
Accelerating Explicit Model Predictive
Control by Constraint Sorting ?

Juraj Holaza ∗, Juraj Oravec ∗, Michal Kvasnica ∗,
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Abstract: Explicit MPC represents one of the fastest ways of real-time MPC implementation.
As the explicit MPC policy is optimization-free in real-time control, its efficiency is determined
by solving a point location problem. This paper proposes the novel concept of accelerating
explicit MPC that significantly speeds up the real-time evaluation of the point location problem.
The introduced strategy has two layers: (i) an offline phase determines a smart order of the
regions to be explored, and (ii) an online phase removes further regions to be explored on the
fly based on the current value of the value function. The main advantage of layer (i) is that the
order is evaluated offline, therefore, it does not increase the real-time implementation of explicit
MPC. The implementation of layer (ii) slightly increases the real-time evaluation but leads to
further speed-up of the point location problem. As the proposed layers are based just on the
evaluation of some appropriate value function, the main benefit is that these layers are fully
applicable also for higher-dimensional systems. Although the accelerated explicit MPC variant
does not reduce the worst-case time of solving the point location problem, an extensive case
study demonstrates the efficiency of the proposed strategy.
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1. INTRODUCTION

Model Predictive Control (MPC) (Garćıa et al., 1989)
attracted considerable interest of both, academia and
industry, during the past three decades. As MPC provides
optimal control action taking into account a wide class
of constraints, and thanks to its robustness and ease
of tuning, MPC has become an alternative to PID and
unconstrained LQR control. Therefore, there has been
significant effort to formulate MPC in a way suitable
for implementation on embedded hardware. Although the
industrial applications of MPC originate in petrochemical
industries (Cai et al., 2014) for plants with relatively
slow dynamics, recent MPC formulations consider MPC
implementations for plants with much faster dynamics.
Distributed MPC (Wang and Ong, 2014) simplifies and
speeds up solving of the optimization problem, on the
other hand, there is still a need to solve the optimization
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problem during real-time control. The nonnegative-least-
squares-based method was introduced in Bemporad (2016)
to eliminate redundant constraints and to speed-up MPC
design.

Explicit MPC represents an effective alternative for MPC
implementation, especially, when hardware resources are
scarce (Bemporad et al., 2002a). This methodology is
based on offline pre-calculating an optimal feedback law
for all feasible initial conditions via exploiting paramet-
ric programming (Willner, 1967). For the type of MPC
problem treated here, the solution takes the form of a
piecewise affine (PWA) function defined over a polytopic
partition (Bemporad et al., 2002a). Online evaluation of
optimal control actions is then restricted only to a mere
function evaluation that can be carried out on low-level
control platforms without a need for an additional opti-
mization solver (see, e.g., Rauová et al. (2011) for use on
a programmable logic controller).

Explicit MPC arguably suffers from two shortcomings.
The first one regards the offline computation of the analyt-
ical solution, i.e., the explicit feedback law. It is known that
this task is computationally expensive and thus restricts
the usability of the explicit MPC strategies to small or
moderate-sized problems. Even though new techniques
have been proposed in the literature (Borrelli et al., 2010;
Kvasnica et al., 2015a; Gupta et al., 2011; Mönnigmann,
2019), the dimension of decision variables still has to be
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kept small. The second shortcoming arises, because identi-
fying the affine piece that is optimal for the current state,
the point location problem, may take as long as solving the
corresponding online optimization problem, even though
sophisticated approaches exist for it (Christophersen et al.,
2007; Tøndel et al., 2002; Herceg et al., 2013b; Baotić
et al., 2008). This paper aims to address the second issue.

Several approaches to solving the point location problem
exist. The simplest one is the sequential search algorithm
that traverses through regions until a region containing
the current state measurement is located. In Herceg et al.
(2013a) authors extend this concept by adding outer box
constraints for each region and exploiting them to perform
a prior check. In Borrelli et al. (2001) authors suggest
to discard the polytopic partition and evaluate optimal
control actions solely based on the PWA value function.
Binary trees, which were originally proposed around the
time the explicit law was first described (Tøndel et al.,
2002), are still competitive. The downside, however, of
this approach is that well-balanced binary search tree is
usually difficult to construct, especially, if the explicit
feedback law is complex. Needlessly to say, the main at-
tribute that increases the evaluation time in all of the
aforementioned techniques is the number of regions of
the analytical solution. Therefore, in order to accelerate
the point location problem, one can also consider apply-
ing advanced inner/outer approximation methods (Oravec
et al., 2013) or memory reduction techniques, e.g., Geyer
et al. (2008), Jones and Morari (2010), Holaza et al.
(2015), Bakaráč et al. (2018), to name a few.

