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Abstract: We present a novel approach to the reconstruction of the physical pedalling torque
in an electrically powered bicycle. The external force due to the road slope that is acting on the
bicycle is estimated employing the reconstruction of the inclination angle with an orthogonal
filter. This orthogonal filter uses an adaptive weighting between gyroscope and accelerometer
sensor data. The applied weighting function is based on the bicycle’s acceleration, estimated from
a bicycle velocity sensor. By employing a nonlinear physical model of the bicycle, the cyclist’s
pedalling torque is reconstructed with an Unscented Kalman Filter. Experimental results from
the inclination angle estimator and virtual torque sensor for different road slopes underline the
performance of the proposed approach.
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1. INTRODUCTION

The density of road traffic has continuously increased
in Europe in recent times. There was, for example, an
increase in road traffic of kilometres travelled of 34 %
from 1991 to 2016 in Germany alone (Umweltbundesamt
(2019)). As a consequence, air pollution of urban areas is
under ongoing public discussion. Moreover, local govern-
ments in Europe disincentivising the use of conventionally
fuelled vehicles and a ban of certain vehicle classes for
urban areas is discussed. Additional problems arise in
urban or metropolitan areas due to increasing road traffic
that is caused by parcel, express and courier services. Here,
an increase in deliveries of about 7 % was observed in
Germany for the year 2017.

Electrical mobility concepts were recently introduced to
provide a solution to the challenges posed by public and
individual transportation. Ground-based electric mobility,
however, is not limited to buses, cars and trains but
also single-track vehicles, such as electric bicycles play
a role in modern urban traffic. Electric bicycles present
a cost-effective, practical and relatively cheap alternative
for short to medium travelling distances. Besides the
advantage of a reduction of the environmental impact in
urban areas, an electric bicycle might require the active
contribution of the driver. Therefore, a health or fitness
component is associated with electrical bikes, which makes
them also attractive for the ageing population.

Market available electrical bicycles can be divided into
two main categories. Here we refer to (a) an E-bike as an
electrical bicycle that does not require the active pedalling
contribution of the driver. The mechanical power may thus
be fully provided by the electrical motor. The required
electrical support power can be adjusted by the user of the
E-bike. (b) A PEDELEC (derives from the term PEDal-
ELECtric) is a bicycle that includes an electric motor

that is controlled such that a mechanical support power
is provided as a fraction of the driver mechanical power.
In Pedelecs, the fraction of support power is called assist
ratio and can be adjusted by the driver. Pedelecs have sev-
eral advantages. Similar to purely physiologically powered
bicycles, they have a small footprint, are relatively light,
easy to use and there is no need for a licence or insurance.
They require only a reduced physical effort, yet they are
partially human-powered; so a fitness aspect can still be
associated. During the last decade there was a tremendous
increase in the number of sold pedelec systems in Europe
and North America and the marked for pedelec systems is
still growing (Simsekoglu and Klöckner (2019)).

The commercial success of Pedelecs has also lead to in-
creased attention in the scientific community. In recent
years, different Pedelec concepts were introduced and cor-
responding control strategies were investigated. Advanced
control strategies that automatically determine the sup-
port ratio, with e.g. the objective of a longer range, were
presented in Fayazi et al. (2013). Some of these studies
employ physiological models of the fatigue state of the
driver (Corno et al. (2016)). However, of central impor-
tance for the development of pedelec support systems,
is the optimisation of the drive unit and corresponding
control strategies.

Modern drive units of Pedelecs are typically equipped
with a torque sensor which is able to measure the ped-
alling torque given by the driver. A reconstructed driver
pedalling torque, based on, e.g. a model, has, therefore,
the potential to save money, weight and available drive
unit space. Driver pedalling torque estimation was already
addressed in the literature. A study on the reconstruction
of the driver torque is presented by Huang et al. (2016).
The authors propose a model that is based on Newtons
second law and a Luenberger observer. A disturbance
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Fig. 1. Concept of Pedelec with parallel power-train (C: Cyclist, M: Motor, CR: Chain Ring, g: Hub Gear). Two
freewheels decouple the rotation caused by the motor and the cyclist when the rotational speed of both differs.

observer for the reconstruction of pedalling torque is pro-
posed in Sankaranarayanan and Ravichandran (2015). The
approach is based on modelling the pedalling torque as a
disturbance, to use it as a reference signal for a torque
controller.

