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Abstract: In this work we study convergence properties of Piecewise Multi-Affine models of
genetic regulatory networks, by means of a Lyapunov approach. These models, quantitatively
more accurate than their Piecewise Affine counterpart, are obtained by a Piecewise Linear
approximation of sigmoids regulation functions. In this work, using a linear matrix inequalities
framework, we are able to find, if one exists subject to a box partitioning of the state space, a
Piecewise Quadratic Lyapunov function, which is non-increasing along any system trajectory.
In the first part of the paper we describe the considered model, defining and motivating the
hyper-rectangular partition of the state space, while in the second part, using a result on the
expression of multi-affine functions on an hyper-rectangle, we can define a set of linear matrix
inequalities, whose solution gives the description of a piecewise quadratic Lyapunov function
for the system. Convergence properties based on such functions are discussed and a numerical
example will show the applicability of the results.

Keywords: Lyapunov methods, Piecewise Multi-affine Systems, Genetic Regulatory Networks,
Systems Biology, LMIs

1. INTRODUCTION

Systems and synthetic biology have seen an ever increas-
ing use of control theoretic tools to respectively analyse
natural biological systems or design new ones to perform
particular tasks (Blanchini et al., 2018). In these areas the
concept of Genetic Regulatory Network (GRN) is ubiqui-
tous, as they describe the intricate set of transcriptional
interactions, inside a cell, between proteins and genes.
Using tools from Chemical Reaction Networks theory and
considerations on reactions timescales, one is able to model
the dynamics of a GRN via a set of differential equations,
which in general involve Hill functions to describe the
strength of regulation interactions (Murray and Del Vec-
chio, 2014). GRNs are known to exhibit a large range of
behaviors, such as: chaos, oscillations, monostability, mul-
tistability and bifurcations and so it is crucial to be able
to study and predict their dynamical properties, and in
order to do this many approaches have been developed in
literature. One important class of these analysis methods
are the qualitative ones. Considering the usual On/Off
characteristic of regulation functions, boolean networks
have been proposed as a model for GRN dynamics, with
a set of boolean rules that allow to identify interactions
responsible for particular system behaviors (Tournier and
Chaves, 2009). While boolean networks are able to capture
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their main qualitative properties, many authors proposed
and studied Piecewise Affine (PWA) models for GRNs
(Casey et al. (2006) and references therein), arising from
a step approximation of regulation functions, in order to
capture more fine-grained aspects of the newtork dynam-
ics, otherwise lost in the boolean setting (Chaves et al.,
2010). Despite being very useful, as many questions in
systems biology have a qualitative nature, sometimes a
more quantitative and accurate analysis is required (Batt
et al., 2007). In Belta et al. (2002), the authors proposed
the use of piecewise linear functions – which are known to
have universal approximation properties – to approximate
sigmoid functions. Given the existence of possible multiple
complex interactions in a GRN, this solution gives rise,
in general, to a Piecewise Multi-affine (PMA) model. Dy-
namical properties of PMA systems have been studied in
many cases using reachability analysis tools and discrete
abstractions of the multi-affine dynamics (Kloetzer and
Belta, 2006; Collins et al., 2011; Turnip and Tamba, 2015;
Barnat et al., 2017). Another important method to study
the system dynamics is the use of Lyapunov functions,
which can give information on equilibria landscape, their
stability and possibly domains of attraction. Although
Lyapunov methods have been extensively used in the
study of biochemical networks (Chesi and Hung, 2008;
Blanchini and Giordano, 2014; Al-Radhawi and Angeli,
2016; Pasquini and Angeli, 2019), not many results are
available on Lyapunov functions constructions for PMA
systems, presenting multistability and complex behaviors.
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In Nguyen et al. (2017), the authors described an LMI
framework to study asymptotic stability of PMA models
arising in fuzzy control applications, via Lyapunov func-
tions. The authors used Finsler lemma and S-procedure
to derive a set of LMIs that can prove the stability of the
origin. In the present work we will use polyhedra represen-
tation tools and conewise copositivity conditions (Iervolino
et al., 2017), to search for a Piecewise quadratic Lyapunov
function through an LMI feasibility problem. Differently
from Nguyen et al. (2017) we can drop positivity con-
straints of the Lyapunov function because of boundedness
properties of the trajectories and, as multistability is a
fundamental properties in many biological systems, we
allow this possibility by not explicitly taking advantage
of information on equilibria and discussing convergence
properties of the system trajectories. Considerations to
improve the result significancy and to expand the feasible
set of solutions, are remarked and discussed as well. The
paper is structured as follow: in Section 2 we introduce the
Piecewise Multi-affine model to study, formally describ-
ing a state space partition, and discussing properties of
multiaffine functions which will be useful in the following.
Section 3 contains the main contribution of the paper,
discussing how the Lyapunov function is defined and how
monotonicity and continuity constraints can be enforced
through the use of LMIs and Matrix Equalities.We then
discuss how the state space partition can be refined to get
more informative results and we prove the non-increasing
property of the Lyapunov function along system trajecto-
ries. Finally, in Section 4, we analyse the example of a Self-
Activating Toggle Switch showing how the framework can
be applied and how convergence properties can be inferred.
Section 5 concludes the work and provide final remarks on
possible future developments.