In this paper, a novel acceleration technique of explicit
MPC feedback laws is proposed 1 . One can easily embed
the technique in a majority of the commonly used online
evaluation methods. This approach is motivated by the
work of Jost et al. (2017), where it was shown that
constraints known to be inactive can be removed from
the optimization problem to reduce its complexity. To
detect inactive constraints, Jost et al. (2017) use offline
calculated bounds for every constraint that represents the
smallest cost function value for which this constraint can
be active. Online, the cost function value is compared to
these bounds and if it drops below one or more bounds,
the corresponding constraints are detected to be inactive
and can be removed for future time steps. This idea of
using bounds for an auxiliary function is adopted and
transferred to the point location problem arising in explicit
MPC. Concretely, the aim is to calculate bounds offline to
identify the regions that form the solution over the feasible
set. Note, that the proposed strategy does not reduce the
worst-case time. However, it will be shown by means of
illustrative examples that the point location problem can
be accelerated even by a factor of three.

2. PROBLEM STATEMENT

Let polyhedron refer to a set that is defined by the
intersection of a finite number of halfspaces. A polyhedron
is called polytope if it is bounded. Let a finite number of
polyhedra R1, ...,Rs be abbreviated by R{1,...,s}.
1 The extended version of this work is available as a Technical
Note at: https://www.uiam.sk/assets/publication_info.php?id_

pub=2131.

The aim is to control linear discrete-time time-invariant
systems given as

x(k + 1) = Ax(k) +Bu(k), k ≥ 0, (1)

where x(k) ∈ Rn, u(k) ∈ Rm are the state and input
vectors at time k, respectively, and A, B have the obvious
dimensions. Assume that (A,B) is a controllable pair and
the system in (1) is subjected to linear constraints

x(k) ∈ X, u(k) ∈ U, ∀k ≥ 0, (2)

where X ⊂ Rn and U ⊂ Rm are compact convex sets
containing the origin in their interiors.

To regulate the system (1) to the origin, the optimal
control problem of the form

min
u(k), x(k+1),
k=0,...,N−1

‖xN‖2P +

N−1∑
k=0

(
‖xk‖2Q + ‖uk‖2R

)
(3a)

s.t. : x(k + 1) =Ax(k) +Bu(k), (3b)

x(k) ∈ X, u(k) ∈ U, k = 0, . . . , N − 1, (3c)

xN ∈ XN, (3d)

is considered for a given initial condition x(0) and matrices
P � 0, Q � 0, R � 0 with the obvious dimensions.
The terminal set XN ⊂ Rn is assumed to be a compact
and convex set that contains the origin in its interior.
Furthermore, assume that (3) has a solution for all initial
conditions x(0) from a useful set F ⊃ XN. Let U? =
(u?(0), . . . , u?(N − 1)) refer to the sequence of optimal
input signals for an arbitrary but fixed x(0) ∈ F. The
MPC-controlled system results from solving (3) on a
receding horizon and applying u?(0) in every time step.
The resulting feedback control law by is denoted by κ :
F → Rm, where κ(θ) ∈ Rm is equal to u(0) that results
from solving (3) for parametric constraint x(0) = θ. Note,
the optimal cost function (3a) is a Lyapunov function
for the closed-loop system if XN is the maximal set on
which the constrained problem (3) and the corresponding
unconstrained problem have the same solution, and P is
set to the solution of the discrete-time algebraic Riccati
equation for the unconstrained problem.

The feedback law κ : F→ Rm is known to be a continuous
piecewise affine (PWA) function on a partition of F into
polytopes (Bemporad et al., 2002b). More precisely, there
exist Fi ∈ Rm×n and fi ∈ Rm, i = 1, . . . , r such that

κ(θ) = Fiθ + fi if θ ∈ Pi, (4)

where Pi ⊂ Rn are bounded polytopes with pairwise
disjoint interiors such that F = ∪ri=1Pi, and r is number of
polytopes. Furthermore, the optimal value function, which
is denoted by J? : F → R, is convex, continuous, and
piecewise quadratic.