In contrast to the previous approaches, we address the
reconstruction of driver pedalling torque by employing a
nonlinear bicycle dynamics model. Our novel approach
relies on the accurate reconstruction of the bicycle in-
clination angle (i.e. pitch angle) based on a drive unit
micro-electro-mechanical-sensor (MEMS). An adaptive or-
thogonal filter is proposed (Mahony et al. (2008)), which
employs the bicycle acceleration in addition to the 3-axis
accelerometer and gyroscope data. An Unscented Kalman
Filter (UKF) is developed that estimates the driver’s ped-
alling torque based on a process model of an external
disturbance in form of a Brownian motion.

This paper is organised as follows. In Section 2, the
nonlinear bicycle model which is the basis for the UKF
is introduced. Section 3 follows with the presentation
of the orthogonal filter and the design of the UKF. In
Section 4, simulation and experimental data are shown
and discussed. Finally, Section 5 ends with a conclusion.

2. SYSTEM MODELLING

2.1 Electric drive system

A principal conceptual overview of the Pedelec drive sys-
tem with a motor placed at the bottom bracket is given in
Figure 1. The electrical motor is connected to the bottom
bracket shaft by a gear reduction stage. Two freewheel
mechanisms decouple the motor from the pedalling and
the chain spider motion. The torques of the cyclist τC
and the electrical motor τM are summed up to result
in the torque that is transmitted to the chain via the
spider τdrive,CR. Transmission ratios of the electrical motor
and the gear hub are given by RM and Rg, respectively.
Fig. 1 also includes the controller that is used to provide
supportive torque, based on measured pedalling cadence
ω̂C and torque τ̂C . Electrical energy is typically taken from
a rechargeable battery, indicated by terminal voltage UBat.
A damping of gear reduction and bearings is indicated by
lumped parameter γ. Note that the rotational speed of

the chain ωCR depends on the pedalling motion of the
driver, the motor motion and the freewheel mechanism, as
indicated by the equation provided in Fig. 1.

2.2 Model equations

The main forces driving the bicycle are the torque provided
by the cyclist τC and the torque provided by the motor
τM . The former one results from a force the cyclist applies
to the pedals, whereby the pedals are attached to the
bicycle’s bottom bracket via a lever arm of the length
rpedal. The cyclist’s torque is superimposed by a torque
generated by the drive unit, that is also directly applied
to the chain ring:

τdrive,CR = τC + τM . (1)

The forward force that drives the bicycle is given by

Fdrive = τdrive,CR · (1− γ) · Rg
rwheel

, (2)

where rwheel denotes the radius of the wheel and γ accounts
for losses of the torque transmitted via the chain. There
are additional forces that act on the bicycle. The rolling
friction force is given by (Ehsani et al. (2005))

Froll(t) = mtotal · g · cr · cos(αs(t)) , (3)

where mtotal = mcyclist + mbike denotes the total mass
of the bicycle, cr is a rolling friction factor, g is the
gravitational constant and αs is road’s slope angle. Rolling
and bearing friction forces of the bicycle are modelled as
(Páscoa et al. (2012))

Fbearing(t) = Fb0 + Fb1(t)

= β0 + β1 · vbike(t)
(4)

where the constant part is covered by β0 and the bicycle
velocity vbike is multiplied by β1. An external force is
acting on the bicycle due to gravity. This force varies
depending on road slope angle αs as

Fslope(t) = mtotal · g · sin(αs(t)) . (5)

Finally, the force due to air drag is given as

Fair(t) =
1

2
· cd · ρ ·Atotal · v2bike(t) , (6)

and depends on drag coefficient cd, air density ρ, total
exposed frontal plane area Atotal and the bicycle velocity
above ground vbike. External forces due to wind are ne-
glected since there is no sensor available. The sum of all
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forces of eqs. (2)-(6), together with the mass of inertia and
the inertia of the two wheels Jwheel

mtot = mtotal +
Jwheel
r2wheel

, (7)

leads to the nonlinear state space model

ẋ =f(x,u) =

[
ṡbike
v̇bike

]

=f


[
sbike
vbike

]
,


τC
τM
αs
Rg
β0




=

[
vbike

1
mtot

(
−β0 − β1 · vbike − 1

2 · cd · ρ ·Atotal · v2bike
)]

+

[
0

1
mtot

(−mtotal · g · (cr · cos(αs) + sin(αs)))

]
+

[
0

1
mtot

(
(1−γ)Rg

rwheel
(τM + τC)

)]
.