Mathematical notation: We consider any vector v ∈ Rn
to be a column, except for the gradient ∇f of a function
f : Ω ⊆ Rn → R, which we consider to be a row.
If v is a vector, with ||v|| we indicate its norm. With
Rn+ we denote the set of all the entrywise non-negative
vectors in Rn. With int(D), cl(D) and ∂D we denote
the interior, the closure and the boundary of the set D,
respectively. If M ∈ Rn×n is a symmetric matrix, then
with M � 0 (M � 0) we denote the fact that xTMx ≥ 0
(xTMx ≤ 0),∀x ∈ Rn. J

2. PIECEWISE MULTIAFFINE MODEL

We consider a piecewise linear approximation of Hill
regulation functions (see Fig. 1), formally described by:

r+(xi, θ
k
i , θ

l
i) =


0 if xi < θki
aixi + bi if θki ≤ xi ≤ θli
1 if xi > θli

r−(xi, θ
k
i , θ

l
i) = 1− r+(xi, θ

k
i , θ

l
i)

(1)

where θki < θli and ai and bi are univocally defined given
that r+ is continuous.

This approximation is often considered in modelling bi-
ological systems (Belta et al. (2002); Belta and Habets
(2006); Batt et al. (2007)), as opposed to a step-like one
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Fig. 1. Approximation of a sigmoid using a piecewise linear
function. The tuning parameters are θki and θli in Eq.
(1). In theory one can consider more breakpoints (i.e.
θs) in order to get a better approximation, as the
whole analysis will still be valid. Techniques to choose
optimally such parameters are available (Grosu et al.,
2011).

(Casey et al. (2006) and references therein). In fact, even
if the latter present monotonicity properties well suited
in a qualitative analysis of gene networks, the former is
able to give more valid quantitative information, while still
displaying mathematical properties that can be exploited
in the system analysis (Batt et al., 2007).

Given the approximation (1), and the fact that complex
transcription regulation can occur, in which more than one
transcription factor has effect on the target gene, Piecewise
Multi-Affine functions defined on a box partition of the
positive orthant, will be present in the dynamics of the
system describing the GRN.
To formalize this, the following definitions will be used.

Definition 1. (Kloetzer and Belta, 2006) A multi-affine
function f : Ω → Rn, Ω ⊆ Rn is a polynomial in the
variables x1, . . . , xn, in which every variable has at most
degree 1, namely:

f(x) =
∑

i1,...,in∈{0,1}

bi1,...,inx
i1
1 x

i2
2 · · ·xinn

where bi1,...,in ∈ Rn. J

Definition 2. Let Pi be the partition of the positive i-th
axis induced by the thresholds θ1i , . . . , θ

mi
i ∈ R+, formally:

Pi = {[0, θ1i ), [θ1i , θ2i ), . . . , [θ
mi
i ,∞)}

The set D = {D1, . . . , Dm} is called hyper-rectangular (or
box) partition of Rn+, induced by the axis partitions P1,
. . . , Pn, if:

Rn+ = D1 ∪D2 ∪ · · · ∪Dm

int(Di)
⋂
int(Dj) = ∅, ∀i 6= j, i, j ∈ {1, . . . ,m}

Dk = d1k × · · · × dnk , dlk ∈ Pl, k ∈ {1, . . . ,m}

Any element Di of the set D is referred to as domain in
the following. J
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Definition 3. Let D be a box partition of the positive
orthant as in Definition 2 and let σ(x, k) be the function:

σ(x, k) =

{
1 if x ∈ Dk,

0 otherwise

Let f1(x), . . . , fm(x) be multi-affine functions as in Defi-
nition 1. Then a Piecewise Multi-Affine (PMA) function
f : Rn+ → Rn on the partition D, is a function defined as:

f(x) =

m∑
k=1

σ(x, k) · fk(x)

In this work we consider the following model for a gene
regulatory network:

ẋ = f(x)− Cx (2)

in which x ∈ Rn+ is a vector of protein concentrations,
f : Rn+ → Rn+ is a PMA function defined on a box par-
tition of the positive orthant, representing transcriptional
regulation and C is a diagonal matrix with strictly posi-
tive diagonal entries, representing the protein degradation
rates.