If the optimal feedback law (4) is known, the solution to
the optimal control problem (3) is found in two stages.
In the first step, for a given initial condition θ, an active
region Pi is determined such that θ ∈ Pi holds. In this
paper, the sequential search outlined in Algorithm 1 is
considered. In the second step, the corresponding affine
function κ(θ) = Fi?θ + fi? from (4) is evaluated yielding
the optimal feedback signal.

The objective of this paper is to accelerate the sequential
search Algorithm 1, i.e., to reduce the number of explored
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Algorithm 1 Sequential search point location problem.

Inputs: list of indices I, feedback law κ(θ) as in (4)
Output: index i? of the active region
for i ∈ I do

if θ ∈ Pi then
i? ← i
break

end if
end for

regions, via rearranging and reducing the set of indices I
to be considered.

Remark 2.1. The proposed strategy is not limited to the
formulation of (3), as the control law in (4) can be
obtained from (3) considering various MPC setups, e.g.,
robust explicit MPC for models with parametric and/or
additive disturbances (Kvasnica et al., 2015b); explicit
MPC for piecewise affine models (Cseko et al., 2015),
hybrid explicit MPC (Oberdieck and Pistikopoulos, 2015),
etc. This requires replacing the linear dynamics in (3b)
with an appropriate nonlinear model.

Setting up the binary tree-based search involves finding
an optimal (generally at most locally optimal) sequence of
halfspaces, a problem which can in general not be solved
to global optimality. A simple heuristics for speeding up
this problem would be to consider the halfspaces in the
two orders suggested here. This way one would have to
look for an optimal order of the halfspaces that define the
central LQR polytope first, then for an optimal order of the
halfspaces of the next layer of polytopes surrounding the
central one, and so on. The order by which the polytopes
are selected would again be induced by either of the two
methods used here. After all, this is only a heuristic, but
then the problem of setting up the binary tree always
involves some sort of heuristic.

3. ACCELERATING EXPLICIT MPC

The main bottleneck of the sequential search Algorithm 1
is that to allocate the active region θ ∈ Pi? one needs to
verify also regions Pi for all i ∈ I with i < i?. Obviously,
by avoiding exploration of some of these inactive regions,
the point location problem speeds up. Two techniques,
how to achieve this goal, are introduced in this section.
The basic idea is to calculate minimal/maximal values of
a support function V (θ), over each region Pi, and exploit
them to exclude redundant regions. It will be shown
that these techniques can be combined to even further
accelerate the search for the index i?. Both techniques are
based on the following assumption:

Assumption 3.1. Let V : F → R be a strictly convex
function. �

Note, the different functions V (θ) lead to various acceler-
ations.

3.1 Minimal Value Approach

Each region Pi of the optimal control law (4) is charac-
terized by the lowest value σi the optimal value function
attains on it. Since V is strictly convex on F by assump-

tion, it has a unique minimum on every Pi, i ∈ I. Let

di := min
θ∈Pi

V (θ), (5)

for every i ∈ I. Determining the bounds di is a tractable
problem, since a finite number of convex quadratic prob-
lems needs to be solved offline, i.e., before the runtime
of MPC. The cornerstone of the accelerating technique is
based on our first main result.

Lemma 3.2. Assume an explicit MPC law (4), a function
V (·) that satisfies Assumption 3.1 and di for all i ∈ I
are known. Let θ ∈ F be arbitrary. Then, for any i ∈ I,
V (θ) < di implies θ 6∈ Pi.

Proof. Since di is the global minimum of V (·) on Pi, there

exists no θ̃ ∈ Pi such that V (θ̃) < di.

The implementation of the proposed approach is formu-
lated in Algorithm 2. Specifically, at each sample instant,
the function V (·) is evaluated yielding a scalar σ(k). The
algorithm then traverses through indices i ∈ I verify-
ing the primal condition σ(k) ≥ di and the secondary
condition θ ∈ Pi until both of them are satisfied at the
same time. Algorithm 2 is, generally, more efficient than
Algorithm 1 as the primal condition decreases the number
of evaluated secondary conditions. Moreover, the primal
condition is much cheaper to compute than the secondary
one as only a scalar comparison is performed.

Algorithm 2 Sequential search algorithm with di.