(8)
A subset of parameters of the dynamical bicycle model
were fitted according to experimental data, recorded while
pedalling on level road. In order to find the parameters,
the quadratic error with respect to bicycle velocity is
minimised

min
γ,cr,β0,β1,cd,Atotal

(
vbike,meas(t)− vbike,sim(t)

)2
, (9)

where vbike,meas is the measured velocity of the bicycle on
a flat ground and vbike,sim is the simulated output of the
model. Bicycle model parameters are given in Table A.1 in
Appendix A. Figure 2 shows the results of the parameter
fitted model.

3. FILTER DESIGN

3.1 Orthogonal Filter

The orthogonal filter that is employed here processes
available 3-degrees of freedom (DoF) accelerometer and
gyroscope measurements. The proposed filter is based on
(Mahony et al. (2008)) and (Madgwick (2010)). Of special
interest for the virtual torque sensor application is the
pitch angle Θ which gives information about the current
road slope angle. We define a positive pitch angle Θ in
the opposite direction of the road slope angle αs. A typi-
cal assumption for the reconstruction of inclination angle
data from 6-DoF gyroscope/accelerometer data is that
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Fig. 2. Result of parameter fitting for the bicycle model
(red - simulated velocity, blue - measured velocity).

the inertial measurement unit (IMU) only measures the
Earth’s gravity field (Madgwick (2010)). However, in the
bicycle application scenario linear accelerations typically
appear in acceleration or brake phases. The application of
a fusion of 3-DoF accelerometer data would thus lead to
an erroneous reconstruction of inclination angles in theses
phases. We therefore present a new adaptive version of the
orthogonal filter which weights the different orientation
estimations based on the gyroscope and acceleration mea-
surement with a sliding gain under the presence of linear
accelerations. Here, we employ a high-resolution velocity
sensor located in the hind wheel of the bicycle. Thus, in a
first step, the acceleration of the bicycle â is estimated by
using a DT1 structure

GDT1(s) =
â(s)

vbike(s)
=

1.25 · s
1 + 1.25 · s

, (10)

whereby the cut-off frequency of the high pass filter GDT1

was chosen to 1.247 rad/s. In a second step, the estimated
acceleration of the bicycle â is used to calculate a weighting
factor γa for b

w
˙̂qerr,k :

γa =

 1, for |â| < 0.1m
s2

−10 · |â|+ 2, for 0.1m
s2 < |â| < 0.2m

s2

0, for |â| > 0.2m
s2 ,

(11)

where b
w

˙̂qerr,k denotes the quaternion of the estimated
error in the angular rate derived by the acceleration
measurement. A block diagram showing the adaptive
quaternion-based, orthogonal orientation filter is given in
Figure 3. Note that the optimisation problem to compute
the desired orientation b

w
˙̂qg with the predefined reference

direction of the gravity field in the world coordinates wg
when a normalized acceleration measurement in the body-
fixed coordinates bâ is given by

min
b
wq̂g ∈R4

f
(
b
wq̂g ,

wg , bâ
)

(12)

fg
(
b
wq̂g ,

wg , bâ
)

= b
wq̂g ⊗ wg ⊗ b

wq̂g − bâ (13)

b
wq̂g = [q0 q1 q2 q3]

T
(14)

wg = [0 0 0 1]
T

(15)
bâ = [0 ax ay az]

T
. (16)

3.2 Torque estimation

For an estimation of the torque, the model dynamics of
eq. (8) was extended with an additional acceleration state
aC that is caused by the pedal torque, as generated by the
driver. This additional input is acting on the acceleration
summation point and is driven by a white noise process
ȧC = w3. Given an estimation of the acceleration caused
by the cyclist makes it possible to calculate a torque τ̂C
that is required to cause such an acceleration:

τ̂C =
rwheelJtotal
(1− γ) ·Rg

aC . (17)

The nonlinear Euler discretised dynamical system is given

xk =f(xk−1,uk) + wk[
xs,k
xv,k
xaC ,k

]
=f

[ xs,k−1xv,k−1
xaC ,k−1

]
,

τMαsRg
β0


+ wk ,

(18)

where the nonlinear output function can be described by:
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Fig. 3. Quaternion-based, orthogonal orientation filter with Gauss-Newton optimization.

zk =h(xk,uk) + vk[
zs,k
zv,k
za,k

]
=

[
sbike,k
vbike,k
abike,k

]
= h

[ xs,kxv,k
xaC ,k

]
,

τMαsRg
β0


+ vk .

