
Observer Based Nonlinear Control of a
Rotating Flexible Beam ?

Andrea Mattioni ∗ Jesus Toledo ∗ Yann Le Gorrec ∗

∗ FEMTO-ST, Univ. Bourgogne Franche-Comté , CNRS, Besançon,
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Abstract: This paper presents an observer based nonlinear control for a flexible beam clamped
on a rotating inertia. The considered model is composed by a set of Partial Differential Equations
(PDEs) interconnected with an Ordinary Differential Equation (ODE), with control input in the
ODE. The control problem consists in orienting the beam at the desired position, maintaining
the flexible vibrations as low as possible. To this end, it is presented a nonlinear controller that
depends on the beam’s state. An Observer is designed to reconstruct the infinite dimensional
state, and the estimated state is used in the nonlinear controller instead of the real one.
Assuming well-posedness of the closed loop system, it is shown the exponential convergence
of the estimated state, and the asymptotic stability of the closed loop system. Numerical
simulations are presented to characterize the closed loop behaviour with different choices of
observer’s parameters.

Keywords: Distributed-parameter system, Nonlinear control, Observers, Asymptotic stability,
port-Hamiltonian system.

1. INTRODUCTION

Control of flexible robots has been an highly investigated
topic over the last 50 years. The need of precise controllers
and stability requirements made necessary to take into
consideration distributed flexible phenomena. These pro-
cesses are modelled using Partial Differential Equations
(PDEs), where the state variables are space and time
dependent. In the specific case of a rotating flexible beam,
the inertia of the hub to which the beam is connected (i.e.
the rotor of a motor) cannot be neglected. This scenario
brings to a system modelled by an interconnection between
a set of PDEs and an ODE, with control input on the ODE.
In the literature, the control of a coupled set of PDEs
and ODEs is often referred as control of Hybrid systems
(Luo et al., 1999). The design of stabilizing controllers for
rotating flexible beams can been addressed with the use of
a PD controller (Luo and Feng, 1999), but different control
methods have been employed to have a faster vibration
suppression. In (Morgul, 1991) is shown the asymptotic
stability of a rotating Euler-Bernoulli beam with a PD +
strain feedback control, while in (Wang et al., 2017) is used
a feed-forward control law obtained by model inversion to
minimize the flexible vibrations during motion. Another
possible strategy is to include in the controller the infor-
mation about the deformation of the beam. To do so in a
passive preserving way, it is necessary to design a nonlinear
dynamic controller (Luo and Feng, 1999). This control law
have been rewritten as a passively interconnected port-
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Hamiltonian (PH) system in (Aoues et al., 2019), where
Lyapunov stability has been proved. Functional analysis is
a powerful tool for studying the asymptotic behaviour of
dynamical system described by PDEs or Hybrid systems
(Curtain and Zwart, 1995). In the last decades, it has been
successfully exploited for the stability study of the class of
infinite dimensional PH systems(Jacob and Zwart, 2012;
Villegas, 2007; Le Gorrec et al., 2005), that are obtained as
an extension of the finite dimensional PH systems (van der
Schaft and Maschke, 2002). In a more general fashion, the
control problem of nonlinear feedback for a class of infinite
dimensional PH systems has been presented in (Ramirez
et al., 2017), where conditions for asymptotic and expo-
nential stability are given. In (Mileti et al., 2016), pre-
compactness of trajectories combined with the existence
of a limit set is used to prove the asymptotic stability for
an Euler-Bernoulli beam subject to a class of nonlinear
feedbacks.
In this manuscript we propose a similar control law as
proposed in (Luo and Feng, 1999) where, since in practical
applications the state of the beam is not directly available,
the controller makes use of an observed state instead of
the original one. The beam is modelled using the Timo-
shenko’s beam assumptions, and the closed loop system is
composed by two linear sets of PDEs interconnected with
a nonlinear set of ODEs, with the nonlinearity depending
on the infinite dimensional state.
The paper is organized as follows. In Section 2 the PH
model of a flexible beam clamped on a rotating inertia
and the observer based control design are given. In section
3 is proven the exponential convergence of the observer
and the asymptotic stability of the closed-loop system. In
Section 4 are shown numerical simulations, while some
concluding remarks and comments on future works are
given in Section 5.
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Fig. 1: Rotating flexible Timoshenko’s beam.

