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Abstract: In this paper a Maximum Likelihood estimation algorithm for error-model modelling
using a stochastic embedding approach is developed. The error-model distribution is approxi-
mated by a finite Gaussian mixture. An Expectation-Maximization based algorithm is proposed
to estimate the nominal model and the distribution of the parameters of the error-model by
using the data from independent experiments. The benefits of our proposal are illustrated via
numerical simulations.
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1. INTRODUCTION

Most System Identification techniques available in the
literature assume that the system lies in the model set
when estimating the corresponding vector of parameters
(see e.g. Goodwin and Payne (1977); Söderström and
Stoica (1988); Ljung (1999)). However real systems have
arbitrary complexity. However, using a complex model
structure can lead to large variance estimation errors
(Ljung et al. (2014)).

An alternative view of Modelling and System Identification
of dynamic systems combines a nominal model with an
error-model, i.e., uncertainty modelling is part of the struc-
ture. Modelling uncertainty has been addressed in different
frameworks, such as Set Membership (Milanese and Vicino
(1991)), characterization of model bias (Hakvoort and Van
den Hof (1997); Wahlberg and Ljung (1986)), Model Error
Modelling (Reinelt et al. (2002); Ljung et al. (2015)),
and Stochastic Embedding (Goodwin and Salgado (1989);
Goodwin et al. (1992)).

Stochastic Embedding (SE) describes model uncertainty
in a stochastic framework. The key idea is to think of
the model as a realization drawn from an underlying
probability space, where the parameters that define the
error-model are characterized by a probability density
function (pdf) (see e.g. Goodwin and Salgado (1989);
Goodwin et al. (1992)). In this approach the uncertainty
can be quantified by using Maximum Likelihood (ML)
estimation to obtain the parameters of the error-model. In
Delgado et al. (2012); Ljung et al. (2014) an interpretation
of SE has been proposed, where the parameters that define
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the error-model are considered as latent variables (also
known as hidden variables). In this approach, the use of
Expectation-Maximization (EM) (Dempster et al. (1977))
based algorithms is proposed. It is also possible to adopt
a Bayesian perspective by utilizing a prior distribution
for the parameters of both the nominal and error-model
(Ljung et al. (2014)). In Ljung et al. (2015) a Gaussian
distribution for the vector that defines the error-model is
assumed. An explicit expression for the likelihood function
is obtained by marginalising over the error-model as a
linear regression. There are works closely related with this
framework (see e.g. Pillonetto and Nicolao (2010); Ljung
et al. (2020)).

In this paper, we focus on the development of an ML
estimator for model error modelling for linear dynamic
systems using the SE approach. We approximate the
probability distribution of the vector of parameters that
define the error-model by a Gaussian Mixture Model
(GMM). We then propose an estimation algorithm to
estimate the vector of parameters that define both the
nominal model and the probability density function of the
GMM based on the EM algorithm.

GMMs have been typically utilised in non-linear filtering
(Anderson and Moore (1979); Söderström (2002)) (see
also Wills et al. (2017)). Recently, GMMs have also been
used to develop algorithms to identify dynamic systems
in the Maximum Likelihood framework (Bittner et al.
(2019)), and a Bayesian framework (Sorenson and Alspach
(1971); Dahlin et al. (2018); Orellana et al. (2019)). Static
systems have also been addressed using finite mixtures
models, such as in the deconvolution of stellar rotational
velocities (Orellana et al. (2018, 2019)). To the best of our
knowledge, utilizing a GMM approximation for unknown
or non-Gaussian distributions, has not previously been
used for uncertainty modelling in an SE framework.
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The remainder of the paper is as follows: In Section 2
the problem of interest is stated as a linear regression
using the SE approach. In Section 3 the uncertainty
modelling problem is addressed using ML estimation with
GMM. In Section 4 an EM-based identification algorithm
is presented. A numerical simulation example is presented
in Section 5. Finally, in Section 6, we present conclusions.

