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Abstract: This paper provides a solution to conflict resolutions between Autonomous Vehicles
(AV) crossing an urban intersection. The conflict resolution problem is formulated as an optimal
control problem, where the objective is to minimize the energy consumption of all the vehicles,
while avoiding collisions. Since the problem has a combinatorial nature, it is tackled though a
sequential mixed-integer quadratically constrained programming approach. Simulation results
show that since the AVs do not need to follow specific driving rules, the intersection crossing
order is chosen to optimize the overall energy consumption. The research outcome underlines
the benefits of moving towards fully autonomous systems which will allow for higher tra�c
throughput. Furthermore, the proposed formulation is the starting point for future explorations
towards real-time implementation.
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1. INTRODUCTION

A major challenge in modern transportation is to achieve
zero accidents while at the same time emit as little
greenhouse gasses and harmful pollutants as possible.
The European Union aims to cut emissions by 40% with
respect to 1990 levels by 2030 (European Commission,
2019). One of the key tasks is the reduction of the total
energy consumption in di↵erent environmental problems
including urban transportation, which accounts for almost
a quarter of Europe’s greenhouse gasses emissions. One of
the main causes can be attributed to tra�c congestion and
idling time of vehicles at signalised intersections (Schrank
et al., 2019; Kural et al., 2014).

To this regard, Electric Vehicles (EV) and Autonomous
Vehicles (AV) can play a principal role, since they have
shown advantages in terms of being environmentally
friendly and energy e�cient (Xu et al., 2015; Grauers
et al., 2012; Litman, 2019). For instance, as shown in
Tate et al. (2018), fully automated road transport systems
will lead to energy consumption reductions of 55% - 66%.
Moreover, thanks to the latest technological developments,
it is nowadays possible to create a communication network
between the di↵erent agents of an urban crossroad. Com-
munication Infrastructure-to-Vehicle (I2V) and Vehicle-to-
Infrastructure (V2I) will enable the intersections to be
more e�cient in terms of time and energy consumption.

The topic of coordination of vehicles along an intersec-
tion has been addressed in the literature by di↵erent re-
searchers. For instance, Campos et al. (2015) propose a
decentralized problem formulation where each agent solve
a local optimization problem. However, the intersection
decision order considers heuristics for priority assignments
which might lead to an energy sub-optimal solution. In

Colombo and Vecchio (2015), a scheduling-based approach
is proposed, where the researchers focus on the feasibility
of a crossing sequence, where a supervisor controller acts
when necessary to maintain safety. Unfortunately, this
approach do not guarantee energy optimal solutions.

On the other hand, optimal control problem formulations
allow explicit performance objectives such as energy e�-
ciency. However, while it is frequently stated that energy
minimization is the objective, this target is commonly
not explicitly included in the cost function (de Campos
et al., 2014, 2015; Zhang et al., 2016). Hult et al. (2018)
propose an economic model predictive control formulation
using an objective function which directly captures both
energy consumption and travel time. However, rear-end
collision avoidance is not taken into account, i.e., scenarios
where multiple vehicles proceed in the same direction after
crossing the intersection.

This paper proposes an approach which aims to fill the gap
noticed in the literature by proposing an optimal control
problem formulation able to solve any kind of intersec-
tion conflict scenarios between AVs aiming to cross an
intersection, i.e., vehicles coming from each direction can
proceed straight or make a turning maneuver and multiple
vehicles can proceed along the same path once they have
crossed the intersection, with the objective to minimize
the global energy consumption of the vehicles. Moreover,
an alternative modelling framework is proposed in order
to simplify the formulation of the problem and, finally, a
Sequential Quadratic Programming (SQP) formulation is
adopted in order to solve the problem.

2. PROBLEM FRAMEWORK

In this paper, the coordination of an urban intersection
scenario of Nv AVs is probed. Each vehicle n 2 NV =
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{1, ..., Nv} follows a pre-defined route such that a collision
could occur if no control action is applied. The desired
route of each AV is considered to be a priori given, i.e.,
by using a high-level path planning algorithm, which is
outside the scope of this study. Hence, the objective is to
control the velocity of each vehicle along its trajectory such
that the energy consumption is minimized and the vehicles
positions are mutually exclusive, i.e, a control agent will
modify the desired velocity profiles of the vehicles in order
to let them cross safely while minimizing energy losses.