Inputs: list of indices I, feedback law κ(θ) as in (4),
local minimizers di for all i ∈ I
Output: index i? of the active region
Initialization: compute σ(k) = V (θ)
for i ∈ I do

if σ(k) ≥ di then
if θ ∈ Pi then

i? ← i
break

end if
end if

end for

Now note that there exists a sequence of the indices

I := (i1, i2, . . . , ir), ij ∈ I, (6)

such that
di1 ≤ di2 ≤ · · · ≤ dir , (7)

i.e., let us rearrange the order of indices in I based
on the ascending values of minimizers di. Now recall
that (4) is a stabilizing controller that drives the system
to the origin. As a result, the first polytopes in the
sequence I occur more frequently in the point location
problem. Subsequently, the primal condition σ(k) ≥ di
becomes redundant and one can substitute Algorithm 2
by Algorithm 1 with I ← I.

By substituting I ← I in Algorithm 2 the number of scalar
comparisons can therefore be further reduced.

Remark 3.3. Assumption 3.1 admits a wide variety of
functions, but the function used for calculating the bounds
and the function used for evaluating a current cost function
value has to be the same and is denoted as V . Note,
however, that the structure of V (·) influences the efficiency
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of the proposed approach. For example, V (θ) = ‖θ‖22 is a
candidate that penalizes the distance of regions from the
origin. On the other hand, V (θ) ← J? minimizing (3a),
with J? a PWQ function, represents another suitable
candidate that takes into account the entire open-loop
behavior. Recall that J? requires an additional inner point
location problem to be evaluated as it is a PWQ function.
This problem, nevertheless, is an easy workaround if the
sorted list of indices I is used instead of I. Subsequently,
no additional computation is required in the online phase
of the point location problem.

3.2 Maximal Value Approach

The maximal value approach exploits the same principle
as the technique in the previous subsection. The difference,
however, is that here each region is associated with a local
maximizer di ∈ R that is computed via

di := max
θ∈Pi

V (θ), (8)

for all i ∈ I. The acceleration of this technique is then
based on the following Lemma.

Lemma 3.4. Assume an explicit MPC policy (4), local
maximizers di for all i ∈ I, parameter vector θ(k) ∈ F,
and a function V (·) satisfying Assumption 3.1 are given.
If V (θ(k)) > di then θ(k) /∈ Pi.

Proof. Follows directly from the proof of Lemma 3.2.

Remark 3.5. Notice that the optimization problem (8) is
no longer convex. There are two principal ways how to
solve the non-convex optimization problem in (8). The first
approach is based on vertex enumeration. It is suitable
for the modest complexity of the parametric optimization
problem in (3). The local maximizers di are computed
via evaluating V (·) at the vertices of Pi and by taking
the maximal value among them. However, such vertex
enumeration technique becomes quickly intractable for
higher dimensions. The second approach is global non-
convex optimization if, for some reason, the vertices cannot
be evaluated.

The implementation of Lemma 3.4 is straightforward. One
needs to modify the Algorithm 2 by substituting σ(θ) ≥ di
with σ(θ) ≤ di. Needlessly to say, the set of indices I can
be also a priori sorted with descending order

I := (k1, k2, . . . , kr), kl ∈ I, (9)

such that
dk1 ≥ dk2 ≥ · · · ≥ dkr . (10)

Subsequently, the Algorithm 2 boils down to the standard
sequential search Algorithm 1 with I ← I.

3.3 Bounded Value Approach

The bounded value approach combines both of our results
from Lemma 3.2 and Lemma 3.4 to achieve even greater
acceleration of the point location problem.

Lemma 3.6. Assume an explicit MPC policy (4), local
minimizers di and maximizers di for all i ∈ I, parameter
vector θ(k) ∈ F, and a function V (·) satisfying Assump-
tion 3.1 are given. If

dkl < V (θ(k)) < dij , (11)

P2P4

σ

P1P6 P3 P5 P7

V (θ)

Fig. 1. Illustrative example of the bounded value approach.

for some kl ∈ I and some ij ∈ I, then

θ 6∈ Pkl′ ∀kl′ ≥ kl, θ 6∈ Pij′ ∀ij′ ≤ ij .

Proof. By definition of dij in (5), V (θ(k)) < dij implies

θ 6∈ Pij . Since the order I implies V (θ(k)) < dij′ for

all ij′ ≤ ij , implies θ 6∈ Pij′ by the same argument.

The statements for the upper bounds dkl can be shown
accordingly.