Remark 1. Being Cx a linear contribution to the dynam-
ics, the entire right-hand side of Eq. (2) is a piecewise
multi-affine function. This means that, while keeping in
mind the structure of the model we are considering, every
result that applies to PMA functions, can be applied to
the entire right-hand side of Eq. (2) and not just to f(x).
J

Given that, in our model, f(x) will be a continuous com-
bination of bounded piecewise linear functions as in Eq.
(1), representing genetic transcriptional interactions, then
it is not restrictive to ask for the following assumption:

Assumption 1. For the function f(x) in Eq. (2):

∃M > 0 s.t. ||f(x)|| ≤M, ∀x ∈ Rn+

Assumption 1 implies the existence of an attractive and
positively invariant box to which the analysis of the system
can be restricted.
Finally we recall the following result from Kloetzer and
Belta (2006), on multi-affine functions defined on an
hyper-rectangle.

Proposition 1. Let D be a bounded hyper-rectangle in Rn
and let V (D) = {vD,1, . . . , vD,2n} be the set of its vertices.
Let f : cl(D) → Rn be a multi-affine function as in
Definition 1. Then f(x) is a convex combination of the
values assumed by f at the vertices of D, for any x ∈ D,
formally:

f(x) =

2n∑
i=1

λi(x)f(vD,i), ∀x ∈ D

2n∑
i=1

λi(x) = 1, λi(x) ≥ 0, ∀i ∈ {1, . . . , 2n}

∀x ∈ D

J

3. MAIN CONTRIBUTION

3.1 PWQ Lyapunov function - LMI Feasibility Problem

Our goal is to find a Lyapunov function V for the sys-
tem, with the property of being non-increasing along any
trajectory of system (2). We choose V to be a Piecewise
Quadratic (PWQ) function, defined on the same partition
D on which f(x) in Eq. (2) is defined, formally:

V (x) =

m∑
k=1

σ(x, k) · VDk
(x)

VDk
(x) = xTPDk

x+ 2dTDk
x+ ωDk

=

=
[
xT 1

] [PDk
dDk

dTDk
ωDk

] [
x
1

]
=

= x̄T P̄Dk
x̄

(3)

In the following we will define an LMI feasibility problem,
in which the decision variables are the matrices P̄Dk

of
(3). The method we are going to use is similar to Pasquini
and Angeli (2019) and Iervolino et al. (2017), which are
specifically designed for Piecewise Affine systems, here
adapted for PMA models. The following constraints are
asked on V :

• Continuity of V on the intersection between adjacent
domains;

• Monotonicity of V inside any domain.

Remark 2. There are no constraints on the positivity of V ,
as the system trajectories are bounded given Assumption
1. Continuity of V is asked everywhere to avoid singular
behaviors in the Lyapunov function evolution along partic-
ular trajectories (e.g. limit cycles). However many results
are available in literature on discrete abstractions of PMA
systems and qualitative dynamics (see Kloetzer and Belta
(2006); Collins et al. (2011); Turnip and Tamba (2015);
Benes et al. (2018)). Such discrete abstraction can be used
to reduce the number of continuity constraints. J
Remark 3. From Assumption 1, and the following dis-
cussion on the existence of an attractive and positively
invariant box, we restrict our analysis to the intersection
between the positive orthant Rn+ and such box B (which
can be easily constructed). As a result any domain consid-
ered from now on will be bounded. J

3.2 Continuity constraints

The first type of constraint we want to satisfy, is the
continuity of V on the whole state space. Let Di and Dj

be two adjacent domains. In order to have continuity of V
on ∂Di ∩ ∂Dj , i.e.:

lim
yi→x,
yi∈Di

VDi(yi) = lim
yj→x,
yj∈Dj

VDj (yj), ∀x ∈ ∂Di ∩ ∂Dj

the following equivalent Matrix Equality (ME) condition
can be asked (Iervolino et al., 2017; Pasquini and Angeli,
2019):

ΓTij(P̄Di − P̄Dj )Γij = 0 (4)
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where Γij is the ray matrix of the homogenization cone of
∂Di ∩ ∂Dj (see Iervolino et al. (2017) for further details
on what an homogenization cone is and how to compute
Γij ) and P̄Dk

is defined in Eq. (3). Condition (4) should
be asked for any couple Di, Dj of domains such that
∂Di ∩ ∂Dj 6= ∅.

