
Efficient Calibration of Embedded MPC ?

Marco Forgione ∗ Dario Piga ∗ Alberto Bemporad ∗∗

∗ IDSIA Dalle Molle Institute for Artificial Intelligence SUPSI-USI,
Manno, Switzerland. (e-mail: marco.forgione@ supsi.ch;

dario.piga@suspi.ch).
∗∗ IMT School for Advanced Studies Lucca, Lucca, Italy (e-mail:

alberto.bemporad@imtlucca.it)

Abstract: Model Predictive Control (MPC) is a powerful and flexible design tool of high-
performance controllers for physical systems in the presence of input and output constraints.
A challenge for the practitioner applying MPC is the need of tuning a large number of
parameters such as prediction and control horizons, weight matrices of the MPC cost function,
and observer gains, according to different trade-offs. The MPC design task is even more
involved when the control law has to be deployed to an embedded hardware unit endowed with
limited computational resources. In this case, real-time implementation requirements limit the
complexity of the applicable MPC configuration, giving rise to additional design tradeoffs and
requiring to tune further parameters, such as the sampling time and the tolerances of the on-line
numerical solver. To take into account closed-loop performance and real-time requirements, in
this paper we tackle the embedded MPC design problem using a global, data-driven optimization
approach. We showcase the potential of this approach by tuning an MPC controller on two
hardware platforms characterized by largely different computational capabilities.

Keywords: Model Predictive Control, Machine learning, Global optimization, Self-tuning
control, Embedded systems.

1. INTRODUCTION

Model Prediction Control (MPC) is an advanced control
technology that is getting widely popular in different
application domains (Borrelli et al., 2017). The main
technical reason of its success is the ability to optimally
coordinate inputs and outputs of multivariable systems
in the presence of input/output constraints. Besides, the
intuitive interpretation of MPC as an optimal controller
with respect to a given cost function makes it accessible
even to practitioners with limited control background.

Nonetheless, calibrating a high-performance MPC con-
troller taking advantage of all the available tuning knobs
may still require substantial effort. The challenges nor-
mally encountered are: (i) to choose parameters such as
prediction and horizon, cost function weight matrices, and
observer gains in order to meet desired closed-loop re-
quirements; (ii) to implement the MPC control law on the
target hardware platform, ensuring that all computations
are performed in real time.

Regarding challenge (i), the final MPC control law is
determined by the prediction model, the specified cost
function, and input/output constraints. Leaving aside the
constraints, which may be considered direct problem speci-
fications, the practitioner has yet to define the plant model
for prediction and the cost function. The model is typi-
cally obtained from first-principle laws or estimated from
measured data. However, when deriving such a model, a

? This work was partially supported by the European H2020-CS2
project ADMITTED, Grant agreement no. GA832003.

tradeoff emerges between accuracy and complexity, and,
most of the times, it is difficult to decide a priori how
accurate the model should be in order to achieve satisfac-
tory closed-loop performance (Formentin et al., 2016; Piga
et al., 2018).

As for the MPC cost function, it should represent the un-
derlying engineering or economic objective and—in some
cases—it could also be a direct specification. However,
the MPC cost function is often constrained to have a
specific structure, typically a quadratic form of predicted
input/output values, to allow the use of very efficient
Quadratic Programming (QP) numerical optimization al-
gorithms. Conversely, the true underlying objective re-
sulting from a combination of time- or frequency-domain
specifications (or economical considerations) may be for-
mulated more naturally in a different form than a purely
quadratic objective. In these cases, the MPC cost func-
tion has to be considered as a tuning knob available to
achieve the actual closed-loop goal, rather than an exact
quantification of the goal itself.