The implementation of the proposed approach is com-
pactly formulated in Algorithm 3, where the restric-
tion (11) is simplified to V (θ(k)) ≤ di via exploiting the
ordered list I. The reason behind choosing the ascending
order I instead of I is that the controller drives the sys-
tem’s states to the origin. This means that the parameter
vector θ will converge to the terminal set that is indexed as
the first index in I. In such case, the Algorithm 3 requires
the fewest operations to determine the index of the active
region, i.e., i? = 1.

Algorithm 3 Bounded sequential search algorithm.

Inputs: list of indices I, feedback law κ(θ) as in (4),
local maximizers di for all i ∈ I
Output: index i? of the active region
Initialization: compute σ(k) = V (θ)
for i ∈ I do

if σ(k) ≤ di then
if θ ∈ Pi then

i? ← i
break

end if
end if

end for

Example 3.7. Algorithm 3 is illustrated in Figure 1. Here,
the explicit MPC policy is defined over 7 polyhedral re-
gions Pi with i ∈ I. By evaluating the convex function
V (θ) for a given parameter vector θ, one obtains η (de-
noted by green color). This scalar is then compared with
local minimizers σ ≥ d admitting only regions P{1,2,3,4,5}.
Regions P{6,7} are omitted as, by Lemma 3.2, they do not
contain θ. Equivalently, by validating with local maximiz-
ers σ ≥ d, regions P{1,2,3} are omitted via Lemma 3.4. By
combining both Lemmas, a restricted search interval of
only two regions P{4,5} is obtained, and they are shown in
black color. All redundant regions are red. In summary, the
proposed Algorithm 3 determines the active region θ ∈ P4

after one region exploration and four logical comparisons.

The approach proposed in this section requires storing
the list of indices I and the ordered bounds (10). The
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additional online computations amount to comparisons of
real numbers and bit-shifting operations.

Remark 3.8. Although all proposed approaches aim to
decrease the average online computation of explicit MPC
policies, the worst-case evaluation time is not improved.
On the other hand, as system states converge to the origin,
the worst-case time of each iteration is reduced in each
control step.

Remark 3.9. As the implementation of accelerating ex-
plicit MPC ensures decreased average online computation
time, the proposed strategy leads to improvements in
terms of energy savings. E.g., implementation of explicit
MPC on embedded hardware may significantly prolong
the battery life, i.e., the total operation time of the au-
tonomous vehicle or unmanned aerial vehicle, etc.

Remark 3.10. The bounds dkl , dij required in Lemma 3.6
can efficiently be determined by interval bisection: assume
V (θ) is given, then by checking V (θ) < dbr/2c one can
determine whether, roughly speaking, the lower or upper
half of the bounds (7) needs to be analyzed. In every
subsequent step, approximately half of the remaining
bounds (7) can be discarded until only one of them
remains, which is the desired dij . Note that the required

b·/2c operations can efficiently be carried out by a bit
shifting operation, thus no divisions are necessary.

4. CASE STUDIES

Two extensive case studies were evaluated to investigate
the properties of the proposed strategy 2 : (i) a double
integrator system and (ii) a set of 20 randomly generated
systems in θ ∈ R5.

4.1 Double Integrator

The double integrator system, in the discrete-time domain
with Ts = 0.1 seconds, is represented by (1), (2), consid-
ering

A =

[
1 1
0 1

]
, B =

[
1

0.5

]
, −5 � x � 5, −1 ≤ u ≤ 1, (12)

for all k. MPC policy (3) was designed with prediction
horizon N = 6, weighting matrices Q = diag(1, 1) and
R = 0.1. Moreover, terminal penalty P and terminal
set XN were computed using the LQR-based strategy. By
solving (3) parametrically, for all feasible initial conditions
θ, explicit MPC policy (3) defined over r = 55 polytopic
regions was obtained. We used the MPT toolbox (Herceg
et al., 2013a) with the PLCP, enum, and mpqp parametric
solvers. 3

For illustrative purposes, Figure 2 depicts the value func-
tion J? defined over the polytopic partition with r = 55.
It can be observed that the most exploited regions, in the
neighborhood of the origin, are associated with low values
of the support value function V (x). Therefore, by exploring
these regions with the ascending order, the sequential
search by Algorithm 1 was accelerated.
2 Also an inverted pendulum case study can be found in the Techni-
cal Note at: https://www.uiam.sk/assets/publication_info.php?
id_pub=2131.
3 Note that parametric solver plays a crucial part in indexing of the
polytopic partition, i.e., by using different parametric solvers one can
obtain various set of indices I.