2. MODELLING AND CONTROL DESIGN

In the following we propose the equations of a rotating
flexible beam using Timoshenko’s assumptions in the PH
framework.

2.1 Modelling

For a sake of clarity, we define the variables and the
parameters that are used for the modelling of the system
in Figure 1. The rotor angle θ(t) is a real function of time,
while ξ ∈ [0, L] identify the spatial coordinate of the beam.
The deflection of the beam in the rotating frame is defined
with w(t, ξ), while φ(t, ξ) represents the relative rotation
of the beam cross section. All the physical parameters are
positive real. Ih represents the rotary inertia of the hub
to which the beam is connected. E, I are respectively the
Young’s modulus and the moment of inertia of the beam’s
cross section. The beam’s cross section is assumed to be
rectangular, hence its inertia is defined to be I =

L3
wLt
12 ,

where Lw and Lt are respectively the width and the
thickness of the beam. ρ, Iρ are respectively the density
and the mass moment of inertia of the beam’s cross section.
The mass moment of inertia of the cross section is defined
as Iρ = Iρ.K is defined asK = kGA, where k is a constant
depending on the shape of the cross section (k = 5/6 for
rectangular cross sections), G is the Shear modulus and A
is the cross sectional area.
From now on we will not explicit the dependency from
time and space of the variables when it is clear from the
context. The kinetic energy Hk and the potential energy
Hp, using Timoshenko’s assumptions, write

Hk =
1

2
Ihθ̇

2 +
1

2

∫ L

0

[
ρ

(
∂w

∂t
+ ξθ̇

)2

+ Iρ

(
∂φ

∂t
+ θ̇

)2
]
dξ

Hp =
1

2

∫ L

0

[
K

(
∂w

∂ξ
− φ

)2

+ EI

(
∂φ

∂ξ

)2
]
dξ.

The Hamilton’s principle is used to obtain the system’s
dynamical equations, considering Wnc = u(t)θ the work of
non-conservative forces, where u(t) identify the external
torque. The derived set of mixed partial and ordinal
differential equations write

∂

∂t

(
ρ

(
∂w

∂t
+ ξθ̇

))
=

∂

∂ξ

(
K

(
∂w

∂ξ
− φ

))
∂

∂t

(
Iρ

(
∂φ

∂t
+ θ̇

))
=

∂

∂ξ

(
EI

∂φ

∂ξ

)
+K

(
∂w

∂ξ
− φ

)
Ihθ̈ = +EI

∂φ(0, t)

∂ξ
+ u(t).

(1)

With boundary conditions

w(0, t) = 0 φ(0, t) = 0
∂w

∂ξ
(L, t)− φ(L, t) = 0

∂φ

∂ξ
(L, t) = 0.

(2)

The energy states of the infinite dimensional system are
defined by

εt =
∂w

∂ξ
− φ pt = ρ

(
∂w

∂t
+ ξθ̇

)
εr =

∂φ

∂ξ
pr = Iρ

(
∂φ

∂t
+ θ̇

)
.

(3)

The equations describing the infinite dimensional system
can be written as a PH system

ẋb = J xb = P1
∂

∂ξ
(Hbxb) + P0(Hbxb) (4)

with xb = [pt pr εt εr]
T ∈ Xb ⊂ L2([0, L],R4) representing

the system’s state. The matrices in equation (4) are defined
as

P1 =

[
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

]
P0 =

[
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

]
Hb =

[
ρ−1 0 0 0

0 I−1
ρ 0 0

0 0 K 0
0 0 0 EI

]
.

The state space Xb is equipped with the L2 inner product
〈xb, xb〉Xb = 〈xb,Hbxb〉L2

, such to express the energy re-
lated to the flexible part of the system asHb = 1

2 〈xb, xb〉Xb .
The boundary variables are defined as (Le Gorrec et al.,
2005) [

f∂
e∂

]
=

1√
2

[
P1 −P1

I I

] [
(Hbxb)(t, 0)
(Hbxb)(t, L)

]
.

