central Units occur in each

of the analysed industrial projects. A high proportion of Cen-

tral Units indicates that more functionality is encapsulated in

reusable POUs, and can thus be an indicator of a superior SW

modularization. Hence, the resulting criteria and formalization

of the patterns (cf. Tab. 1) in combination with the derived pat-

tern interpretation (cf. Section 3.2) are the basis for a holistic

PLC SW architecture assessment.

#Cornflowers
for IDnode in project

 count outgoing calls as cout

 return if (cout > coutmin - 1)

#Central Units
for IDnode in project

 count incoming calls as cin

 return if (cin > cinmin - 1)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7923

6. CONCLUSION AND OUTLOOK

The paper describes an approach to use pattern analysis for SW

modularity and architecture evaluation by providing criteria

for classifying and formalizing typical aPS SW patterns. Fur-

thermore, the presence or absence of patterns was interpreted

regarding SW architecture. It was discussed with industrial ex-

perts up to which limit information can be obtained from pure

code analysis and which additional information is required

from the user for a holistic architecture evaluation. A prototyp-

ical implementation for the automatic identification of Corn-

flowers and Central Units in aPS SW projects was developed

to evaluate industrial example projects and to validate the con-

siderations regarding pattern interpretation. Additionally re-

quired information was analysed, e.g. the applied naming con-

ventions, but so far only manually or by discussions with pro-

grammers.

Overall, the results of this paper lay the foundation for a com-

prehensive assessment of modularity in the context of aPS SW

architecture. Nevertheless, further research is required to im-

plement pattern-based modularity assessment in large-scale in-

dustrial applications. To annotate additional information, e.g.,

the implementation of a user input mask that is intuitively un-

derstandable will be investigated to extract certain knowledge

from the programmers’ minds to automate not only identifica-

tion of patterns but also their interpretation. Also, current chal-

lenges like OO programming will be addressed in future work.

Moreover, the investigation of different ways of data exchange

within and between SW parts implementing coherent automa-

tion functions, such as, e.g., fault handling, HMI linkage, op-

eration mode handling, or application-specific functionalities

will be investigated to enlarge the derived SW patterns. Also,

research will be done on how patterns can be described and

formalized more precisely using appropriate quality and com-

plexity metrics to measure characteristics of involved POUs.

REFERENCES

Alexander, C. (1979), The timeless way of building, Center for

Environmental Structure series, Vol. 1, Oxford Univ.

Press, New York, NY.

Bonfè, M., Fantuzzi, C. and Secchi, C. (2012), “Design pat-

terns for model-based automation software design and im-

plementation”, CEP, Vol. 21 No. 11, pp. 1608–1619.

Brown, W.J. (1998), AntiPatterns: Refactoring software, ar-

chitectures, and projects in crisis, Wiley computer pub-

lishing, Wiley, New York.

Cámara, J., Garlan, D. and Schmerl, B. (2017), “Synthesis and

Quantitative Verification of Tradeoff Spaces for Families

of Software Systems”, ECSA 2017, Vol. 10475, pp. 3–21.

Fahimi Pirehgalin, M., Fischer, J., Bougouffa, S. and Vogel-

Heuser, B. (2019), “Similarity Analysis of Control Soft-

ware Using Graph Mining”, 17th IEEE Int. Conf. on In-

dustrial Informatics (INDIN), pp. 508–515.

Fantuzzi, C., Secchi, C. and Bonfè, M. (2011), “A Design Pat-

tern for translating UML software models into IEC 61131-

3 Programming Languages”, IFAC Proceedings Volumes,

Vol. 44 No. 1, pp. 9158–9163.

Fay, A., Vogel-Heuser, B., Frank, T., Eckert, K., Hadlich, T.

and Diedrich, C. (2015), “Enhancing a model-based engi-

neering approach for distributed manufacturing automa-

tion systems with characteristics and design patterns”,

JSS, Vol. 101, pp. 221–235.

Feldmann, S., Hauer, F., Ulewicz, S. and Vogel-Heuser, B.

(2016), “Analysis Framework for Evaluating PLC Soft-

ware: An Application of Semantic Web Technologies”,

IEEE Int. Symp. on Ind. Electronics (ISIE), pp. 1048–

1054.

Fuchs, J., Feldmann, S., Legat, C. and Vogel-Heuser, B.

(2014), “Identification of Design Patterns for IEC 61131-

3 in Machine and Plant Manufacturing”, IFAC Proceed-

ings Volumes, Vol. 47 No. 3, pp. 6092–6097.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (2011),

Design patterns: Elements of reusable object-oriented

software, 39th ed., Addison-Wesley, Boston.

Legat, C. and Vogel-Heuser, B. (2015), “An Orchestration En-

gine for Services-Oriented Field Level Automation Soft-

ware”, in Service Orientation in Holonic and Multi-agent

Manufacturing, Studies in Computational Intelligence,

Vol. 594, Springer, Cham, pp. 71–80.

Maga, C., Jazdi, N. and Göhner, P. (2011), “Reusable Models

in Industrial Automation: Experiences in Defining Appro-

priate Levels of Granularity”, IFAC Proceedings Vol-

umes, Vol. 44 No. 1, pp. 9145–9150.

Meyer, B. (1997), Object Oriented Software Construction, 2nd

Edition, Prentice Hall, New Jersey.

Reussner, R., Goedicke, M., Hasselbring, W., Vogel-Heuser,

B., Keim, J. and Märtin, L. (2019), Managed Software

Evolution, Springer International Publishing, Cham.

Sanz, R. and Zalewski, J. (2003), “Pattern-based control sys-

tems engineering”, IEEE Control Systems, Vol. 23 No. 3,

pp. 43–60.

Vester, F. (2007), Die Kunst vernetzt zu denken: Ideen und

Werkzeuge für einen neuen Umgang mit Komplexität ; ein

Bericht an den Club of Rome, Dtv, Vol. 33077, Dt.

Taschenbuch-Verl., Munich.

Vogel-Heuser, B., Fischer, J., Feldmann, S., Ulewicz, S. and

Rösch, S. (2017), “Modularity and architecture of PLC-

based software for automated production Systems: An

analysis in industrial companies”, JSS, Vol. 131, pp. 35–

62.

Vogel-Heuser, B., Fischer, J., Rösch, S., Feldmann, S. and

Ulewicz, S. (2015), “Challenges for maintenance of PLC-

software and its related hardware for automated produc-

tion systems: Selected industrial Case Studies”, 31st Int.

Conf. on Software Maintenance and Evolution (ICSME),

pp. 362–371.

Vogel-Heuser, B. and Ocker, F. (2018), “Maintainability and

evolvability of control software in machine and plant man-

ufacturing — An industrial survey”, CEP, Vol. 80, pp.

157–173.

W3C (2013), “W3C Recommentation - SPARQL 1.1 Proto-

col”, available at: https://www.w3.org/TR/2013/REC-

sparql11-protocol-20130321/ (accessed 13 August 2019).

Werner, B. (2009), “Object-oriented extensions for iec 61131-

3”, IEEE Industrial Electronics Magazine, Vol. 3 No. 4,

pp. 36–39.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7924