(19)

The parameters w and v represent zero-mean, uncorre-
lated white Gaussian noise processes with

E

{[
wi

vi

] [
wT
j wT

j

]}
=

[
Q 0
0 R

]
δij . (20)

In eq. (20), Q and R are the corresponding covariance
matrices, and δij denotes the Kronecker delta function.
For the UKF in this work, the following process noise and
measurement noise covariance matrices are proposed

Q = Σx,0 =

[
0.01 0 0

0 0.01 0
0 0 0.01

]
, R =

[
0.001 0 0

0 0.001 0
0 0 0.1

]
,

(21)
whereby the initial state guess covariance Σx,0 is chosen
equal to the process noise covariance. The choice of Q
and R is motivated as follows. A measurement for the
acceleration of the bicycle in driving direction can either
be given by the accelerometer of the IMU and subtract-
ing the gravity vector or by calculating the abbreviation
of the measured velocity of the bicycle. Either way, the
measurement of the acceleration has a higher error than
the measurement of the velocity or the distance. There-
fore, the measurement noise covariance for the acceleration
measurement R3,3 is chosen two powers of ten bigger than
the one for the velocity R1,1 and the distance measurement
R2,2. Furthermore, the noise in the acceleration measure-
ment should be filtered out, which is why Q3,3 was chosen
ten times smaller than R3,3. Nevertheless, the state estima-
tion should respond quickly, especially for changes in the
velocity. Therefore, Q1,1 and Q2,2 were chosen ten times
bigger then R1,1 and R2,2. With these covariance matrices,
a fast response of the estimated velocity is expected, while
the estimation of the cyclist’s acceleration is expected to
have a low-pass filtered behaviour.

The UKF was implemented in Matlab/Simulink according
to (Julier and Uhlmann (2004)). In a first step, the sigma
points X i,k−1 and the weightings Wm,c

i (i ∈ (1 . . . 2N))
are calculated. The free parameters in the scaling factor
λ = α2(N+κ)−N and β were chosen as suggested in (Wan
and Van Der Merwe (2000)): α = 10−4 (a small positive

value), κ = 0 and β = 2. The UKF’s sample time was
chosen as ∆t = 50 ms motivated by the update time of
the velocity vbike and the commanded motor current iM.

4. EXPERIMENTAL RESULTS

The Pedelec used in this study is a 28-inch touring bicycle
with a hub gear. Figure 4 shows a picture of the test
bicycle. The test bicycle is equipped with a battery, an
operating panel and a Pedal-electric drive unit (Amprio
GmbH, Neuss, Germany). Communication between drive
unit and operating panel/battery is realised via the CAN-
bus. The bicycle is also equipped with a BeagleBone
Blue board (BeagleBone Blue, BeagleBoard.org, Michi-
gan, USA), a 3-DoF accelerometer and 3-DoF gyroscope
(5MPU-9250 InvenSense Inc., San Jose, USA) and a GPS
sensor (GLOBALSAT GPS Module EM-506, Globalsat
Technology Corporation, Hsien, Taiwan). The BeagleBone
Blue is connected via the CAN-bus and serves as a com-
putation platform and data logging device. In a first test,
the bicycle is driven on flat ground which leads to a
short ramp, after which flat ground follows. The length
(hypotenuse) of the ramp is given with 9.5 m and the
height is 1.33 m. This complies with a road slope angle
of 8.05◦ (or 14 % inclination). The road section in front
of the ramp was leading gently uphill (αs = 0.7◦), while
the road section behind the ramp was leading with the
same angle downhill (αs = −0.7◦). For the validation
run, the ramp was cycled upwards at an average velocity

Operating
Panel

Battery

Pedal-electric
Drive Unit

Hub Gear

BeagleBone® Blue
& GPS-Sensor

Fig. 4. Picture of the test bicycle.
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the estimated reference is given by the red curve.

of 8.6 km/h. During this run, the bicycle’s pitch angle
was estimated over the time on the BeagleBone using the
adaptive orientation filter. The measurement data of this
experiment is shown in Figure 5. Note the reversed sign
between the pitch angle Θ and the road slope angle αs.
For the right subplot in Figure 5, the pitch angle was
transformed such that it is a function of the distance
instead of the time in order to make the reference and the
estimated orientation comparable. The root mean square
error between the reference slope angle and the negative
pitch angle −Θ was calculated to RMS(Θ, αs) = 1.2◦.
Furthermore, the resolution of the bicycle’s odometer is
only provided in integer values of 1 m, which is also the
reason for the small discontinuities in the blue graph of
the right subplot.