Then, define the boundary input and output operators as

ub,1 = B1(Hbxb) = W1

[
f∂
e∂

]
= −I−1ρ pr(0, t)

ub,2 = B2(Hbxb) = W2

[
f∂
e∂

]
=

[
−ρ−1pt(0,t)
Kεt(L,t)
EIεr(L,t)

]
yb,1 = C1(Hbxb) = W̃1

[
f∂
e∂

]
= EIεr(0, t)

yb,2 = C2(Hbxb) = W̃2

[
f∂
e∂

]
=

[
Kεt(0,t)

ρ−1pt(L,t)

I−1
ρ pr(L,t)

]
(5)

where W =
[
W1

W2

]
and W̃ =

[
W̃1

W̃2

]
are appropriate

matrices, and are such that
[
W
W̃

]
is non-singular. The total

boundary input-output operators are defined as

B(Hbxb) =

[
B1(Hbxb)
B2(Hbxb)

]
=

[
W1

W2

] [
f∂
e∂

]
C(Hbxb) =

[
C1(Hbxb)
C2(Hbxb)

]
=

[
W̃1

W̃2

] [
f∂
e∂

] (6)

Denote with ur the restoring torque ur = ∂φ(0,t)
∂ξ and with

yr the hub’s rotating velocity yr = θ̇. The states related
to the finite dimensional part are defined as p = Ihθ̇ and
q = θ, and the related equations write

ṗ = +ur(t) + u(t)

q̇ = I−1h p

yr(t) = I−1h p.

(7)

Using the original boundary conditions (2) together with
the state variable definition (3) to derive the intercon-
nection relation between the infinite dimensional and the
finite dimensional parts of the system

ub,1 = −yr ur = +yb,1. (8)
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while the remaining boundary conditions of (4) are equal
to zero, i.e. ub,2 = [0 0 0]T .

2.2 Observer based Control design

The aims of the proposed control law are to orient the
beam in the desired configuration and to change the elastic
behaviour of the closed loop system using the state of the
infinite dimensional part of the system. The nonlinear part
of the control law is inspired by (Luo et al., 1999), but here

we make use of an observed state x̂b ∈ X̂b ∈ L2([0, L],R4)

instead of the original one. To this end, Define g : X̂b → R
and assume that it is linear. The control law writes{

ẋc = −rcxc + g(x̂b)θ̇(t)

u(t) = −k1(θ(t)− θ∗)− g(x̂b)k2xc − k3θ̇(t)
(9)

with xc ∈ R the controller’s state. Without loss of gener-
ality, we consider the stabilization problem to the origin
θ∗ = 0. The second term in u(t) is the nonlinear term
depending on a function of the observed state g(x̂b) and
on the controller variable xc. This controller construction
makes possible the dependence of the controller dynamics
on the observed infinite dimensional state.
For the infinite dimensional state reconstruction we pro-
pose a Luenberger observer: starting from the boundary
observation of the infinite dimensional system, it recon-
structs the original state with an exponential rate. It is
assumed that all the physical parameters of the infinite
dimensional system are known. The observer equations
have the same form of the original system

˙̂xb = P1
∂

∂ξ
(Hbx̂b) + P0(Hbx̂b), (10)

with boundary inputs and observations

B(Hbx̂b) =

[
W1

W2

] [
f∂
e∂

]
= ûb(t) = ub(t)− L(ŷb(t)− yb(t))

C(Hbx̂b) =

[
W̃1

W̃2

] [
f∂
e∂

]
= ŷb(t)

where, L = diag([l1 l2 l3 l4]) ≥ 0 since l1, l2, l3, l4 ≥ 0. For
analysis purposes, it is convenient to perform a change of
coordinates defining the error state x̃b = x̂b − xb and its
dynamics

˙̃xb = ˙̂xb − ẋb
= P1

∂

∂ξ
(Hbx̂b) + P0(Hbx̂b)− P1

∂

∂ξ
(Hbxb)− P0(Hbxb)

= P1
∂

∂ξ
(Hbx̃b) + P0(Hbx̃b)

(11)

where x̃b ∈ X̃b ⊂ L2([0, L],R4) and the operators’ linearity
has been used. The Observer’s boundary operators are
defined as the ones of the original infinite dimensional
system (6)

C(Hbx̃b) = C(Hbx̂b)− C(Hbxb)
= ŷb − yb = ỹb

and,

ũb = B(Hbx̃b) = B(Hbx̂b)− B(Hbxb)
= ub(t)− L(ŷb − y(t))− ub(t)
= −Lỹb.

(12)

The controller (9) can be rewritten as a dynamic PH
system of the form:


[
q̇

ẋc

]
=

[
0 0

0 −rc

] [
k1q

k2xc

]
+

[
1

g(x̂b)

]
uc

yc =
[
1 g(x̂b)

] [ k1q
k2xc

]
+ k3uc.