Fig. 2. PWQ Lyapunov cost function above the feedback
partition.

To assess the online evaluation complexity of the con-
structed explicit MPC policy, N−step closed-loop simu-
lations were performed for the set of 102 uniformly dis-
tributed initial conditions over the feasibility parameter-
space domain. Specifically, online complexity was deter-
mined w.r.t. the number of evaluated half-spaces during
the point location problem. The results are summarized in
Table 1. Hereafter, η denotes the number of explored half-
spaces and ∆ denotes relative acceleration in percentage
w.r.t. Algorithm 1.

As can be seen, the minimal value approach from Subsec-
tion 3.1 accelerated the point location problem by 110 %,
while the bounded value approach from Subsection 3.3
attained an acceleration of 184 %.

Considering another distance function, e.g., upper approx-
imation of the original PWQ cost function, the acceler-
ation of the point location problem was also attained.
The technical details on how to construct such a value
function can be found, e.g., in Bakaráč et al. (2018). The
total number of explored half-spaces remained larger than
considering original PWQ cost function, see Table 2. The
minimal value approach from Subsection 3.1 accelerated
the point location problem by 90 %, while the bounded
value approach from Subsection 3.3 attained an acceler-
ation of 170 %.

Table 1. Double integrator benchmark: PWQ
cost function.

solver
PLCP enum mpqp

η ∆ η ∆ η ∆

Alg. 1 19 356 − 15 174 − 14 774 −
Alg. 2 9 221 110 9 167 66 9 203 61
Alg. 3 6 820 184 6 452 135 6 470 128

Table 2. Double integrator benchmark: upper
approximation of PWQ cost function.

solver
PLCP enum mpqp

η ∆ η ∆ η ∆

Alg. 1 19 356 − 15 174 − 14 774 −
Alg. 2 10 188 90 10 099 50 10 197 61
Alg. 3 7 188 170 7 156 112 7 188 106

4.2 Randomly Generated Systems

For a comprehensive elaboration, the acceleration of the
proposed technique was verified for 20 randomly generated
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Table 3. Relative acceleration of explicit MPC
of set of random systems.

solver PLCP enum mpqp

Alg. 2 51 48 27
Alg. 3 57 58 35

systems of order 5, i.e., with n = 5 and m = 1. All
systems were designed such that the pair (A,B) in (1)
was controllable and −5 � x � 5,−1 ≤ u ≤ 1 hold.

The acceleration rate was also investigated analogously
to the case study in Section 4.1, i.e., by the number of
the reduced half-spaces that were evaluated by the point
location problem. Simulations were performed considering
upper approximation of the original PWQ cost function,
within 104 equidistantly separated initial conditions. The
generated results are summarized in Table 3. The accel-
eration was evaluated w.r.t. the Algorithm 1. As can be
seen, an acceleration of up to 57 % was achieved.

5. CONCLUSIONS

The paper addressed the problem of speeding up the online
phase of explicit MPC by introducing a novel acceler-
ation technique. A two-layer explicit MPC scheme with
constraints sorting is proposed. First, the smart order of
regions to be explored is evaluated. Next, the real-time
pruning scheme is applied for further reduction of the
number of considered regions. Particularly, the speedup of
the point location problem is based on the proper distance
function sorting the regions of the explicit feedback law
to be explored. This strategy is also applicable to higher-
dimensional systems. The illustrative case study demon-
strated the efficiency of the proposed strategy.

Further research will address several aspects. If the con-
straints (3c) are symmetric, the a partition is also symmet-
ric. This symmetry can be exploited to further speed-up
solving the point location problem. Another perspective
way how to estimate the set of admissible regions to be
considered by the point location problem is the offline
evaluation of the 1-step maximal reachable sets, see Kvas-
nica et al. (2019). Once the current system measurement
is associated with the particular 1-step maximal reachable
sets, the set of admissible regions where the system states
can occur in the next control step is assigned.
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Oravec, J., Blažek, S., Kvasnica, M., and Cairano, S.D. (2013).
Polygonic representation of explicit model predictive control. In
IEEE CDC, 6422–6427. Florence, Italy.
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