Challenge (ii) is particularly relevant for fast systems con-
trolled by embedded hardware platforms, such as mobile
robots, automotive and aerospace systems, etc. Indeed, in
embedded systems the on-board computational power is
usually limited, e.g., by cost, weight, power consumption,
and battery life constraints. Therefore, real-time require-
ments must be taken into account, further complicating
the overall MPC design task. For instance, due to through-
put and memory limitations, the MPC sampling time
cannot be chosen arbitrarily small and the control horizon

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 5263

cannot be chosen arbitrarily large. Moreover, the low-
level design choices of the MPC implementation become
crucial and should be taken into account in the design
phase. For instance, the engineer should carefully decide
whether to go for an explicit MPC approach where the
solution is pre-computed offline for all states in a given
range (Bemporad et al., 2002), or solve the MPC problem
on-line by numerical optimization. The first approach is
potentially very fast, but requires storing a large lookup
table whose size increases with the MPC problem com-
plexity. The applicability of this method is thus limited
by the available system memory. Conversely, the second
approach has generally a smaller memory footprint, but
requires solving a numerical optimization problem on-line.
Thus, in the latter case, the MPC problem complexity and
the hardware’s computational power limit the maximum
controller update frequency.

When the MPC law is computed by numerical optimiza-
tion (a QP solver in case of linear MPC), the hyper-
parameters of the optimizer may also be considered as
tuning knobs, in that they affect solution accuracy and
required computation time. The overall design of a high-
performance MPC must therefore take into account si-
multaneously high-level aspects related to control systems
(model, weights, constraints, prediction horizon, sample
time, etc.) and low-level aspects of numerical optimization
(problem size and solver-related hyperparametes).

In recent years, data-driven approaches for solving com-
plex engineering tuning problems based on derivative-
free global optimization are gaining increasing attention
(Shahriari et al., 2016). The idea behind these approaches
is rather intuitive: the user specifies a search space for
the design parameters and the optimization algorithm,
based on performance data previously observed, sequen-
tially suggests the new configurations to be tested, aiming
to optimize a user-given performance index. The proce-
dure is iterated until a configuration achieving satisfac-
tory performance is found or the maximum number of
available tests has been reached. This approach has also
been popularized as Design and Analysis of Computer Ex-
periments (DACE) (Sacks et al., 1989). Specialized global
optimization algorithms for this task such as Bayesian
Optimization (BO) have been proposed (Brochu et al.,
2010). The key feature of these algorithms is their ability
to optimize the objective function through a small number
of (possibly noisy) evaluations, without relying on deriva-
tive information. Recently, optimization-based tuning has
been successfully applied to control system design (Roveda
et al., 2020; Drieß et al., 2017) and to choose the MPC
prediction model (Piga et al., 2019; Bansal et al., 2017).

In this paper, we demonstrate the potential of the
optimization-based data-driven approach for the joint tun-
ing of high- and low-level MPC parameters in order to op-
timize a certain closed-loop performance objective, while
ensuring that the control law can be computed in real-time
on the target hardware platform. We apply a derivative-
free global optimization algorithm recently developed by
one of the authors (Bemporad, 2019), which has been
shown to be very efficient in terms of number of func-
tion evaluations required to solve the global optimization
problem. We present the results of our MPC tuning pro-
cedure for a simulated cart-pole system on two hardware

platforms having very different computational capabili-
ties, namely a high-end x86-64 workstation and a low-
performance ARM-based board (specifically, a Raspberry
PI 3, Model B). We show that our tuning procedure can
find an MPC configuration that squeezes the maximum
performance out of the two architectures for the given
control task.

The rest of the paper is organized as follows. The MPC
problem formulation and its design parameters are intro-
duced in Section 2. Next, the data-driven MPC calibration
strategy based on global optimization is described in Sec-
tion 3 and numerical examples are presented in Section 4.
Finally, conclusions and directions for future research are
discussed in Section 5

2. PROBLEM FORMULATION

Let us consider the following nonlinear continuous-time
multi-input multi-output dynamical system in state-space
form

ẋ = f(x, u) (1a)

y = g(x, u), (1b)

where u ∈ Rnu is the vector of control inputs; x ∈ Rnx the
state vector; y ∈ Rny the measured outputs; ẋ denotes the
time derivative of the state x; and f : Rnx+nu → Rnx and
g : Rnx+nu → Rny are the state and output mappings,
respectively. Output variables can be collected and used
for real-time control at a sampling time Ts ≥ Ts,min, where
Ts,min is the minimum sampling time achievable by the
measurement system.