To connect the controller to the system we make use of a
power preserving interconnection:

uc = yr, u = −yc. (13)

To keep the analysis clear, the xc dynamics is maintained
separated from the rest of the system. Hence, we define
the closed loop semilinear equation

ẋ =

 P1
∂
∂ξ (Hbxb)+P0(Hbxb)

P1
∂
∂ξ (Hbx̃b)+P0(Hbx̃b)

(Jr−Rr)Qrxr+grC1(Hbxb)
−rck2xc

+

[
0
0

−grg(x̃b+xb)k2xc
+g(x̃b+xb)g

T
r Qrxr

]
= Ax+ f(x) = Anlx

(14)
where x = [xb x̃b xr xc]

T ∈ X ⊂ L2([0, L],R4) ×
L2([0, L],R4)×R2×R, and xr = [p q]T . The new matrices
are defined as

Jr =

[
0 −1
1 0

]
Rr =

[
k3 0
0 0

]
Qr =

[
1

I
0

0 k1

]
with Jr = −JTr , Rr = RTr ≥ 0, Qr = QTr > 0. The linear
operator domain is defined as

D(A) = {x ∈ X|xb, x̃b ∈ H1([0, L],R4),Wxx = 0} (15)

where,

Wxx =

Bb,1(Hbxb) + gTr Qrxr
Bb,2(Hbxb)

Bb(Hbx̃b) + Cb(Hbx̃b)

 .
We equip the state space with the inner product 〈x, x〉X =
〈xb,Hbxb〉L2

+ 〈x̃b,Hbx̃b〉L2
+ xTr Qrxr + k2x

2
c , and define

the closed loop total energy as H = 1
2 〈x, x〉X . In the

closed-loop energy it appears the square of the controller
state xc, that in turns has its dynamics depending on the
function g(x̂). Hence, the closed loop energy contains a
term depending on the the estimation of the flexible state,
and different designs of g(x̂) modify the closed loop elastic
behaviour in different manners.

3. ASYMPTOTIC STABILITY OF THE
CLOSED-LOOP SYSTEM

Since the closed loop system is described by a semilinear
equation, it is possible to use perturbation theory to prove
its stability (Oostveen, 2000). To this end, we first prove
that the linear operator A of system (14) generates a
contraction C0-semigroup.

Theorem 1. The linear operator A with domain (15) gen-
erates a contraction C0-semigroup on X. Moreover, A has
a compact resolvent.

Proof. The contraction C0-semigroup generation is proved
applying the Lummer-Phillips theorem. To this end two
properties need to be verified: the dissipativity of the
operator A, and that ran(λI − A) = X. Dissipativity
consists on showing that 〈Ax, x〉X ≤ 0, then
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2〈Ax, x〉X = 〈Ax, x〉X + 〈x,Ax〉X
= 〈J xb,Hbxb〉L2 + 〈Hbxb,J xb〉L2

+2(Qrxr)
T (Jr −Rr)Qrxr

+2Cb,1(Hbxb)gTr Qrxr − 2rck
2
2x

2
c

+〈J x̃b,Hbx̃b〉L2
+ 〈Hbx̃b,J x̃b〉L2

Thanks to the port variable selection is true that

〈J xb,Hbxb〉L2
+ 〈Hbxb,J xb〉L2

= 2u1,by1,b,
〈J x̃b,Hbx̃b〉L2

+ 〈Hbx̃b,J x̃b〉L2
= 2〈ũb, ỹb〉R4

(16)

and since Rc ≥ 0, rc > 0, k2 > 0, L ≥ 0,

〈Ax, x〉X = −(Qrxr)
TRrQrxr − rck22x2c − 〈Lỹ, ỹ〉 ≤ 0.

The range condition consists on finding a λ > 0 such
that for all f ∈ X there exists x ∈ D(A) such that
(λI − A)x = f . The problem is divided in two different
parts because the error system is not affected from the
rest of the system. The range condition for the part of the
system related to the error system follows from Theorem
2.26 of (Villegas, 2007). For the remaining equations, the
range condition relies on the existence of the right inverse
of the operator Bb subjected to a perturbation of the form
(Bb + KCb), with B, C operators defined in equation (6),
and K a singular matrix. The existence of this right inverse
follows from the non-singularity of

[
W
W̃

]
.