Specifically, a four-way perpendicular crossroad is consid-
ered in this analysis since, firstly, it represents a typical ur-
ban crossroad and, secondly, because it allows to perform
analysis on complex intersection scenarios, which will be
detailed in Section 4. Nevertheless, the work carried out
in this paper can be adapted for scenarios with di↵erent
cross angles and number of road segments, the latter at
the cost of an increase in the number of variables. Finally,
all vehicles are considered to be equipped with V2V, V2I
communication systems and at most one vehicle per lane
is approaching the intersection, i.e., cases with multiple
vehicles reaching the crossroad from the same direction
are not taken into account. This last assumption reduces
the problem complexity as it excludes rear-end collisions
before the intersection joint. However, this simplification
can be removed e↵ortlessly imposing a distance constraint
between vehicles reaching the intersection from the same
lane.

2.1 Mapping from 2D to 1D

The geometry of the crossroad is depicted in Fig. 1 where
we define as Intersection Zone (IZ) the area where two
or more routes might intersect, i.e., where a side collision
could occur. The IZ is defined by a set of four coordinates
IZ = {(xI

l , y
I
l )}l2{1,..,4} with respect to the absolute

Cartesian coordinate system OXY which define the edges
of the IZ, where the superindex I refers to Intersection.
Moreover, the absolute position of the Nv vehicles is
defined with respect to OXY and the initial and final
conditions on position and velocity are known and defined
as Po

n := {(xo
n, y

o
n)}n2NV , P f

n := {(xf
n, y

f
n)}n2NV , V

o
n, V

f
n,

for all n 2 NV , respectively. The relative position of each

Fig. 1. Crossroad schematic & conflict graph definition

Fig. 2. Vehicle’s trajectory definition

vehicle with respect to each other is defined through a
onxnyn coordinate system, coplanar to the absolute one
and rigid to the associated vehicle n 2 NV . The motion of
each AV in the two-dimensional space can be described by
the following equations of motion:

d
dsn

xn = cos ✓n (1a)
d

dsn
yn = sin ✓n (1b)

d
dsn

✓n = Kn (1c)

where ✓n defines the orientation of the vehicle with respect
to the initial configuration, and derivatives are taken with
respect to the trajectory sn (cf. Fig. 2). The curvature of
the vehicle Kn, which depends on the trajectory, is equal
to 0 for all t � 0 for vehicles having a straight trajectory
and is defined as

Kn(sn) =

(
1
Rn

for So
I,n  sn  S

f
I,n,

0 otherwise,
(2)

for vehicles making a turn, where Rn is the radius of turn
and S

o
I,n, S

f
I,n define the beginning and the end of the

intersection, respectively.

To simplify the analysis and the mathematical formulation
detailed in Section 3, the trajectory of each vehicle is con-
sidered to be straight, however still keeping the curvature
information of the vehicle as shown in Fig. 3. This formula-
tion allows to simplify the problem into single dimensional
while still having knowledge of which vehicle is performing
a turning maneuver inside the IZ, information which im-
portance will be addressed in Section 3. Finally, in order
to define the vehicles and intersection information with
respect to an absolute one-dimensional reference system,
the information defined for each vehicle n on the respective
trajectory sn are mapped to the absolute coordinate s⇤ as
shown in Fig. 3, setting S

o
1 = S

o
2 = ... = S

o
Nv

= S
o.

The single dimension coordinate reformulation is justified
from the fact that vehicle’s trajectories are imposed and
cannot be modified and, therefore, the tangential velocity,
which is the desired variable to be regulated, can be
modified just in terms of intensity, i.e., its modulus can
be varied but not its direction. Therefore, using a 1D
framework will allow to ease the problem formulation,
reducing the number of control variables, which will need
to be defined just with respect to the single dimensional
trajectory coordinate s

⇤.
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Fig. 3. Definition of a global one-dimensional reference

2.2 Conflicting Points

Two vehicles crossing the intersection define a Conflicting
Point (CP) if their trajectories intersect. Therefore, for
each vehicle j 2 NV we define a set Aj = {n 2 NV :��|
h
xn(s1)
yn(s1)

i
�
h
xn(s2)
yn(s2)

i��| = 0 for some s1, s2 2 R+}. Moreover,

since the CP for vehicle n with vehicle j coincides with
the CP of vehicle j with vehicle n, in order to remove
redundant CPs, the conflicting points set is defined as
CP = {(i, j) 2 NV ⇥NV : i 2 Aj

,with j > i}.