We aim at synthesizing an MPC (with a state estimator)
for (1) such that the resulting closed-loop system mini-
mizes a certain closed-loop performance index Jcl. This
performance index is defined as a continuous-time func-
tional Jcl(y[0, Texp], u[0, Texp]) in an experiment of duration
Texp, where y[0, Texp] (resp. u[0, Texp]) denotes the output
signal y(t) (resp. input signal u(t)) within the time interval
[0, Texp]. As an additional requirement, we must ensure
that the control law can be computed in real-time on the
given hardware platform. This requirement is translated
into the constraint TMPC

calc ≤ TMPC
s , where TMPC

s denotes
the MPC sampling time and TMPC

calc the worst-case time
required to compute the MPC control law on the platform.

It is worth remarking that in general the closed-loop
performance index Jcl is a nonconvex function of the MPC
design parameters, which will be defined later. For the sake
of generality, Jcl has been denoted above as a continuous-
time functional over the duration Texp of the experiment.
Thus, Jcl does not necessarily correspond to the cost
function minimized on-line by MPC. Indeed, the latter is
generally defined as a discrete-time quadratic function over
a prediction horizon generally shorter than Texp.

In the following paragraphs, we define the MPC and
state estimator design problem, along with their tuning
parameters.

2.1 MPC controller

We assume that a continuous-time (possibly parametrized)
model M(θm) of (1) is available, where θm represents a

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5264

vector of adjustable model parameters. For a given choice
of TMPC

s , M(θm) can be linearized and discretized in time,
yielding the discrete-time state-space model

xt+1 = A(TMPC
s , θm)xt +B(TMPC

s , θm)ut (2a)

yt = C(θm)xt +D(θm)ut (2b)

that is used as prediction model for MPC.

At each time t that is an integer multiple of the MPC sam-
pling time TMPC

s , MPC solves the minimization problem

min
{ut+k|t}Nu−1

k=0
,ε

Np−1∑
k=0

(
yt+k|t − yref

t+k

)>
Qy
(
yt+k|t − yref

t+k

)
+

+

Np−1∑
k=0

(
ut+k|t − uref

t+k

)>
Qu
(
ut+k|t − uref

t+k

)
+

+

Np−1∑
k=0

∆u>t+k|tQ∆u∆ut+k|t +Qεε
2 (3a)

s.t. model equations (2a), (2b) (3b)

ymin−Vyε ≤ yt+k|t ≤ ymax + Vyε, k = 1, . . . , Np (3c)

umin−Vuε ≤ ut+k|t ≤ umax + Vuε, k = 1, . . . , Np (3d)

∆umin − V∆uε ≤ ∆ut+k|t, k = 1, . . . , Np (3e)

∆ut+k|t ≤ ∆umax + V∆uε, k = 1, . . . , Np (3f)

ut+Nu+j|t = ut+Nu|t, j = 1, . . . , Np −Nu, (3g)

where ∆ut+k|t = ut+k|t − ut+k−1|t; Np and Nu are the
prediction and control horizon, respectively; Qy, Qu, and
Q∆u are positive semidefinite weight matrices specify-
ing the MPC cost function; uref and yref are the input
and output references, respectively; Qε, Vy, Vu, V∆u are
positive constants used to soften the input and output
constraints, ensuring that the optimization problem (3) is
always feasible. An MPC calibrator would typically adjust
Np, Nu, Qy, Qu, Q∆u using a mix of experience and trial-
and-error until the desired closed-loop goals are achieved,
fixing the remaining parameters to default values. Such a
process, in particular in the absence of a deep knowledge
of MPC, can be very time consuming and therefore costly.

Several parametrization may be used to simplify the cal-
ibration task. For instance, weight matrices Qy, Qu, and
Q∆u may be constrained to be diagonal (one of the weights
may also be chosen equal to one without loss of generality).
For notation convenience, we denote by θc the set of all
tuning parameters of the MPC problem introduced above.

The solution of the QP problem (3) is computed through
numerical optimization. We denote by θs the QP solver
settings, that we assume can also be adjusted by the cali-
brator. For instance, important solver parameters are the
relative and absolute feasibility/optimality tolerances for
termination. Note that the parameters θs influence both
the numerical solution accuracy (thus, the performance
index Jcl) and the computation time (thus, TMPC

calc).

