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Abstract: Emerging control applications in the Internet-of-Things are increasingly relying
on communication networks and wireless channels to close the loop. Traditional model-based
approaches, i.e., assuming a known wireless channel model, are focused on analyzing stability and
designing appropriate controller structures. Such modeling is challenging as wireless channels
are typically unknown a priori and only available through data samples. In this work we aim
to design data-based controllers using channel samples and provide high confidence guarantees
on the performance of these controllers when deployed over the actual unknown channel. To
achieve these results we combine statistical learning (concentration inequalities) with structural
properties of our problem (monotonicity with respect to the unknown channel parameters), and
also provide sample complexity analysis.

Keywords: Learning Algorithms; Networked Control Systems; Statistical Analysis;
Communication channels; Controller Design

1. INTRODUCTION

Wireless communication is increasingly used to connect de-
vices in industrial control environments, teams of robotic
vehicles, and the Internet-of-Things. To guarantee safety
and control performance it is customary to include a
known model of the wireless channel, for example an i.i.d.
or Markov link quality, alongside the model of the physical
system to be controlled. In such modeled-based approaches
one can characterize, for example, that it is impossible to
estimate or stabilize an unstable plant if its growth rate is
larger than the rate at which the link drops packets (Si-
nopoli et al., 2004; Schenato et al., 2007; Hespanha et al.,
2007), or below a certain channel capacity (Tatikonda and
Mitter, 2004; Sahai and Mitter, 2006). Models also facili-
tate the allocation of communication resources to optimize
control performance (Quevedo et al., 2012; Gatsis et al.,
2015), or event-triggered control (Heemels et al., 2012).

In practice however wireless autonomous systems operate
under unpredictable channel conditions following unknown
distributions, with only a finite amount of collected chan-
nel measurements available (Halperin et al., 2010; Rap-
paport et al., 2015). The purpose of this work is the
design of controllers for networked control systems when
only channel sample data are available instead of channel
models. We use the data to learn directly a controller
and also provide high confidence guarantees about the
performance of this controller deployed over the actual
unknown channel. Our paper is the first to provide such
data-based performance guarantees for networked control,
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in contrast to the extensive literature on model-based
approaches mentioned above.

Learning methods have been used in control problems
most commonly within the reinforcement learning and
approximate dynamic programming literature (Sutton and
Barto, 1998; Bertsekas, 2012), where the goal is to learn
to control an unknown dynamical system from data.
One approach is to learn the system dynamics model
first (Kumar and Varaiya, 2015) and recent focus has
been on analyzing the sample complexity of control of
unknown linear systems (Abbasi-Yadkori and Szepesvári,
2011; Dean et al., 2017). Other model-free approaches
focus on learning the controller directly (Sutton and Barto,
1998). In contrast our work is focused on collecting data
and learning unknown wireless channel models instead
of system dynamics. In the context of networked control
systems very recent works from the last two years are
proposing data-based approaches including deep learning
for allocating resources and scheduling (Demirel et al.,
2018; Redder et al., 2019; Leong et al., 2018; Wu et al.,
2018; Eisen et al., 2019) as well as for controller design
(Schuurmans et al., 2019; Baumann et al., 2018). Our work
is the first to provide data-based performance guarantees
for networked control over unknown channels. In previous
work we examined the sample complexity of stability
analysis of networked control systems without controller
design (Gatsis and Pappas, 2018, 2019). A related recent
work appeared after the original submission of the present
paper, considering the control of unknown scalar systems
over unknown channels in an online setting (Singh and
Kumar, 2020)

Rather than analysis, in this paper we consider the design
of a state feedback controller for a linear dynamical system
over a Bernoulli packet-dropping channel with an unknown
success rate (Section 2). Using channel sample data, i.e.,
a number of packet successes and failures, we develop an
algorithm to design a controller (Section 3). As our algo-
rithm depends on random channel samples, the designed
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Fig. 1. Wireless Control System. A sensor measures the
state of a plant perturbed by a random distur-
bance. The sensor transmits the measured informa-
tion over a packet-dropping wireless channel to a
receiver/controller providing control inputs.

controller is random and hence there is a need to provide
guarantees about the performance of our controller over
the true unknown wireless channel. To do this we utilize
confidence bounds obtained by concentration inequalities,
more specifically, Hoeffding’s inequality.