3. OPTIMAL CONTROL PROBLEM FORMULATION

In the previous section, we have presented a representation
for the vehicle coordination problem as a one-dimensional
motion, in which possible conflicts are represented by con-
flicting points. This representation will be used to define
the energy optimal vehicle coordination problem, which is
formulated as an optimal control problem in this section.
The problem can be seen as an extension of the eco-driving
problem of Padilla et al. (2018) towards multiple vehicles,
while at the same time i) including additional constraints
representing the avoidance of conflicts on the intersec-
tion, ii) avoiding rear-end collisions and iii) incorporating
energy-losses during cornering, which is discussed in more
detail in Padilla et al. (2020).

The objective in the eco-driving problem as discussed
in Padilla et al. (2018) is to minimize the power P (t)
required from a vehicle in order to cover a given distance
S
f � S

o over a provided time interval tf � t
o, knowing the

velocity and acceleration bounds v(t) 2 [v, v], a(t) 2 [a, a],
respectively, the boundary conditions on position and
velocity and subject to longitudinal vehicle dynamics.

Fig. 4. Conflicting Quadrant definition

3.1 Intersection Constraint

As introduced in Section 2.2, a conflicting point is de-
fined between each pair of AVs for which the trajectories
intersect. Mathematically, if we consider AVs as point
masses, in order to prevent collisions between vehicles, the
condition Si(t) 6= Sj(t) has to hold for all (i, j) 2 CP and
for all t � 0. However, since the trajectories of two vehicles
can cross only inside the intersection, the constraint needs
to be active just when one of the two vehicles resides inside
the crossroad and does not need to exist when at least
one of the two vehicles has already left it. Moreover, since
each vehicle has a length and a width, the aforementioned
constraint does not guarantees safety and, hence, it has
to be slightly modified to accommodate for the length of
the vehicles. Thus, we consider to divide the IZ in four
quadrants as shown in Fig. 4 and we define a conflicting
quadrant CQ

i
j 8(i, j) 2 CP.

Furthermore, we consider that each vehicle can reside en-
tirely in one quadrant. Therefore, for each pair (i, j) 2 CP
we define two bounds S

j
i , S

j
i which define the beginning

and the end respectively of the CQ
i
j for vehicle i and,

similarly for vehicle j, S
i
j , S

i
j . In Fig. 4 an example as

been reported in order to clarify the concept. Therefore, in
order to guarantee a collision-free scenario, the constraint
has been defined as follow:(

sj  S
i
j(1� �c) + S

f
j �c

sj � S
i
j�c

(3)

with �c 2 {0, 1}, for c 2 C = {1, ..., C} with C = dim(CP),
being the Intersection Decision Variable (IDV) which will
decide the crossing order between the two vehicles. The
IDV is defined as a binary variable which will impose
vehicle j to leave the intersection before vehicle i if �c = 1,
or await until vehicle i has exit the crossroad if �c = 0.

3.2 Rear-End Constraint

In the case where two or more vehicles proceed in the same
direction after crossing the intersection, an additional
constraint has to be imposed to prevent rear-end collisions.
In order to prevent collisions among vehicles i and j, with
i, j 2 NV and i 6= j. This can be imposed by requiring
that either

sr,i(t)� sr,j(t) � ✏ if sr,i(t) > sr,j(t) (4a)

or

sr,j(t)� sr,i(t) � ✏ if sr,j(t) > sr,i(t) (4b)

holds for t � t
f
I,i, in which sr,i(t) = si(t)�S

f
I,i and sr,j(t) =

sj(t)�S
f
I,j are the positions of the vehicles measured from

exit point of the IZ, tfI,i being the time instant at which the
i-th vehicle exits the IZ and ✏ is a positive constant that
guarantees a safety distance among the two vehicles. Note
that (4) can be expressed as the product between the two
inequalities, leading to the following quadratic (concave)
inequality constraint:

(sr,i(t)� sr,j(t))
2 � ✏

2 (5)

As a remark, (5) has to be active only for those vehicles
that proceed in the same direction and just when the i-th
vehicle exits the intersection. Therefore, (5) is required for
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all (i, j) 2 RE = {(i, j) : si(ti) = sj(tj)} for some ti, tj 2
R+ and ti � t

f
I,i.