2. STOCHASTIC EMBEDDING ERROR MODEL AS
A LINEAR REGRESSION

Consider the following set of linear dynamic systems:

y
[r]
t = G

[r]
T (z)ut + ω

[r]
t , (1)

where r = 1, . . . ,M denotes the r-th realization of the
system, M corresponds the number of independent ex-

periments or batches, G
[r]
T (z) denotes the true system, z

denotes the forward shift operator or z-transform variable,

y
[r]
t denotes the output signal, ut is the input signal and

ω
[r]
t is a white noise sequence with zero mean and variance

σ2
ω. Notice that ω

[r]
t describes a different noise realizations

for each independent experiment.

We assume that GT (z)[r] can be described as follows (see
e.g. Goodwin and Salgado (1989); Ljung et al. (2015)):

GT (z)[r] =

{
Go(z, θ) +Gε(z, η(γ)[r]), (2a)

Go(z, θ)(1 +G∆(z, η(γ)[r])), (2b)

where Go(z, θ) is the nominal model parametrized by θ,
Gε(z, η(γ)[r]) is an additive error-model (2a),G∆(z, η(γ)[r])
is a multiplicative error-model (2b) parametrized by
η(γ)[r]. Here γ is the vector of parameters that define a
given pdf that models η. We consider that all transfer
functions are FIR systems. In this particular case, there
is a clear connection with Bayesian approaches, since the
corresponding parameters of both the nominal and error-
model can be considered in a unified model. However, the
approach presented in this paper can be extended for more
complex model structures.

Remark 1. We assume that the the nominal modelGo(z, θ)
does not change between experiments, whilst the error-
model G∆(z, η(γ)[r]) (or Gε(z, η(γ)[r])) may change for
each experiment. In addition, all the realizations of η are
drawn from the same pdf parametrized by γ. 5

We assume that the observed data Y [r] = [y
[r]
1 . . . y

[r]
N ]T

is a collection of measurements 1 for each experiment. We
then obtain a regression model combining (1) and (2a) (or
(2b)) as follows:

Y [r] = Φ[r]θ + Ψ[r]η[r] +W [r], (3)

where Y [r],W [r] ∈ RN×1, θ ∈ Rno×1, η[r] ∈ Rn∆×1,
Φ[r] ∈ RN×no , Ψ[r] ∈ RN×n∆ . The term Φ[r]θ represents
the output response corresponding to the nominal model
structure, Ψ[r]η[r] corresponds to the output signal due to
the error-model related to the structures defined in (2a)
or (2b) and W [r] ∈ N (0, σ2

ωIN ) (is Gaussian white noise
with zero mean and covariance matrix σ2

wIN ) 2 .

1 We use capital letters to denote the vector of signals, ut or ωt for
t = 1, . . . N
2 Ix represents the identity matrix with dimension given by x.

3. MAXIMUM LIKELIHOOD ESTIMATION FOR
MODEL ERROR MODELLING USING GMM

3.1 Using a Gaussian Mixture Model to approximate the
error-model distribution

In this paper we approximate the error-model distribution
as a GMM. The GMM can be tailored to approximate
non-Gaussian distributions, (see e.g. Mengersen et al.
(2011) and the references therein). Based on the Wiener
approximation theorem, it is known that any pdf with
compact support can be approximated by a finite sum
of Gaussian distributions (Lo (1972); Achieser (1992)).
For completeness of the presentation, the Gaussian sum
approximation approach is summarized as follows (See
(Lo, 1972, Theorem 3)):

Lemma 2. Any probability density function, p(η|γ), of an
n dimensional random variable η with compact support
can be approximated as closely as desired in the space
L1(Rn) by a distribution of the form

p(η|γ) ≈
κ∑
j=1

λjφ (η;µj , Γj) , (4)

where λj > 0,
∑κ
j=1 λj = 1 and φ (η;µj , Γj) represents

an n dimensional Gaussian distribution with mean µj and
covariance matrix Γj .

3.2 Likelihood function for GMM

For the system in (3), we define the vector of parameters
to be estimated as β = [θT γT σ2

ω]T , where

γ = [λ1 µ1 Γ1︸ ︷︷ ︸
γ1

. . . λκ µκ Γκ︸ ︷︷ ︸
γκ

]T .