To prove the compactness of the resolvent define the
sequence

{zn} = (λI −A)−1{xn} (17)

where, without loss of generality, assume {xn} bounded
∀n ∈ N. For the compact operator definition, we have
to show that {zn} has a converging subsequence on X.
Define {zn} = [{zn,1} {zn,2} {zn,3}]T ∈ H1([0, L],R4) ×
H1([0, L],R4)× R3 and {xn} = [{xn,1} {xn,2} {xn,3}]T ∈
X. The operator A generates a contraction C0-Semigroup,
hence by the Hille-Yoshida theorem (Curtain and Zwart,
1995, Theorem 2.1.12, pag 26) is true that ||(λI−A)−1|| <
1
λ . This implies that also {zn} is bounded in X. Since
{zn,3} belongs to a finite dimensional space, it follows
that it has a convergent subsequence. For both {zn,1} and
{zn,2} we have

||zn,i||2H1 = || ∂
∂z
zn,i||2L2

+ ||zn,i||2L2
i = {1, 2} (18)

Using the J definition and equation (17), it holds

|| ∂
∂z
zn,i||2L2

= ||P−11 J zn,i + P−11 P0zn,i||2L2

≤ ||P−11 (λzn,i − xn,i)||2L2
+ ||P−11 P0zn,i||2L2

< ∞
(19)

Then, {zn,i} is bounded in H1 and from the Sobolev
embedding theorem it implies that {zn,i} has a converging
subsequence in L2 for i = {1, 2}. Therefore,A has compact
resolvent. 2

The error system does not receive any input from the other
parts of the system, hence its evolution is solely determined
by its initial conditions, i.e. the initial error between the
observer and the real initial state. Consequently, it is
possible to conclude about its stability separately from
the rest of the system.

Theorem 2. The error system defined by equation (11)
and boundary conditions (12) is exponentially stable if
l1, l2 > 0, l3, l4 ≥ 0 or l3, l4 > 0, l1, l2 ≥ 0.

Proof. Assume that l1, l2 > 0, l3, l4 ≥ 0 and define the
function Ẽ = 1

2 〈x̃,Hbx̃〉L2
. Take its time derivative to

obtain
1

2
Ė(x(t, x̃0)) =

1

2
〈J x̃,Hbx̃〉L2

+
1

2
〈Hbx̃,J x̃〉L2

= 〈ũb, ỹb〉R4 = −〈Lỹb, ỹb〉R4

Where equations (12) and (16) have been used. Then,

defining k = max{ 1+l
2
1

l21
,
1+l22
l22
} and using equation (12),

||(Hbx̃)(0)||2R4 =

(
1

ρ
p̃t(0)

)2

+

(
1

Iρ
p̃r(0)

)2

+ (Kε̃t(0))2

+(EIε̃r(0))2

=
1 + l21
l21

(l1Kε̃t(0))2 +
1 + l22
l22

(l2EIε̃r(0))2

≤ k((l1Kε̃t(0))2 + (l2EIε̃r(0))2

+

(
l3

1

ρ
p̃t(L)

)2

+

(
l4

1

Iρ
p̃r(L)

)2

)

= k〈Lỹb, ỹb〉R4

The statement follows from Corollary 5.19 of (Vil-
legas, 2007). Exponential stability assuming l3, l4 >
0, l1, l2 ≥ 0 follows from very similar arguments com-
puting ||(Hbx̃)(L)||2R4 instead of ||(Hbx̃)(0)||2R4 . 2

The previous theorem states that the observer converges
exponentially also in case boundary observations are avail-
able only at one side of the beam.
To be able to prove the asymptotic stability of the closed
loop system it is first necessary to show that p and xc are
square integrable on infinite time.

Lemma 3. The solutions of system (14) are bounded in
every interval [0, t], t > 0, and for all initial condition
x0 ∈ D(A). Moreover, p, xc ∈ L2([0, t]) ∀t > 0.