2.2 State estimator

An estimate of the system state xt is required to solve the
MPC optimization problem (3). In this paper, we use a
Luenberger observer for state estimation:

x̂t+1|t = Ax̂t|t−1 +But + L(yt − Cx̂t|t−1) (4a)

ŷt+1|t = Cx̂t+1|t, (4b)

where x̂t|t−1 is the state estimate at time t based on ob-
servations up to time t−1. We compute L as the standard
stationary Kalman filter gain, based on the (linearized)
model (2), assuming positive definite covariance matrices
Ww and Wv for the additive process and measurement
noise, respectively. As for the MPC cost weight matrices,
different parametrizations/structures may be used to de-
fine such covariance matrices. The corresponding param-
eters are the tuning knobs of the state estimator and are
denoted as θe.

3. PERFORMANCE-DRIVEN PARAMETER TUNING

For notation convenience, the design parameters θm, θc,
θs, and θe introduced in the previous section are collected
in the single vector θ ∈ Rnθ .

In this section, we describe how to tune θ through
an experiment-driven approach in order to optimize the
closed-loop performance index Jcl(y[0,Texp], u[0,Texp]; θ), un-

der the real-time constraint TMPC
calc (θ) ≤ TMPC

s . The overall
MPC design task can be formalized as the following con-
strained global optimization problem

min
θ∈Θ

Jcl(y[0,Texp], u[0,Texp]; θ) (5a)

s.t. TMPC
calc (θ) ≤ ηTMPC

s . (5b)

In (5a), Θ ⊆ Rnθ is the set of admissible values of the
design vector θ. Specifically, in this work, Θ is a box-
shaped region delimited by lower and upper bounds for
each individual parameter. The constant η, 0 < η < 1
in (5b) takes into account that, in a practical implemen-
tation, a fraction of the controller’s computation time has
to be left available for other tasks.

It is important to stress that neither for Jcl(θ) nor for
TMPC

calc (θ) a closed-form expression is available. Neverthe-
less, these functions can be evaluated through real exper-
iments or simulations 1 . In the following, we describe the
optimization algorithm used to solve problem (5) based
on function evaluations of Jcl and TMPC

calc . One of main
strengths of this algorithm is its efficiency in terms of
number of required function evaluations.

3.1 Global optimization for parameter selection

First, the constrained optimization problem (5) is approx-
imated by the following box-constrained problem

min
θ∈Θ

J̃cl(θ), (6a)

where J̃cl(θ) is defined as the original cost Jcl(θ) plus a
continuous barrier function ` : R → R+ penalizing the
violation of the constraint TMPC

calc (θ) ≤ ηTMPC
s , i.e.,

J̃cl(θ) = Jcl(θ) + `
(
TMPC

calc (θ)− ηTMPC
s

)
. (6b)

We solve the optimization problem (6) by using the
approach described in (Bemporad, 2019), called GLIS

1 In order to evaluate the worst-case computation time TMPC
calc for a

given parameter θ, the control law should be computed on the target
hardware directly. In the absence of a platform emulator, this can
be done, for instance, with an hardware-in-the-loop setup where the
target hardware closes the control loop on a simulated system.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5265

Fig. 1. Schematics of the cart-pole system.

(GLobal optimization based on Inverse distance weighting
and radial basis function Surrogates).

The algorithm first runs nin ≥ 1 closed-loop experiments
for nin different values of the vector of design parameters
θn, n = 1, . . . , nin, generated randomly using Latin Hyper-
cube Sampling (LHS) (McKay et al., 1979) within Θ, mea-

suring the corresponding performance index J̃cl
n . Next, at

iteration n ≥ nin, a radial basis function f̂RBF is fit to the
available samples {(θ1, J̃

cl
1), . . . , (θn, J̃

cl
n)}. This function

f̂RBF is a surrogate of the (non-quantified) performance

index J̃cl. Another function z : Θ→ R, that promotes the
exploration of the set Θ in areas that have not been sam-

pled yet and where the empirical variance of J̃cl− f̂RBF is

large, is summed to f̂RBF to define an acquisition function
a : Θ→ R. The function a (which is very easy to evaluate
and even differentiate) is then minimized over Θ by using
a global optimization algorithm, such as Particle Swarm
Optimization (PSO) (Eberhart and Kennedy, 1995; Vaz
and Vicente, 2009), to get a new configuration θn+1 of
MPC parameters to test. A new closed-loop experiment
is performed with controller parameters θ = θn+1 and

the performance index J̃cl
n+1 is measured. The algorithm

iterates until a stopping criterion is met or a maximum
number nmax of iterations is reached.