3.3 Dynamical Model

Typically, traditional eco-driving formulations neglect lat-
eral dynamics and only consider longitudinal vehicle dy-
namics defined by the di↵erence between the traction force
in the longitudinal direction Fu(t) and the dissipative
forces which, for a vehicle proceeding on a trajectory
with no slope, are the aerodynamical drag force Fair and
rolling resistance Froll. Therefore, the vehicle dynamics are
defined by Newton’s second law as

mu = Fu � �dv
2

|{z}
Fair

�mgcr| {z }
Froll

(6)

where m represents the equivalent mass of the vehicle,
u(t) = dv

dt is the vehicle acceleration, v(t) defines the ve-
hicle velocity, g ⇡ 9.81m/s

2 is the gravitational accel-
eration constant, cr is the rolling force coe�cient and
�d = 1

2cd⇢aAf , with �d the drag coe�cient, ⇢a the air
density and Af the frontal area of the vehicle. However, as
shown in (Padilla et al., 2020), this model is conservative
for vehicles while cornering, since it neglects the e↵ects of
the friction force which has a substantial impact on the
energy losses.

Therefore, the dynamical model considered in this paper
is defined as follow

mu = Fu � �dv
2 �mgcr � F̂fr (7)

where the last term on the right-hand side represents the
component of the friction force acting on the longitudinal
direction of the vehicle.

In this work, a kinematic bicycle model is considered,
i.e., the velocity vectors on the front and rear wheels are
aligned with their respective longitudinal directions, which
is a reasonable assumption for low vehicle motion speed
( 5 m/s), Rajamani (2012). Moreover, we assume rear-
wheel traction vehicles with front-wheels-only steering
systems, implying that the rear wheel will be aligned
with the longitudinal axis of the vehicle for the entire
route. On the other hand, the front wheel is able to
change orientation and his steering angle is defined by
�f 2 (�⇡

2 ,
⇡
2 ). The radius of curvature R is defined from

the instantaneous center of rotation O and the center of
gravity C of the vehicle. We assume C to be located at
distances lr and lf from the rear and front wheel axis,
respectively. The friction force supplies the centripetal
force Fc which is applied in C, and points toward O.
Note that the velocity vector of the vehicle is tangential
to the trajectory and forms an angle � with respect to the
longitudinal vehicle axis given by

� = arcsin (lrK). (8)
Therefore, the component acting on the longitudinal axis
of the vehicle can be obtained as

F̂fr = Fc cos(
⇡
2 � �) = mlrv

2
K

2
. (9)

The reader can refer to (Padilla et al., 2020) for further
details about the derivation of (9).

3.4 Cost Function Extension

The objective of the problem in Padilla et al. (2018) is to
minimize the power consumption P (t) of a vehicle, which

is assumed to be a quadratic function of the form

P (v, Fu) = �0v
2 + �1vFu + �2F

2
u (10)

for some parameters �0,�1,�2 � 0. The quadratic form is
a realistic assumption for EVs, since it properly captures
mechanical friction losses and Ohmic losses. As done in
Padilla et al. (2018), the dynamical model of the vehicle
defined in (7), which represent an equality constraint for
the problem, is substituted in (10) in order to obtain
a simplified yet equivalent formulation. Thus, the cost
function for a generic AV becomes:

P (v, s, u)=�0v
2+�1⌘(s)v

3+�2(mu)2+�2(⌘(s)v
2+crmg)2

(11)

with ⌘(s) = �d +mlrK(s)2.