We let β0 be the true vector of parameters. For the model
(3) using the GMM in (4), the likelihood function, L(β),
can be obtained by marginalizing the hidden variable,
[η[1] . . . η[M ]], as follows 3 :

L(β) = p(Y [1], . . . , Y [M ]|β) (5)

=

M∏
r=1

∫ ∞
−∞
p(Y [r]|η[r], β)p(η[r]|β)dη[r], (6)

where

p(Y [r]|η[r], β) = φ(Y [r]; Φ[r]θ + Ψ[r]η[r], σ2
ωIN ). (7)

Considering that p(η[r]|β) in (6) is a GMM, then the log-
likelihood function is given by

`(β)=

M∑
r=1

log


κ∑
j=1

∫ ∞
−∞
λjp(Y

[r]|η[r], β)φ(η[r];µj , Γj)dη
[r]

 .

(8)
The ML estimator is then given by

β̂ML = arg max
β

`(β) s.t. 0 ≤ λj ≤ 1,

κ∑
j=1

λj = 1. (9)

Remark 3. We assume that the vector of parameters β0,
the input ut and the noise ωt satisfy regularity conditions,

guaranteeing that the solution β̂ML of the optimization
problem in (9) converges (in probability or a.s.) to the

3 Typical methods of ML estimation for GMM do not consider the
presence of hidden variables.
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true solution β0 as N →∞. 5

The solution of the optimization problem in (9) may be
difficult to obtain when the number of components in the
GMM increases, due to the fact that `(β) may exhibit
several local maxima and the size of the parameter space
tends to be large 4 (see e.g. Jin et al. (2016)). For simplicity,
we focus on the case where the number of components is
known.

4. AN ALGORITHM FOR MODEL ERROR
MODELLING USING GMM

The EM algorithm is a popular tool for identifying linear
and non-linear dynamic systems in the time domain (see
e.g. Gibson et al. (2005); Gopaluni (2008)) and frequency
domain (Agüero et al. (2012)). In this section we will show
how an EM-based estimation algorithm can be developed
to solve the problem of interest.

4.1 EM based algorithm formulation

From (7) and (8), we define the following:

K(β, η[r]) = λjφ(Y [r]; Φ[r]θ + Ψ[r]η[r], σ2
ωIN )φ(η[r];µj , Γj).

(10)

Then, the log-likelihood function in (8) can be expressed
as

`(β) =

M∑
r=1

log
[
V [r](β)

]
, (11)

with

V [r](β) =

κ∑
j=1

∫ ∞
−∞

K(β, η[r])dη[r]. (12)

The expression in (12) can be written as log
(
V [r](β)

)
=

Q[r](β, β̂(m))−H[r](β, β̂(m)), where:

Q[r](β, β̂(m))=

κ∑
j=1

∫ ∞
−∞

log[K(β, η[r])]
K(β̂(m), η[r])

V [r](β̂(m))
dη[r].

(13)

H[r](β, β̂(m))=

κ∑
j=1

∫ ∞
−∞

log

[
K(β, η[r])

V [r](β)

]
K(β̂(m), η[r])

V [r](β̂(m))
dη[r].

(14)

The function H[r](β, β̂(m)) is a decreasing function for any
value of β (see e.g. Carvajal et al. (2018)).

In order to develop the estimation algorithm, we first
obtain the following result. This will be used to compute
the integral in (13):

Lemma 4. The expression in (10) evaluated at the m-th

estimate, β̂(m), can be rewritten as follows:

K(β̂(m), η[r]) = φ(Y [r];m
(j)
Y ,Σ

(j)
Y )φ(η[r];m

(j)

η[r] ,Σ
(j)

η[r]), (15)

with
m

(j)
Y = Ψ[r]µ̂

(m)
j + Φ[r]θ̂(m), (16)

Σ
(j)
Y = [σ̂2

ω](m)IN + Ψ[r]Γ̂
(m)
j Ψ[r]T , (17)

Z(j) = Γ̂
(m)
j Ψ[r]T

(
Σ

(j)
Y

)−1

, (18)

m
(j)

η[r] = µ̂
(m)
j + Z(j)

(
Y [r] −m(j)

Y

)
, (19)

4 Each additional component of the GMM increases the search space
by 1 + n∆ + n∆(n∆ − 1)/2.

Σ
(j)

η[r] =
(
In∆ − Z(j)Ψ[r]

)
Γ̂

(m)
j . (20)

Proof. The result is directly obtained from (10) by using
the following identities:[
A B