The main advantage of using the global optimization al-
gorithm GLIS described above for solving the calibration
problem is twofold. First, it is a derivative-free algorithm,
and thus it is particularly convenient since a closed-form
expression of the cost J̃cl as a function of the design
parameters θ is not available. Second, it allows us to tune θ
with a smaller number of experiments compared to other
existing global optimization methods, such as PSO, DI-
RECT (DIvide a hyper-RECTangle) (Jones, 2009), Mul-
tilevel Coordinate Search (MCS) (Huyer and Neumaier,
1999), Genetic Algorithms (GA) (Hansen, 2006), and usu-
ally even than BO as reported in (Bemporad, 2019).

4. NUMERICAL EXAMPLE

As a case study, we consider the problem of controlling the
cart-pole system depicted in Fig. 1. We aim at designing an
MPC controller that minimizes a given closed-loop perfor-
mance index Jcl, while satisfying the constraint (5b) on the
worst-case MPC execution time TMPC

calc for real-time im-
plementation. The MPC law is computed using a custom-
made Python library that transforms problem (3) into a
standard QP form, which is subsequently solved using the
ADMM-based QP solver OSQP (Stellato et al., 2018). The
MPC parameters are tuned via global optimization using
the solver GLIS recalled in Section 3.1 and retrieved from
http://cse.lab.imtlucca.it/~bemporad/glis. In par-
ticular, package version 1.1 was used with default settings.

The complete source code generating the results in this
paper can be found at https://github.com/forgi86/
efficient-calibration-embedded-MPC. A standalone
installation version of the MPC library is also available
at https://github.com/forgi86/pyMPC for convenient
integration in other projects.

The MPC tuning is performed for two different hardware
platforms with remarkably different speed performance:

• an x86-64 PC equipped with an Intel i5-7300U
2.60 GHz CPU and 32 GB of RAM;

• a Raspberry PI 3 rev. B board equipped with a
1.2 GHz ARM Cortex-A53 CPU and 1 GB of RAM.

The Raspberry PI 3 is roughly 10 times slower than the
PC in computing the MPC law. This leads to different
constraints on the maximum controller complexity and
thus on the achievable closed-loop performance.

4.1 System description

The cart-pole dynamics are governed by the following
continuous-time differential equations which are used to
simulate the behavior of the system:

(M +m)p̈+mLφ̈ cosφ−mLφ̇2 sinφ+ bṗ = F

Lφ̈+ p̈ cosφ− g sinφ+ fφφ̇ = 0,

where φ (rad) is the angle of the pendulum with respect to
the upright vertical position; p (m) is the cart position; and
F (N) is the input force on the cart. The following values of
the physical parameters are used: M = 0.5 kg (cart mass);
m = 0.2 kg (pendulum mass); L = 0.3 m (rod length); g =
9.81 m/s2 (gravitational acceleration); b = 0.1 N/m/s; and
fφ = 0.1 m/s (friction terms). Measurements of p and φ
are supposed to be collected at a minimum sampling time
Ts,min = 1 ms, and are corrupted by additive zero-mean
white Gaussian noise sources with standard deviation
0.02 m and 0.01 rad, respectively. The force F is perturbed
by an additive zero-mean colored Gaussian noise with
standard deviation 0.1 N and bandwidth 5 rad/s. The force
F is bounded to the interval [−10, 10] N, which is due to
actuator saturation, while the cart position p is limited to
the interval [−1.2, 1.2] m, representing the length of the
track where the cart moves.

The system is initialized at [p(0) ṗ(0) φ(0) φ̇(0)] =
[0 0 π

18 0]. In the MPC calibration experiments of du-
ration Texp = 40 s, the objective is to track a piecewise
linear position reference pref for the cart passing through
the time-position points {(0, 0), (5, 0), (10, 0.8), (20, 0.8),
(25, 0), (30, 0), (40, 0.8)}, while stabilizing the angle φ to
the upright vertical position, i.e., at φ = 0.