Then we propose to design a controller assuming the worst
channel conditions. We prove that this provides a guaran-
tee on how large the control cost will be when such a con-
troller is applied over the real channel. Then we also show
that if we consider the best possible channel conditions,
we may also provide a lower bound on the true control
cost. As a result we provide performance guarantees that
are data-dependent and high-confidence. The most related
work is that by (Schuurmans et al., 2019) which designs
controllers for general switched linear systems where the
switching behavior is unknown and only available through
samples and relies on distributionally robust optimization.
Our work in contrast exploits the specific structure of the
underlying problem (monotonicity with respect to channel
parameters) and also provides high-performance guaran-
tees about the cost achieved by the designed controller
applied to the true unknown channel. We validate our
theoretical analysis in numerical simulations (Section 4).

2. PROBLEM FORMULATION

We consider the control of a dynamical system over a
packet dropping link. This is a standard model for control
over an unreliable network or a wireless channel, for
example when a controller transmits control input to be
applied by a receiver – see Figure 1 and (Sinopoli et al.,
2004; Schenato et al., 2007; Hespanha et al., 2007) for
related examples. We suppose the system evolution is
described by a linear time invariant model of the form

xk+1 = Axk +Buk + wk (1)

Here xk ∈ Rn denotes the state of the system at each time
k, the dynamics in open loop described by A ∈ Rn×n, uk ∈
Rm is the control input, and B ∈ Rn×m the input matrix.
The additive terms wk, k ≥ 0 model an independent
identically distributed (i.i.d.) noise process across time
according to some known probability distribution with
mean zero and positive definite covariance W .

A controller observes the state of the system, computes a
desired control input, and transmits it over the channel.

Then the evolution of the system depends on whether a
successful transmission occurs at time k or not, indicated
with variables γk ∈ {0, 1}. We focus on a linear controller
of the form Kxk for some gain K to be designed. At a
unsuccessful transmission the control input is reset to zero,
and otherwise when the transmission is successful the de-
sired control input is applied. With such a communication
and actuation model the overall system becomes

xk+1 =

{
(A+BK)xk + wk, if γk = 1
Axk + wk, if γk = 0

. (2)

The system evolution over time depends on whether the
transmissions are successful or not over time as well as
the chosen controller gain. In this paper we make the
assumption that γk are independent Bernoulli random
variables with a constant success probability q, and they
are also independent from the system state xk and noise
wk.

Given this model of the transmission success we are
interested in the performance of the dynamical system.
We will employ the usual quadratic system state and
control cost, where Q,R are positive definite matrices
of appropriate dimensions, with the long run average
quadratic cost

J(K; q) = lim sup
T→∞

1

T

T−1∑
k=0

E[xTk Qxk + uTkRuk]. (3)

The expectation at the right hand side accounts for the
randomness introduced by the system disturbance and
the channel. The results can also be written for the finite
horizon problem. We denote the cost in (3) by J(K, q)
to make explicit the dependency on the controller gain
K to be optimized, as well as on the the success rate of
the channel q. If the channel quality q was known, then
the controller design can be posed as a Linear Matrix
Inequality problem using standard tools – see also Section
3.2 later.

Suppose that instead of knowing the packet success rate
q of the channel we have available N samples denoted
by γk, k = 0, . . . , N − 1 drawn independently from the
Bernoulli distribution with success q. In practice this data
is easy to obtain, it suffices to send N packets and record
whether they are received or not.

Given N channel samples, the problem we tackle is to
design a controller gain KN and provide upper and lower
bounds on the cost J+

N , J
−
N . As these values are random

because they depend on the randomly taken channel
sample data, we would like to have high confidence results
such that

P
(
J−N ≤ J(KN ; q) ≤ J+

N

)
≥ 1− δ (4)

where δ is a desired confidence level. Here the probability
is with respect to the channel samples provided.

Before we proceed, we have to also ensure the problem
is well defined. More specifically since we are considering
an infinite horizon problem we have to ensure that the
system can be stabilized. As in standard linear quadratic
control problems we assume that A,B is controllable and
A,Q1/2 is observable (which in our case holds because we
assumed Q � 0). It is important also to note that the
above problem does not necessarily have a well-defined
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solution for any value of the channel quality q, but there
exists a minimum channel success rate qc such that the
system cannot be stabilized if q ≤ qc. Hence we make the
following assumption.

Assumption 1. A value qc ∈ [0, 1] is given such that for
any channel success rate q > qc there exists a controller
gain K such that the closed loop system (2) is mean square
stable.

We further discuss this assumption as well as how to obtain
this value in Remark 1. This value qc will appear in the rest
of the paper as follows. If not sufficient channel samples are
available then it may not be possible to verify whether the
actual channel quality is above the value qc and hence we
may not be able to come up with a stabilizing controller.