C D

]
=

[
I 0

CA−1 I

][
A 0

0 D − CA−1B

][
I A−1B

0 I

]
, (21)

(I +BD−1C)−1 = I −B(D + CB)−1C, (22)

det(A) det
(
D − CA−1B

)
=det(D) det

(
A−BD−1C

)
. (23)

Using this result, we can express log[K(β, η[r])] as follows:

log[K(β, η[r])] = log[λj ]−
N

2
log[σ2

ω]− n∆

2
log[det(Γj)]−

1

2σ2
ω

[
(Y [r] − Φ[r]θ −Ψ[r]m

(j)

η[r])
T (Y [r] − Φ[r]θ −Ψ[r]m

(j)

η[r])

+ tr
(

Ψ[r]Σ
(j)

η[r]Ψ
[r]T
)]
− 1

2

[
tr
(
Γ−1
j Σ

(j)

η[r]

)
+ (24)

(m
(j)

η[r] − µj)TΓ−1
j (m

(j)

η[r] − µj)
]
. �

From Lemma 4, the auxiliary function in (13) can be
expressed as

Q[r](β, β̂(m)) =

κ∑
j=1

log[K(β, η[r])]
Fj(Y [r])

V [r](β̂(m))
. (25)

with
Fj(Y [r]) = λ̂

(m)
j φ(Y [r];m

(j)
Y ,Σ

(j)
Y ). (26)

Finally, we can formulate the following iterative algorithm:

Q̄(β, β̂(m)) =

M∑
r=1

Q[r](β, β̂(m)), (27)

β̂(m+1) = arg max
β
Q̄(β, β̂(m)), (28)

where (28) is solved subject to
∑κ
j=1 λj = 1, 0 ≤ λj ≤ 1.

Notice that (27) and (28) are closely related to the E-step
and M-step of the EM algorithm, respectively.

4.2 Optimization of the auxiliary function

For the optimization of the auxiliary function Q̄(β, β̂(m))
in (27), we can obtain closed-form expressions for the
estimate of β. Specifically, the optimization with respect
to β can be carried out as described below.

Lemma 5. The vector of parameters β̂ that optimizes the

auxiliary function Q̄(β, β̂(m)) in (27) with respect to β is
given by:

µ̂
(m+1)
j =Mj(Y, β̂

(m))/Pj(Y, β̂(m)), (29)

Γ̂
(m+1)
j = Sj(Y, β̂(m))/n∆Pj(Y, β̂(m)), (30)

λ̂
(m+1)
j = Pj(Y, β̂(m))/

κ∑
l=1

Pl(Y, β̂(m)), (31)

θ̂(m+1) =

 M∑
r=1

κ∑
j=1

(
Φ[r]T Φ[r]

)−1

Φ[r]TFj(Y )
(
Y [r]−

(32)

Ψ[r]m
(j)

η[r]

)
/V [r](β̂(m))

]
/

[
κ∑
l=1

Pl(Y, β̂(m))

]
,
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Fig. 1. Estimation of the error-model distribution p(η) for
M = 100 experiments.

[σ̂2
ω](m+1) =

∑M
r=1

∑κ
j=1 Fj(Y [r])Bj(Y [r])/V [r](β̂(m))

N
∑κ
l=1 Pl(Y, β̂(m))

,

(33)
with

Pj(Y, β̂(m)) =

M∑
r=1

Fj(Y [r])/V [r](β̂(m)), (34)

Mj(Y, β̂
(m)) =

M∑
r=1

m
(j)

η[r]Fj(Y [r])/V [r](β̂(m)), (35)

Sj(Y, β̂(m)) =

M∑
r=1

[
(m

(j)

η[r] − µ̂
(m)
j )(m

(j)

η[r] − µ̂
(m)
j )T+ (36)

Σ
(j)

η[r]

]
Fj(Y [r])/V [r](β̂(m)),

Bj(Y [r]) = (Y [r] − Φ[r]θ̂(m) −Ψ[r]m
(j)

η[r])
T (37)

(Y [r] − Φ[r]θ̂(m) −Ψ[r]m
(j)

η[r]) + tr
(

Ψ[r]Σ
(j)

η[r]Ψ
[r]T
)
.

Proof. See Appendix A. �

We summarize our algorithm as follows:

(i) Fix the number of experiments, M , and components
κ for the GMM.