The controller is disabled and the input force F is set to
0 at time Tstop < Texp whenever one of the following early
termination condition occurs:

• pendulum falling (|φ| > π
6)

• cart approaching end of the track (|p| ≥ 1.1 m)
• numerical errors in the MPC law computation

Similar conditions may be required to ensure safety in
the case of real experiments performed on a physical
setup. In our simulation setting, they are still useful to
reduce the computational time as they speed up the
test of configurations that are definitely not optimal.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5266

Furthermore, early termination is explicitly penalized in
our closed-loop performance index (see next paragraph),
and thus provides useful information for MPC calibration
to the global optimization algorithm.

4.2 Performance index

The closed-loop performance index J̃cl is defined as

J̃cl = ln

(∫ Texp

t=0

10|pref(t)− p(t)|+ 30|φ(t)| dt
)

+

+ `
(
TMPC

calc − ηTMPC
s

)
+ `′(Texp − Tstop), (7)

where the penalty term ` for real-time implementation of
the control law is

`=

ln

(
1 + 103T

MPC
calc −ηTMPC

s

ηTMPC
s

)
if TMPC

calc > ηTMPC
s

0 otherwise,
(8)

with η = 0.8. Another term `′ is used to penalize early
termination conditions, as previously discussed:

`′=

ln

(
1 + 103Texp−Tstop

Texp

)
if Tstop < Texp

0 otherwise.
(9)

The integral in (7) is approximated using samples collected
at the fastest sampling time Ts,min.

4.3 Control design parameters

We have different MPC design parameters to tune in order
to minimize the performance-driven objective (7).

As for the MPC cost function, the positive definite weight

matrix Qy is diagonally parametrized: Qy =
(qy11 0

0 qy22

)
,

where qy11 and qy22 are design parameters taking real
values in the interval [10−16, 1]. Since in the example
nu = 1, the weights Qu and Q∆u are scalars. Q∆u is
taken as a decision variable and bounded in the range
[10−16, 1], while Qu is set to 0. The prediction horizon
Np is an integer parameter in the range [5, 300], while the
control horizon Nu is a fraction εc of Np rounded to the
closest integer, with design parameter εc restricted to the
range [0.3, 1]. Lastly, the MPC sampling time TMPC

s is a
design parameter restricted to the range [1, 50] ms.

In the QP solver, the relative and absolute feasibil-
ity/optimality tolerances are tuned. Specifically, the log
of two tolerances are parameters in the range [−7, −1].

As for the state estimator, the 4x4 process noise covariance
matrix Ww and the 2x2 output noise covariance matrix Wv

are diagonally parametrized, similarly to Qy.

The system dynamics are assumed to be known. Therefore,
there is no tunable model parameter in our design problem.

Finally, MPC is configured with fixed constraints Fmax =
−Fmin = 10 N and pmax = −pmin = 1 m on the input
force F and on the output position p, respectively, while
standard values are used for all other MPC settings in (3)
not mentioned here.

The design parameter θ has thus dimension nθ = 14.

0 100 200 300 400 500

Iteration index n (-)

0

5

10

15

20

25

P
er

fo
rm

an
ce

co
st
J̃

c
l

Current test point

Overall best point

0 100 200 300 400 500

Iteration index n (-)

0

5

10

15

20

25

P
er

fo
rm

an
ce

co
st
J̃

c
l

Current test point

Overall best point

Fig. 2. Performance cost J̃cl vs. iteration index n of GLIS
for experiments run on the PC (top) and on the
Raspberry PI (bottom).

4.4 Results

The global optimizer GLIS is run for nmax = 500 itera-
tions. The performance cost J̃cl (7) vs. the iteration index
n is shown in Fig. 2 for the PC (top) and the Raspberry
PI 3 (bottom). It can be observed that, after less than
100 iterations, the majority of the controller parameter
configurations proposed by the algorithm are concentrated
in regions with low cost J̃cl. Persistent high values J̃cl are
due (correctly) to the exploration of the parameter space Θ
promoted by GLIS. This is more evident on the Raspberry
PI 3 platform, where the set of parameters satisfying the
real-time constraint (5b) is smaller.