Proof. Boundedness of solutions follows from the exis-
tence of a Lyapunov function. This means that we have to
show that exists a function V : X → R+ such that V (0) =

0 and with time derivative V̇ (x0) ≤ 0, ∀x0 ∈ D(A).
To this end we take V (x0) = 1

2 〈x0, x0〉X as candidate
Lyapunov function. Its time derivative is defined as

V̇ (x0) = lim
t→0

V (x(t, x0))− V (x0)

t

and it can be proven that V̇ (x0) = dV (x0)Anlx, where
dV (x0) is the Fréchet derivative of the candidate Lyapunov
function in x0. Then,

dV (x0)Anlx = +
1

2
〈J xb,Hbxb〉L2 +

1

2
〈Hbxb,J xb〉L2

+
1

2
ẋTr Qrxr +

1

2
xrQrẋ

T
r + kcxcẋc

+
1

2
〈J x̃b,Hbx̃b〉L2 +

1

2
〈Hbx̃b,J x̃b〉L2

Similarly to proof of Theorem 1, and substituting xr and
xc dynamics we obtain

V̇ (x0) = ub,1yb,1 +
1

2
((Jr −Rr)Qrxr + grCb,1(Hbxb)

−grg(x̂)k2xc)Qrxr +
1

2
(Qrxr)

T ((Jr −Rr)Qrxr
+grCb,1(Hbxb)− grg(x̂)k2xc) + k2xc(−rck2xc
+g(x̂)gTr Qrxr) + 〈ũb, ỹb〉R4

= ub,1yb,1 + yryb,1 − (Qrxr)
TRrQrxr − rck22x2c

+〈ũb, ỹb〉R4
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thanks to the skew symmetry of Jr, and using the bound-
ary input-output definitions (5). Using the interconnection
law definition (13), and the error system input definition
(12), we obtain

V̇ (x0) = −(Qrxr)
TRr(Qrxr)− rck22x2c − 〈Lỹb, ỹb〉R4 ≤ 0

(20)
From this it follows that V (x) is a Lyapunov function and
then that trajectories are bounded. To obtain the second
part of the statement we integrate both members of (20)
and we note that (Qrxr)

TRr(Qrxr) = k3
I2 p

2 to obtain

V (x(t, x0)) = V (x0)−
∫ t

0

k3
I2
p2ds−

∫ t

0

rck
2
2x

2
cds

−
∫ t

0

〈Lỹb, ỹb〉R4ds

Since the Lyapunov function V (x) is bounded from below,
the statement follows. 2

We are now in the position to state the result on asymp-
totic stability of the closed loop system.

Theorem 4. The closed loop system defined by (14) is
globally asymptotically stable.

Proof. Notice that we do not have any control on the
error system, but with Theorem 2 we have already proven
that it is exponentially stable. Hence, it remains to show
that the other part of the system described by

ż = Ãz +Bu(t)

=

[
P1

∂
∂ξ (Hbxb)+P0(Hbxb)

(Jr−Rr)Qrxr+grC(Hbxb)
−rckcxc

]
+
[

0 0
gr 0
0 1

]
u(t)

(21)

with z = [xb xr xc]
T ∈ Z ⊂ L2([0, L],R4) × R2 × R,

u(t) = [g(x̃b + xb)k2xc g(x̃b + xb)Qrxr]
T and

D(Ã) = {z ∈ Z|xb ∈ H1([0, L],R4),
B1(Hbxb) + grQrxr = 0,B2(Hbxb) = 0},

is asymptotically stable. Firstly, define

B =
[

0 0
gr 0
0 1

]
, B∗ = BT

[
Hb 0 0
0 Qr 0
0 0 k2

]
=
[
0 gTr Qr 0
0 0 k2

]
K =

[
k3 0
0 rc

]
. (22)

Hence, define the weighted input-output matrices as B̃ =
B
√
K and B̃∗ =

√
KB∗. Then, the system (21) can be

rewritten as ż = (Ã′ − B̃B̃∗)z + B̃ũ(t), with ũ(t) =√
K
−1
u(t). The operator Ã′ is the same as the operator

Ã, but without the dissipation terms. With very similar
arguments as in the proof of Theorem 1, it is possible
to show that the operator Ã′ generates a contraction
C0-semigroup, and it has compact resolvent. Moreover,
the approximate controllability of the couple of operators
(Ã, B) has been proved in (Krabs and Sklyar, 1999), from

which it follows the approximate controllability of (Ã′, B̃).
From Lemma 2.2.6 of (Oostveen, 2000), we conclude that

Ã = Ã′−B̃B̃∗ is strongly stable. Then, using Lemma 2.1.3
of (Oostveen, 2000) it remains to show that the considered
nonlinearity ũ(t) is square integrable in infinite time. By
definition of ũ(t), proving its square integrability is the
same as proving the square integrability of u(t), hence∫ ∞