3. SAMPLE-BASED CONTROLLER DESIGN WITH
GUARANTEES

Suppose that we have available N samples denoted by
γk, k = 0, . . . , N − 1 drawn independently from the
Bernoulli distribution with success q. Given this data the
most natural approximation of the true success probability
q is the sample average

q̂N =
1

N

N−1∑
k=0

γk (5)

Indeed this approximation is in some sense optimal - it
maximizes the likelihood of the success rate q ∈ [0, 1] given
the data γk, k = 0, . . . , N − 1. In the case of unlimited
data samples the sample average converges almost surely
to the true underlying packet success rate by the Strong
Law of Large Numbers (Durrett, 2010, Ch.2). Hence in the
face of unlimited data learning a controller would be easy.
However this is an asymptotic analysis. In practice only
finite amount of data will be available and this motivates
us to investigate a finite sample analysis.

For a finite number of samples we argue that instead of
point estimates of the channel success rate, confidence
intervals are more useful. We further characterize how to
construct controllers and provide performance guarantees
based on confidence intervals.

3.1 Confidence intervals

Our approach is based on confidence intervals constructed
by the channel sample data using concentration inequal-
ities. In particular we may employ Hoeffding’s inequal-
ity (Boucheron et al., 2013, Th. 2.8). Given a desired high
confidence level 1 − δ where δ is a small positive value,
for example of the order of 10−3, and after collecting
N samples, we may derive an interval where the true
underlying mean lies, that is, the channel success rate in
our problem, as follows.

Lemma 1. Consider a sequence {γk, k = 0, . . . , N − 1} of
i.i.d. random variables taking values in [0, 1] with mean q.

Let q̂N = 1
N

∑N−1
k=0 γk be the sample average. Then for any

δ ∈ (0, 1) it holds that

P

(
q ∈

[
q̂N −

√
log(2/δ)

2N
, q̂N +

√
log(2/δ)

2N

])
≥ 1− δ.

(6)

where the probability is with respect to the random
sequence {γk, k = 0, . . . , N − 1}.

The result essentially states that there is a low probability
that the sample average deviates much from the true
packet success rate and further provides an explicit bound
on this probability. We note that the result above holds
regardless of the distribution as long as it has a bounded
support – see also (Gatsis and Pappas, 2019) for less
conservative approaches.

3.2 Sample-based Controller Design

After we construct a high confidence interval [qmin, qmax]
for the channel quality we consider the controller design
problem. Specifically if the channel quality q was known
perfectly, then we can follow a standard procedure to
design an optimal controller gain K that minimizes the
cost J(K, q). To solve this problem we can write the
Bellman equation for this problem and assume a quadratic
function xTPx for the optimal cost-to-go/value function.
Then we get that the matrix P needs to satisfy

P = Q+qKTRK+(1−q)ATPA+q(A+BK)TP (A+BK)
(7)

and the cost for this controller K is given by

J(K, q) = Tr(PW ). (8)

A completion of squares in (7) can show that the optimal
controller is given by

K = −(R+BTPB)−1BTPA (9)

and then P satisfies the Riccati-like equation

P = Q+ATPA− qATPB(R+BTPB)−1BTPA (10)

It is important to note here that the channel success rate
q affects the matrix P and subsequently this also affects
the optimal control gain K in (9).

Before we proceed, we also show how to solve equation
(10) as a Linear Matrix Inequality Problem – similar to
(Boyd et al., 1994, p.126-127). In particular we may pose
the design of the matrix P that solves the Riccati equation
as the optimal solution to the problem

maximize Tr(PW )

subject to P � Q+ATPA

− qATPB(R+BTPB)−1BTPA,

P � 0

(11)

where we have converted the Riccati equation to an
inequality. Applying Schur’s complement to the above
problem, this can be equivalently written as

maximize Tr(PW )

subject to

[
Q+ATPA− P √

qATPB√
qBTPA R+BTPB

]
� 0,

P � 0

(12)

which a Linear Matrix Inequality problem that may be
readily solved. After one finds P , substituting to (9) yields
the optimal controller.

Remark 1. We can understand Assumption 1 by noting
that the above Riccati equation (10) does not have neces-
sarily have a (positive definite) solution for any value of the
channel quality q. Apart from the usual requirements of
A,B being controllable and A,Q1/2 being observable, then
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Algorithm 1 Sample-based Controller Design

Input: Dynamics A,B, Cost Q,R, Noise covariance W ,
Confidence level δ, Number of samples N , Channel
samples γ0, . . . , γN−1 ∈ {0, 1}N

1: Compute the sample average

q̂N =
1

N

N−1∑
k=0

γk (13)

2: Compute the high confidence lower and upper bounds

qmin = q̂N −
√

log(2/δ)