3.3 Monotonicity constraints

The second kind of constraint we need to ask is the mono-
tonicity of V , which converts in asking the monotonicity
of VD in Eq. (3), inside the domain D, for all D ∈ D. In
particular, this constraint is expressed as:

V̇D(x) = ∇VD(x) · f(x) ≤ 0, ∀x ∈ D (5)

Being D a bounded box (Remark 3) and taking advantage
of Proposition 1, condition (5) can be satisfied by asking:

∇VD(x) · (f(vD,i)− CvD,i) =

=∇VD(x) · f̄(vD,i) ≤ 0, ∀i ∈ {1, . . . , 2n}
(6)

where vD,i is the i-th vertex of D and the first equality is
motivated by Remark 1. The set of conditions (6) can be
satisfied by asking the following set of LMIs:

ΓTDP̃D,iΓD +MD,i � 0, ∀i ∈ {1, . . . , 2n} (7)

where ΓD is the ray matrix of the homogenization cone of
D,MD,i can be any entrywise-non-negative and symmetric
matrix and:

P̃D,i =

[
0 PDf̄(vD,i)

f̄T (vD,i)PD 2dTDf̄(vD,i)

]
(8)

Using the notation above, we want to solve the following:

Feasibility Problem 1. Consider the system (2). Find a
Piecewise quadratic function V : Rn+ → R, of the form
(3), subject to:

ΓTij(P̄Di
− P̄Dj

)Γij = 0, ∀Di, Dj |∂Di ∩ ∂Dj 6= ∅

ΓTDP̃D,iΓD +MD,i � 0, ∀i ∈ {1, . . . , 2n},∀D ∈ D
J

A solution of the Feasibility Problem 1 is referred to as a
Lyapunov function for system (2).

Remark 4. To solve Feasibility problem 1 amounts to find
a feasible solution of a set of LMIs. The decision variables
of this problem are: the matrices PDk

, describing the
function (3) in any domain Dk, and the matrices MD,i

in (7), constrained only by the fact of being symmetric
and entrywise non-negative. Available numerical solvers
for semidefinite programming are used to find a numerical
solution. J
Remark 5. The number of domains increases exponen-
tially with the dimension of the state space and conse-
quently it increases, in the same way, the complexity of the
feasibility problem. For this reason, techniques that can
exclude particular domains from the computation (Collins
et al., 2011) should be exploited. J

Remark 6. Condition (6) asks for the function V to be
non-increasing, inside a certain domain D, along all the
directions f(vD,i). There can be some configurations of
these directions – usually near equilibria – such that the
only possibility for V is to be constant in D. If this
happens, we lose the information given from V on how
the system behaves in such domain. To overcome this
problem we can re-partition the positive orthant with
a finer grid, by adding thresholds θ. The new partition
obtained by adding other thresholds to the axis partition
(see Definition 3), applies only to the search of a Lyapunov
function as the system dynamics is still defined on the
original partition, given by the structure of the PMA
function f(x). This kind of procedure can be applied more
than once, at the cost of computational efficiency (as the
number of constraints to ask, as well as the number of
decision variables, will increase). J

3.4 Formal properties of the Lyapunov function

We make the following assumption, implied by mild condi-
tions on the set of times when the system switches between
two different domains, conditions that are generally true
for the considered class of systems.

Assumption 2. Let x(·) be a solution of (2). Then for all
times t, with the possible exception of a countable set, it
holds:

∃ε > 0, ∃Dt ∈ D s.t. x(τ) ∈ Dt, ∀τ ∈ (t− ε, t+ ε)

J

The following formal result can be stated for the function
V , solution of the Feasibility Problem 1.

Theorem 1. Consider the system (2) and let V (x) be a
solution of Feasibility Problem 1. Then V (x(t)) is non-
increasing along any trajectory x(·) of system (2), satisfy-
ing Assumption 2.