0

(g(x̂)k2xc)
2dt =

∫ ∞
0

(g(xb + x̃b)k2xc)
2dt

≤ M2
g k

2
2

∫ ∞
0

x2cdt <∞

Table 1: Simulation Parameters

Name Variable Value
Beam’s Length L 1 m
Beam’s Width Lw 0.1 m

Beam’s Thickness Lt 0.02 m

Density ρ 950 kg
m3

Young’s modulus E 8× 108 N
m2

Bulk’s modulus K 1.7× 109 N
m2

Hub’s inertia I 1 kg ·m2

where for the first inequality it has been used the bound-
edness of xb, x̃ and the linearity of g(·), while for the
second it has been used the square integrability of xc
shown in Lemma 3. Similarly, the square integrability of
g(x̂b)g

T
r Qrxr follows from the square integrability of p.

2

4. NUMERICAL SIMULATIONS

To perform the numerical simulations, it has been con-
sidered a finite dimensional approximation of the system.
In particular, it has been used the finite element dis-
cretization for infinite dimensional PH systems presented
in (Golo et al., 2004). This allows to spatially approxi-
mate the resulting linear PDEs with linear PH systems
of dimensions depending on the number of discretizing
elements (in the shown simulation we used 20 discretizing
elements for both the beam’s and the observer’s PDEs).
Simulations were made in the Simulink R© environment
using the “ode23t” time integration algorithm. The set
of parameters used for simulation are listed in Table 1,
where a Polyethilene HDPE material has been considered
for the beam. For isotropic materials, the Shear modulus
is related to the Young’s modulus G = E

2(1+ν) , where

ν = 1
2 −

E
6K is the Poisson’s ratio. To show the observer

action, we initialize the flexible beam to the zero initial
state, while we set the observer initial condition different
from the origin x̂0 = [0.01χ(z) 0 0.01χ(z) 0]T , where
χ(z) is the characteristic function on the interval [0, L]. As
weighting function for the nonlinear controller we select
the Beam’s tip deformation, that can be reconstructed
from the system’s state

g(x̂b) = ŵ(L, t) =

∫ L

0

ε̂t(z, t) +

(∫ z

0

ε̂r(ξ, t)dξ

)
dz (23)

The results are compared with a PD controller defined as
uPD(t) = −k1(θ(t)− θ∗)− k3θ̇(t). The control parameters
of both the PD and the non-linear (9) control law are
selected as: k1 = e × 102, k2 = 1 × 102, k3 = 5 × 104 and
rc = 1 × 10−3. The error between the real and observed
tip’s deformation

w̃b(L, t) = ŵ(L, t)− w(L, t)

=

∫ L

0

ε̃t(z, t) +

(∫ z

0

ε̃r(ξ, t)dξ

)
dz

(24)

is shown in Figure 2a. Notice that the Beam’s tip de-
formation error converges to zero, and the convergence
rate depends on the value of the diagonal terms of the
observer matrix L. The set of values used in the simulation
are li = α, i = {1, 2, 3, 4} α ∈ {0.07, 0.2, 0.5}. From
Figure 3 we note that as far as the observer converges
faster to the original state, the control action is more
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Fig. 3: Tip’s deformation w(L, t).

effective in damping the beam’s tip vibrations. In case the
observer is not converging fast enough, it is shown that the
oscillation are kept smaller and the system asymptotically
converges to the origin, but with a rate similar to the PD
controller. Finally, Figure 2b shows that the hub’s angular
displacement has a similar rate of convergence in all the
different control law applications.

5. CONCLUSIONS

It has been considered a model of the rotating flexible
beam composed by a set of PDEs interconnected with an
ODE, with actuation in the ODE. Since the control input
is not on the PDEs’ boundaries, a passive preserving way
of using the deformation information in the controller is
through the use of a nonlinear dynamic control law. In this
paper, the nonlinear controller makes use of an estimated
state instead of the original one. Firstly, it has been proven
the exponential stability of the observer’s state assured
that we have at least the complete observation in one
side of the beam. Secondly, the nonlinear closed loop
system has been analysed using the operator formalism
and asymptotic stability has been formally proved. Nu-
merical simulations have been used to show the closed loop
behaviour with the use of different observer’s parameters.
An experimental set-up where it will be possible to test
the proposed control law is currently under construction.
The future work will deal with the generalization of this

type of controller for a class of PDEs-ODE system, that
can be frequently encountered in mechanical applications.
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