(ii) Choose an initial guess β̂(0), and set m = 0.
(iii) Estimate the GMM parameters from (29)-(31).
(iv) Compute the nominal model parameters and the

noise variance using (32) and (33), respectively.
(v) Set m = m + 1 and go back to step (iii) until a

stopping criterion is satisfied.

5. NUMERICAL EXAMPLE

In this section we present a numerical example to illustrate
the performance of the proposed algorithm. This example
is a variant of the example used in Ljung et al. (2015) for a
simple FIR model. Consider (1) with relative error-model
(2b) as follows:

Go(z, θ) = g0 + g1z
−1, (38)

G∆(z, η) = η0 − η0z
−1, (39)

where the true (but unknown) value of θ is θ0 = [1 0.5]T ,
ut ∼ N (0, σ2

u), σ2
u = 10, σ2

ω = 0.1 and η0 is a hidden
variable. In this example, we consider that in each exper-
iment, η = η0 is drawn from a finite Gaussian mixture
distribution given by 5 :
5 We have run several numerical examples with different error-
model distributions. However, for illustrations purposes we focus on
a simple case.

Table 1. Nominal model parameter and noise
variance estimates

Param/

Experiments

M = 10 M = 100

κ = 1 κ = 2 κ = 1 κ = 2

g0 1.087 ± 0.161 1.001 ± 0.024 1.039 ± 0.119 0.999 ± 0.002

g1 0.461 ± 0.166 0.514 ± 0.030 0.483 ± 0.123 0.500 ± 0.002

σ2
w 17.301 ± 19.584 0.322 ± 0.549 0.101 ± 0.030 0.101 ± 0.002

p(η)(True) = λ1φ(η;µ1, Γ1) + λ2φ(η;µ2, Γ2), (40)

with true (but unknown) parameters λ1 = λ2 = 0.5,
Γ1 = Γ2 = 0.1, µ1 = −3 and µ2 = 3.

The simulation setup is as follows:

(1) The data length is N = 100.
(2) We consider M different independent experiments

where M = {10, 100}.
(3) The number of Monte Carlo (MC) 6 simulation is 100.
(4) The stopping criterion is chosen as:∥∥∥β̂(m) − β̂(m−1)

∥∥∥/∥∥∥β̂(m)
∥∥∥ < 10−6,

or when 500 iterations have been reached.

Table 1 shows the estimation results of the nominal model
parameters for different number of experiments (M =
{10, 100}). Fig. 1 shows the results of the estimation of
the error-model distribution. The gray-shaded area corre-
sponds to the region in which the corresponding pdf of
all the estimates from the MC simulations lie. The blue
line corresponds to the average of all the estimates with
M = 100. It is clear that the estimated pdf is similar
to the true pdf when the number of experiments is high
(M = 100). We compare our results, with the estimation
obtained utilizing the SE approach proposed in Ljung et al.
(2015). To that end, we marginalize the relative error-
model in (2b) and assume a single Gaussian distribution
(κ = 1) for the error-model vector η. Fig. 2 shows the mag-
nitude and phase of the frequency response corresponding
to the average of all MC simulations for the estimated
nominal model with M = 10. The gray-shaded region rep-
resents the area in which all the estimated nominal models
lie. We observe a small difference between the estimated
frequency response using our proposed algorithm and the
nominal model Go(z). These results confirm the benefits
of obtaining an accurate estimation of the error-model
distribution.

6. CONCLUSION

In this paper we have addressed the model error modelling
problem by combining the SE approach with GMMs. We
proposed an identification algorithm to estimate the nom-
inal model and the error-model distribution as a GMM
by using Maximum Likelihood. The proposed algorithm
utilizes closed-form expressions to estimate parameters of
the nominal model, noise variance and GMM. Our pro-
posal exhibits good accuracy, specially when the number
of experiments is high.