2N
(14)

qmax = q̂N +

√
log(2/δ)

2N
(15)

3: Solve the following problem

maximize Tr(PW )

subject to

[
Q+ATPA− P √qminA

TPB√
qminB

TPA R+BTPB

]
� 0,

P � 0
(16)

4: if problem (16) is feasible then
5: Let J+

N be the optimal value of problem (16)
6: Let PN be the optimal solution of problem (16) and

compute

KN = −(R+BTPNB)−1BTPNA (17)

7: Let J−N be the optimal value of the following
problem

maximize Tr(PW )

subject to

[
Q+ATPA− P √qmaxA

TPB√
qmaxB

TPA R+BTPB

]
� 0,

P � 0
(18)

8: return KN , J
+
N , J

−
N .

9: else
10: return ’Undetermined’
11: end if

there exists a minimum channel success rate qc such that
the system can be stabilized for all q > qc and the equation
(10) indeed has a positive definite solution. One potential
way to search for qc in the range [0, 1] is with bisection us-
ing the LMI formulation in (12). Picking different potential
values one can seek whether problem (12) is feasible and
continue either increasing or decreasing the value until qc
is localized within some interval. Alternatively qc can be
analytically computed in some special cases. In the very
special case where B is full rank, one may choose the
controller gain K = −B−1A which makes the closed loop
system A + BK = 0. In this case it can be derived from
(1) that qc = 1−1/ρ(A)2 where ρ(A) is the spectral radius
of A.

As already mentioned, the true channel parameter q is
unknown in our case and instead only a high confidence
interval [qmin, qmax] for the channel quality is constructed
through the data. We may in principle select some candi-
date channel within this interval and treat it as the real
channel for the purpose of controller design. Our specific
approach is shown in Algorithm 1. We propose to optimize
the performance for the ’worst case’ channel qmin and use

the corresponding cost as an upper bound on the true
cost of the system with this controller. We propose to
also optimize the performance for the ’best case’ channel
qmax and use the result as a lower bound on the true
performance of the system.

3.3 High Confidence Performance Guarantees

In this section we establish the main theoretical results of
our paper regarding the guarantees of Algorithm 1. Our
analysis is motivated by the following technical lemma
which establishes monotonicity properties of the perfor-
mance objective with respect to the channel parameters.

Proposition 1. Consider system (1) to be controlled with
controller as in (2) over an i.i.d. dropping channel. For any
q > qc, where qc is as in Assumption 1, let K(q) denote the
optimal controller that minimizes the control cost J(K; q)
by (3) for a channel success rate q. Let q′, q′′ ∈ [0, 1] be
values such that qc < q′ ≤ q′′. Then it holds that

J(K(q′′); q′′) ≤ J(K(q′); q′′), and (19)

J(K(q′); q′′) ≤ J(K(q′); q′). (20)

The first clause of this proposition is rather obvious. It
says that the cost of a controller designed for a different
channel condition will be larger than the cost of a optimal
controller for the true channel condition. The second
statement is the most important as it characterizes a
monotonicity property. It states that if we plan a controller
assuming a channel condition worse than the true channel
condition, and then apply this controller at the true better
channel condition, then the performance that we will
experience is better (the cost is no larger than what was
planned). This proposition, whose proof is omitted due to
space constraints but follows standard Riccati and LMI
arguments, forms the basis for our main result.

Theorem 1. (Sample-based Performance Guarantees) Con-
sider the linear system (2) to be controlled over an i.i.d.
Bernoulli binary channel with an unknown success prob-
ability q ∈ [0, 1] and assume q > qc where qc as in
Assumption 1. Consider the controller design procedure
developed in Algorithm 1 using N i.i.d. channel samples
drawn with success rate q. If

N >
2 log(2/δ)

(q − qc)2
, (21)

then the algorithm returns values KN , J
+
N , J

−
N such that

P
(
J−N ≤ J(KN ; q) ≤ J+

N

)
≥ (1− δ), (22)

where the probability is with respect to the random
channel samples.

The algorithm takes as inputs a random sample sequence
of channel data and returns a controller as well as high
confidence upper and lower bounds on the performance of
this controller. Both the controller and the upper and lower
performance bounds are constructed from the channel data
sequence and they depend only on values that are known
and not on the unknown channel parameter q. There is
one caveat of Algorithm 1 which is the requirement (21)
on the minimum number of channel data. If very few
channel data are provided, then the algorithm cannot
estimate well the current channel condition and returns the
value ’Undetermined’. This minimum number of samples
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depends on the true channel success rate q which is a priori
unknown. If the algorithm returns ’Undetermined’, then
the remedy would be to collect more channel data and
try again. This minimum number of samples adversely
depends on how close the channel success rate q is from
the value qc in Assumption 1. This can be thought of as a
measure on how close the system is to being stabilizable.
For less stabilizable systems more data will be needed. A
similar relationship is also analyzed in our previous work
(Gatsis and Pappas, 2018, 2019) which however did not
consider a controller design problem.