Proof. We can prove that, given a solution x(t) of (2),
V (x(t)) is an absolutely continuous function of t, by using
arguments similar to the ones we used in the proof of
[Theorem 1, Pasquini and Angeli (2019)].
Let t1, t2 ∈ R+ be such that t1 ≤ t2. Then :

V (t2)− V (t1) =

∫ t2

t1

dV (x(τ))

dτ
dτ

where the integral is intended in the sense of Lebesgue.
Because of Assumption 2 then, apart from a zero measure
set of times, x(t) belongs to a uniquely specified domain D
and because V is a solution of Feasibility Problem 1, hence
satisfying (4) and (7) in every domain, it is guaranteed that
dV (x(t))

dt ≤ 0 for a.e. t and so it holds:∫ t2

t1

dV (x(τ))

dτ
dτ ≤ 0

which concludes the proof. 2

Because of Theorem 1, the following proposition from
Pasquini and Angeli (2019) – to which the reader is
referred for a formal proof – holds:

Proposition 2. Let V be a solution of Feasibility Problem
1 and let x(·) be a solution of (2). Then:

lim
τ→∞

µ({t ≥ τ :
dV (x(t))

dt
< −ε}) = 0, ∀ε > 0 (9)
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where µ(E) denotes the measure of the set E. J

Proposition 2 is a consequence of the monotonicity of V
and gives a useful tool to study the convergence set of the
system, as shown in the following example.

4. EXAMPLE: SELF-ACTIVATING TOGGLE
SWITCH

Consider the genetic regulatory network in Fig. 2, and the
corresponding PMA system:{

ẋ1 = b10 + b1r
−(x2, θ

1
2, θ

3
2) r+(x1, θ

2
1, θ

4
1)− c1x1

ẋ2 = b20 + b2r
−(x1, θ

1
1, θ

3
1) r+(x2, θ

2
2, θ

4
2)− c2x2

(10)

with b10 = 0.05, b20 = 0.12, b1 = 7.5, b2 = 10 c1 = 0.7,
c2 = 1.2, θ11 = 2, θ21 = 3, θ31 = 5, θ41 = 6, θ12 = 4,
θ22 = 6, θ32 = 7, θ42 = 8 and the functions r+(·) and r−(·)
defined as in (1). Self-activating toggle switches have been

Fig. 2. Genetic regulatory network of the self-activating
toggle switch.

studied in literature (Lu et al., 2013) as they may have
an important role in cell-fate decision in cancer cells and
are known to show tristability. Simulations of (10) (Fig.
3) show this kind of tristable behavior. By formulating the

Fig. 3. Trajectories of system (10) from a grid of initial
points (blue), showing a tristable behavior

LMIs Feasibility problem described in Section 3.1, we can
find the description of a Piecewise Quadratic Lyapunov
function for the system, the contour plot of which is shown
in Fig. 4a. In many domains the function V is constant,
as explained in Remark 6, and so a finer partition of the
state space can be defined and a new feasibility problem
can be formulated on it. By solving this new problem
we obtain the function in Fig. 4b. The plot in Fig. 5
shows how the Lyapunov function is non-increasing along
system trajectories, in accordance to Theorem 1. Because
of Proposition 2, by studying the level sets of V̇ we can
describe the convergence set of the system. In Fig. 6 we

can see that the three areas containing the stable equilibria
are highlighted. Other regions are highlighted as well, due
to the existence of unstable equilibria in the system. Local
analysis should then be performed to determine the nature
of the equilibria in these regions.

5. CONCLUSION

In this paper we constructed an LMI feasibility problem,
whose solution describes a piecewise quadratic Lyapunov
function for a piecewise multi-affine model of genetic reg-
ulatory networks. Constraints on the function derivative
along the system vector field at domains vertices, and
continuity along domains boundaries, are imposed. After
discussing how the state space partition can be refined, to
get a more informative Lyapunov function, we proved that
the function is non-increasing along any system trajectory
and consequently a Lasalle-like result holds. These results
are used to study a self-activating toggle switch system,
highlighting its convergence regions.
Many future research directions are open. First of all,
while positivity constraints are already dropped, results
on discrete abstraction of the system dynamics available in
literature can be used to drop many continuity constraints
as well. Moreover techniques to find parameter dependent
Lyapunov functions may be investigated, the parameters
being connected to the weight of the convex combination
in Proposition 1.
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