REFERENCES

Achieser, N.I. (1992). Theory of Approximation. Dover
Publications.
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Appendix A. COMPUTING THE PARAMETERS OF
THE GMM

Taking the derivative of (27) with respect to µj and
equating to zero yields:

∂Q̄(β, β̂(m))

∂µj
=

M∑
r=1

[
Γ−1
j (m

(j)

η[r] − µ̂
(m+1)
j )

] Fj(Y [r])

V [r](β̂(m))
= 0

(A.1)
Using (34) and (35) we obtain:

M∑
r=1

m
(j)

η[r]

Fj(Y [r])

V [r](β̂(m))
= µ̂

(m+1)
j

M∑
r=1

Fj(Y [r])

V [r](β̂(m))
, (A.2)

µ̂
(m+1)
j =Mj(Y, β̂

(m))/Pj(Y, β̂(m)). (A.3)

Then, taking the derivative of (27) with respect to Γ−1
j

and equating to zero:

∂Q̄(β, β̂(m))

∂Γ−1
j

=

M∑
r=1

([
(m

(j)

η[r] − µ̂
(m)
j )(m

(j)

η[r] − µ̂
(m)
j )T+

Σ
(j)

η[r]

]
+ n∆Γ̂

(m+1)
j

) Fj(Y [r])

V [r](β̂(m))
= 0. (A.4)

Using (34) and (36) we obtain:

Γ̂
(m+1)
j = Sj(Y, β̂(m))/n∆Pj(Y, β̂(m)). (A.5)

Similarly, using (26) and taking the derivative of (27) with
respect to θ and equating to zero yields:

M∑
r=1

κ∑
j=1

Fj(Y [r])Φ[r]T (Y [r] −Ψ[r]m
(j)

η[r])/V [r](β̂(m)) =

M∑
r=1

κ∑
j=1

Fj(Y [r])Φ[r]T Φ[r]θ̂(m+1)/V [r](β̂(m)). (A.6)

Utilizing (34) we obtain:

θ̂(m+1) =

 M∑
r=1

κ∑
j=1

(
Φ[r]T Φ[r]

)−1

Φ[r]TFj(Y )
(
Y [r]−

(A.7)

Ψ[r]m
(j)

η[r]

)
/V [r](β̂(m))

]
/

[
κ∑
l=1

Pl(Y, β̂(m))

]
.

Then, using (26), (37) and taking the derivative of (27)
with respect to α = 1/σ2

ω and equating to zero:
M∑
r=1

κ∑
j=1

NFj(Y [r])/V [r](β̂(m))α̂(m+1) = (A.8)

M∑
r=1

κ∑
j=1

Fj(Y [r])Bj(Y [r])/V [r](β̂(m)).

Thus, we obtain:

[σ̂2
ω](m+1) =

∑M
r=1

∑κ
j=1 Fj(Y [r])Bj(Y [r])/V [r](β̂(m))

N
∑κ
l=1 Pl(Y, β̂(m))

.

(A.9)
For the parameter λj we define R(λj) as follows:

R(λj) =

M∑
r=1

κ∑
j=1

log[λj ]
{
Fj(Y [r])/V [r](β̂(m))

}
, (A.10)

subject to
∑κ
j=1 λj = 1. Notice that, we initially do

not consider the constraint 0 ≤ λj ≤ 1. Then, using a
Lagrange multiplier to deal with the constraint on λj we
define:

G(λj , ζ) =

M∑
r=1

κ∑
j=1

log[λj ]
{
Fj(Y [r])/V [r](β̂(m))

}
−

ζ(

κ∑
j=1

λj − 1). (A.11)

Using (34) and taking the derivative of (A.11) with respect
to λj and ζ and equating to zero we obtain:

∂G(λj , ζ)

∂λj
=
(
Pj(Y, β̂(m))/λ̂

(m+1)
j

)
− ζ = 0. (A.12)

∂G(λj , ζ)

∂ζ
=

κ∑
j=1

λj − 1 = 0. (A.13)

Then, λ̂
(m+1)
j = Pj(Y, β̂(m))/ζ. Taking a summation over

j = 1 . . . κ and using (A.13) we have:
κ∑
j=1

λ̂
(m+1)
j =

κ∑
j=1

Pj(Y, β̂(m))/ζ = 1. (A.14)

Finally, we obtain:

λ̂
(m+1)
j = Pj(Y, β̂(m))/

κ∑
l=1

Pl(Y, β̂(m)). (A.15)

Notice that 0 ≤ λ̂(m+1)
j ≤ 1 holds, even though we did not

explicitly consider it in (A.11). �
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