The goal of our problem is to minimize the global energy
consumption of Nv AVs approaching from multiple lanes.
We therefore take the cost function of the optimal control
problem as the arithmetic sum of the cost function defined
for each vehicle, i.e.,

P ({vn, sn, un}n2NV ) =
NvX

n=1

P (vn, sn, un) (12)

in which now every vehicle can have di↵erent �0,n, �1,n

and �2,n.

3.5 Cornering Constraint

The introduction of a further restriction while cornering
arises from the desire to guarantee safe driving conditions
for all the vehicles involved in the intersection control
problem. As introduced in Section 3.3, in order to make
a turn, the centripetal force needs to be applied to the
vehicle. However, in order to avoid vehicle’s slip, the
total force applied to the vehicle must be lower than the
maximum friction force during normal operation defined
as

(mu(t))2 +m
2
v(t)4K(s(t))2  (mµsg)

2 (13)

where the terms in the left-hand side of (13) represent
the resultant force applied to the vehicle in the tangential
direction and the centripetal force, respectively, and the
term on the right-hand side is the maximum friction force,
with µs > 0 being the friction coe�cient.

3.6 Optimal Control Problem

After introducing and motivating all the constraints re-
quired for energy optimal coordination of Nv AVs crossing
an intersection, we can now formalize this problem as the
following optimal control problem:

min
sn(t),vn(t),un(t),�i,j(t)

Z tf

to

NvX

n=1

P (vn(t), sn(t), un(t))dt

(14a)

subject to
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d
dts(t) = v(t), d

dtv(t) = u(t) (14b)

sn(t
o) = S

o
n, sn(t

f) � S
f
n (14c)

vn(t
o) = V

o
n , vn(t

f) = V
f
n (14d)

vn  vn(t)  vn (14e)
un  un(t)  un (14f)

un(t)
2 + vn(t)

4
K

2
n  (µs,ng)

2 for all So
I,nsn(t)S

f
I,n

(14g)

sj(t)  S
i
j [1� �i,j(t)] + S

f
j�i,j(t)

for all (i, j) 2 CP and S
j
i si(t)S

j
i (14h)

sj(t) � S
i
j�i,j(t),

for all (i, j) 2 CP and S
j
i si(t)S

j
i (14i)

(si(t)� sj(t)� S
f
I,i + S

f
I,j)

2 � ✏
2

for all (i, j) 2 RE and si(t) � S
f
I,i (14j)

and �i,j 2 {0, 1}, where (14a) is defined as in (12), the
time evolution of velocity and position are defined by
(14b), (14c) and (14d) define initial and final conditions
on position and velocity, respectively, and boundary condi-
tions on velocity and acceleration are defined by (14e) and
(14f), respectively. Eq.(14g) defines a constraint imposed
on the overall acceleration of the vehicle which has been
obtained from (13). As a remark, (14g) becomes inactive
when the vehicle is proceeding on a straight trajectory
(Kn = 0), since it is assumed that u  µsg. Finally, (14h-
14i) describe the intersection constraint and (14j) prevents
rear-end collisions. As a last remark, notice that in order
to not force the crossing order between vehicles proceed-
ing toward the same direction, the condition on the final
position in (14c) has to be imposed in terms of inequality
constraint.

The optimal control problem (14) belongs to the non-
linear mixed-integer programming category of problems,
since (14g) is non-linear and because the control inputs of
the problem, un(t) and �c(t), are continuous and discrete,
respectively. In order to solve the optimal control problem
using a static optimization technique, (14) is discretized at
times tk = k⌧ + t0, k 2 K = {0, ...,K � 1} with time step

Fig. 5. Position, velocity profiles & order resolution of
Is = [1, 1, 0, 2]

Fig. 6. Intersection Scenario (Is) Definition

⌧ = tf�t0
K using a forward Euler discretization method.

Moreover, since the objective function (14a) is non-convex
and constraint (14g) is non-linear, a sequential mixed-
integer quadratically constraint programming approach
has been used, linearizing (14g) and convexifying (14a),
in order to find the solution.

4. SIMULATION STUDY AND COMPARISONS

In this section, several simulations are reported in order to
show the benefits of relying on AVs. Comparisons between
di↵erent intersections configurations are made in order
to present additional remarks on the proposed control
problem reported in this paper.