Proof. First, we have that by Hoeffding’s inequality
(Lemma 1) that the following event{

q̂N −
√

log(2/δ)

2N
≤ q ≤ q̂N +

√
log(2/δ)

2N

}
(23)

holds with probability at least 1− δ.
Next note that the lower bound satisfies

q̂N −
√

log(2/δ)

2N
≥ q − 2

√
log(2/δ)

2N
. (24)

If condition (21) also holds, then we get that the lower
bound satisfies

q̂N −
√

log(2/δ)

2N
> qc. (25)

Combining all the above statements, the event{
qc < q̂N −

√
log(2/δ)

2N
≤ q ≤ q̂N +

√
log(2/δ)

2N

}
(26)

holds with probability at least 1− δ. Equivalently, for the
variables in Algorithm 1 we establish that

{qc < qmin ≤ q̂N ≤ qmax} (27)

holds with probability at least 1− δ.
By Assumption 1 the event qc < qmin implies that optimiz-
ing the controller K for the cost J(K; qmin) is feasible, so
equivalently the problem (16) in the algorithm is feasible
and the algorithm returns an answer KN , J

−
N , J

+
N .

Next we show that (22) is true. We will make use of Propo-
sition 1. In the notation of this proposition the algorithm
returns KN = K(qmin) and J+

N = J(K(qmin); qmin). We
have argued that qc < qmin ≤ q holds with probability at
least 1− δ. Hence applying (20) we get that

J(KN , q) = J(K(qmin); q) ≤ J(K(qmin); qmin) = J+
N (28)

This proves the upper bound inequality in (22).

Then note that by design the algorithm chooses J−N =
J(K(qmax); qmax). We have argued that qc < qmin ≤ q ≤
qmax holds with probability at least 1− δ. Hence applying
(19) we get that

J−N = J(K(qmax); qmax) ≤ J(K(q); qmax) (29)

Then applying (20) on the right hand side we get that

J(K(q); qmax) ≤ J(K(q); q) (30)

And applying (19) again on the right hand side we get

J(K(q); q) ≤ J(K(qmin); q) = J(KN , q) (31)

Combining (29)-(31) we get the lower bound inequality in
(22). This concludes the proof. �

Remark 2. We point out that in principle we may select
any candidate channel quality in the high confidence in-
terval [qmin, qmax] for the purpose of controller design. The
advantage of the specific worst case design in Algorithm 1
is that we can provide upper and lower bound guarantees
on performance with high confidence. We plan to investi-
gate other choices in future work.

4. NUMERICAL RESULTS

We consider the control of a system with known dynamics
given by

A =

[
2 −1
0 0.9

]
, B =

[
1
1

]
(32)

and noise covariance W = I. The minimum required
success rate is qc ≈ 0.75 as in Remark 1. We also consider
Q = I and R = 10I in (3). We suppose the true
underlying channel has a packet success rate q = 0.9.
We select a confidence level δ = 10−5 and we collect
N i.i.d. samples (packet successes and failures) from this
channel that we feed to Algorithm 1. For each value of N
the algorithm provides a data-driven controller as well as
upper and lower bounds on the true performance of this
controller over the true channel, plotted in Fig 2 along
with the true performance of the controller. For clarity
of exposition we normalize these costs by dividing with
the true optimal cost of the system under this channel
condition. We see that it takes 300 samples before the
algorithm can provide a result (a stabilizing controller).
Then as the number of samples increases the upper and
lower bound tend close to each other. We also observe
that for all times when the algorithm returns an answer,
the provided upper and lower bounds indeed contain the
true performance of the system (cf. Theorem 1). As the
number of data increases the algorithm converges to the
true optimal control performance.

5. CONCLUSION

Motivated by the deployment of connected autonomous
systems in smart infrastructures and the Internet-of-
Things in this paper we consider the problem of learning to
control over unknown channels. In particular we consider
the problem of designing a state feedback controller for
a linear system to be controlled over a packet dropping
link with unknown success probability. Using a sequence
of collected channel sample data we design a controller and
provide high confidence guarantees about the performance
of the sample-based controller on the actual channel. To
get this result we exploit the structural properties of this
problem and combine them with concentration inequality
results.

Future work includes extending the approach to more
general channel models as well as comparisons with model-
free methods such as reinforcement learning.
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