Additional acceleration and deceleration experiments were
conducted with the adaptive filter. The maximum errors
and RMS errors during the three different phases - accel-
eration, constant velocity and deceleration - are provided
in Table B.1, Appendix B assuming a road slope angle of
αs = 0. The maximum error during the constant velocity
is caused by a street bump. The RMS error during accel-
eration and deceleration can be lowered with the modified
orientation filter by more than 2◦, while the RMS error
during a constant velocity slightly increases by 0.2◦.

An example result of an acceleration-deceleration test is
shown in Figure 6. As described in Section 3.1, the velocity
measurement is used to estimate the acceleration with a
DT1 high pass structure. This estimation â is visualized
in the second subplot of the same figure. Whenever the
estimated acceleration â is outside the dashed red lines, the
modified orientation estimation only takes the gyroscope
measurement into account in order to prevent an error-
prone estimation due to linear acceleration. The calculated
pitch angle Θ of the bicycle is presented in the third
subplot of Fig. 6. Whereby, the pitch angle was calculated
twice, first, by using the modified orientation filter that
takes the estimated acceleration â into account (blue
line in third subplot). Secondly, by using the unmodified
orientation filter according to (Madgwick (2010)) (red line
in third subplot). The real road slope angle in this test
was assumed to be αs = 0. It can be observed that the
pitch angle estimated with the unmodified filter reaches
a value of Θ = 3.49◦ during acceleration, whereby the
modified orientation estimates a pitch angle close to zero.

Similar results can be observed during deceleration. In the
last subplot of Fig. 6 the measured (blue) and estimated
(red) cyclist’s torque is shown. The input to the UKF is
the estimated acceleration â, the measured velocity vbike
and the measured traveled distance sbike. An additional
input to the UKF is the estimated pitch angle, whereby
the pitch angle from the orientation filter is not directly
used, but instead a moving average Θ̄ with a window size
of 5 s in order to filter out any bumps and vibrations due
to uneven ground. During the acceleration phase, it can be
observed that the estimated torque using the UKF directly
responds to the increasing velocity. Additionally, it can be
seen that the estimated torque follows an approximated
average mean value of the measured torque. Therefore,
for validation purposes, it is proposed not to calculate the
RMS error between the real measured torque but instead
to calculate the RMS between the estimated torque and a
moving average τ̄C of the measured torque with a sliding
window size of 0.7 s. This RMS error for the time from the
start of the acceleration until the start of the deceleration
phase is calculated to: RMS(τ̂C, τ̄C) = 10.1 Nm. During
the deceleration phase, it can be seen that the UKF also
estimates negative torque corresponding to the break force
the cyclist applies through the breaks.

5. CONCLUSION

The proposed UKF for the nonlinear bicycle model is able
to reconstruct the driver pedalling torque by introducing
a novel adaptive orthogonal filter, that is tailored to this
application. However, a trade-off needs to be made. On
the one hand, the estimation of the pitch angle should
be robust under the presence of high vibrations and road
bumps. On the other hand, high dynamics are required
in the pitch angle estimation in order to provide a good
torque estimation with the UKF as there are fast changes
in the road’s slope angle. Nevertheless, the developed UKF
is a promising approach that could replace the torque
sensor in the bicycle to save costs.
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Appendix A. BICYCLE MODEL PARAMETERS

Table A.1. Identified parameters for the bicycle
model.

Name Parameter Value Unit

Mass of bicycle and cyclist mtotal 95 kg

Earth’s gravity g 9.81 m
s2

Air density ρ 1.2 kg
m3

Wheel radius rwheel 0.3683 m

Chain wheel & gear loss γ 0.09 -

Rolling friction coefficient cr 0.006 -

Bearing resistance coefficient β0 0.15 N

Bearing resistance coefficient β1 1.497 N s
m

Aerodynamic drag coefficient cd 0.4 -

Exposed frontal plane Atotal 0.5 m2

Pedal momentum arm length rpedal 0.175 m

Appendix B. MAXIMUM RMS ERRORS

Table B.1. Maximum and RMS errors for the
unmodified and modified orientation estima-

tion.

max|Θ− αs| RMS(Θ, αs)
unmodified modified unmodified modified

Accel. 3.49◦ 0.77◦ 2.38◦ 0.22◦

Const. vel. 0.86◦ 1.84◦ 0.34◦ 0.54◦

Accel. 5.95◦ 1.38◦ 3.82◦ 0.84◦
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