For this comparisons, we consider a four-way intersection
scenario where roads are enumerated as al for l = [1, ..., 4],
in an anti-clockwise manner starting at the left, as depicted
in Fig. 6. Moreover, in order to define the trajectory of
each vehicle, as reported in Fig. 6, for each al a value
is associated depending on the trajectory of the vehicle
approaching, i.e., [0] if the vehicle is absent, [1] if the
vehicle follows a straight trajectory, [2] if it makes a left
turn and [3] if it turns to the right. Therefore, we define
as Intersection Scenario (Is) the vector Is = [a1, a2, a3, a4]
with for each al a numeric value as defined above.

4.1 Simulation Results for Di↵erent Situations

This case study is reported in order to show how the
solutions among similar cases can di↵er from each other

Fig. 7. Position, velocity profiles & order resolution of
Is = [1, 2, 0, 1]
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depending on the trajectories and number of AVs ap-
proaching the intersection. To do so, let us compare the
bottom-left corner of Fig. 7 with the bottom-left corner of
Fig. 5. As can be seen, in both scenarios two vehicles follow
a straight trajectory while a third one makes a left turn.
However, the vehicles arrival directions are di↵erent. The
initial and final conditions for vehicles coming from the
same direction are equal. As can be noticed comparing
the position plots between the two cases (Fig. 7-5 top),
the distances covered from the vehicles vary in order to
obtain the optimal solution for the di↵erent cases. More-
over, it can be noticed that even though the vehicles are
coming from the same direction in both cases, the di↵erent
trajectories a↵ect the intersection resolution order in the
two scenarios (Fig. 7-5 bottom). As a last remark, even
though the two scenarios are similar to each other, the
computational time di↵ers significantly since the solver
requires ⇡ 20s to compute the solution for the scenario
in Fig. 7 and ⇡ 120s for the case in Fig. 5.

The considerable di↵erence in terms of computational time
is due to the fact that (14) is solved as a sequential mixed-
integer quadratically constrained program, in which suc-
cessive quadratic approximations of the nonlinear mixed-
integer programs are solved. In the case of Fig. 7, the
quadratic constraint (14j) is inactive, while for Fig. 5, the
quadratic constraint (14j) is active between vehicle 4 and 1
since they aim to proceed towards the same direction. This
leads to a significantly higher computational complexity.
Lastly, Table 1 reports the energy consumption (P ), the
time (ts) required to compute the solution and the number
of iterations (no

itr) to achieve convergence for di↵erent
intersection scenarios (Is) defined accordingly to Fig. 6 as
previously explained.

Table 1. Energy Consumption (P ), Algorithm
Computational time (ts) and Iterations (no

itr) for Di↵erent Intersection scenarios (Is)

Is P [MW ] ts[s] no itr
[3,0,0,0] 5.26 1.52 5
[1,1,0,0] 7.07 5.56 3
[1,2,0,0] 7.91 15.8 6
[2,2,0,0] 9.64 94.01 33
[1,0,0,2] 8.71 15.4 2
[1,0,0,3] 8.95 10.24 5
[1,1,0,2] 11.6 176.59 6
[1,2,0,1] 10.8 19.71 7
[1,1,1,1] 14.3 24.3 5

5. CONCLUSIONS

In this paper, we have proposed a solution to conflict
resolutions between autonomous vehicles (AVs) crossing
an urban intersection. The conflict resolution problem
is formulated as an optimal control problem, where the
objective is to minimize energy consumption of all the
vehicles, while avoiding collisions. The first contribution
of this paper has been the proposal of a one-dimensional
problem framework in order to simplify the modeling to
handle conflicts between AVs in urban crossroads. The
intersection control problem presented in this paper is
combinatorial since, depending on the number of vehicles
reaching the crossroad and their respective trajectories,
the problem’s nature changes. Simulation results point out

how relying on AVs can increase the tra�c throughput
and allow for more e�cient solutions in terms of energy
consumption due to the unnecessary constriction on the
intersection crossing order. Even though the methodol-
ogy is not yet suitable for real-time implementation, the
simulation example shows that the vehicle coordination
problem can be solved as an optimal control problem. The
proposed solution strategy might serve as a benchmark
for more heuristic solution to the vehicle coordination
problem.
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