The obtained optimal performance index J̃cl after 500
iterations is slightly better on the PC (-0.44) than on the
Raspberry PI (0.02), as expected. Indeed, certain MPC
configurations characterized, e.g., by small sampling time
and long prediction horizon may be feasible on the PC,
but not on the Raspberry PI.

Fig. 3 shows the time trajectories of position p, angle φ,
and force F for the optimal MPC controller on the PC
(top panel) and on the Raspberry PI (bottom panel), over
a validation reference trajectory different from the one
used for calibration. A slightly better performance for the
MPC implementation on the PC can be appreciated both
in terms of a tighter cart position tracking and a lower
variance in the angle signal.

Analyzing the two final MPC designs, we noticed that on
the PC we have TMPC

s = 6 ms, while on the Raspberry
PI we have TMPC

s = 22 ms. The optimal solution found

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5267

0 5 10 15 20 25 30 35 40

0.0

0.5

1.0

P
os

it
io

n
(m

)

p

pref

0 5 10 15 20 25 30 35 40

−10

0

10

A
n

gl
e

(d
eg

)

φ

0 5 10 15 20 25 30 35 40

Simulation time (s)

−5

0

5

F
or

ce
(N

)

u

0 5 10 15 20 25 30 35 40

0.0

0.5

1.0

P
os

it
io

n
(m

)

p

pref

0 5 10 15 20 25 30 35 40

−10

0

10

A
n

gl
e

(d
eg

)

φ

0 5 10 15 20 25 30 35 40

Simulation time (s)

−5

0

5

F
or

ce
(N

)

u

Fig. 3. Performance achieved by the designed MPC for
experiments run on the PC (top panel) and on the
Raspberry PI (bottom panel).

for the PC platform allows a faster loop update, and
thus achieves superior trajectory tracking and disturbance
rejection capabilities. On the other hand, a larger MPC
time is required on the Raspberry PI to guarantee real-
time implementation.

5. CONCLUSIONS AND FOLLOW-UP

We have presented an automated method to calibrate
MPC parameters with a limited number of experiments.
Real-time implementation constraints are explicitly taken
into account in the design in order to allow embedded
implementation of the resulting controller.

Future research will be devoted to find a parametrized
solution of the optimal MPC tuning knobs with respect to
the reference trajectories, and to the analysis of the gen-
eralization properties of the designed controllers against
control objectives not considered in the calibration phase.

REFERENCES

Bansal, S., Calandra, R., Xiao, T., Levine, S., and Tomlin,
C.J. (2017). Goal-driven dynamics learning via Bayesian
optimization. In Proc. of the 56th IEEE Conference on
Decision and Control, 5168–5173.

Bemporad, A. (2019). Global optimization via inverse
distance weighting. arXiv preprint arXiv:1906.06498.
http://cse.lab.imtlucca.it/~bemporad/glis/.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos,
E.N. (2002). The explicit linear quadratic regulator for
constrained systems. Automatica, 38(1), 3–20.

Borrelli, F., Bemporad, A., and Morari, M. (2017). Pre-
dictive control for linear and hybrid systems. Cambridge
University Press.

Brochu, E., Cora, V.M., and De Freitas, N. (2010). A
tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling
and hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599.

Drieß, D., Englert, P., and Toussaint, M. (2017). Con-
strained Bayesian optimization of combined interaction
force/task space controllers for manipulations. In 2017
IEEE International Conference on Robotics and Au-
tomation (ICRA), 902–907.

Eberhart, R. and Kennedy, J. (1995). A new optimizer
using particle swarm theory. In Proc. of the 6th In-
ternational Symposium on Micro Machine and Human
Science, 39–43. Nagoya.

Formentin, S., Piga, D., Tóth, R., and Saveresi, S.M.
(2016). Direct learning of LPV controllers from data.
Automatica, 65, 98–110.

Hansen, N. (2006). The CMA evolution strategy: a
comparing review. In Towards a new evolutionary
computation, 75–102. Springer.

Huyer, W. and Neumaier, A. (1999). Global optimization
by multilevel coordinate search. Journal of Global
Optimization, 14(4), 331–355.

Jones, D. (2009). DIRECT global optimization algorithm.
Encyclopedia of Optimization, 725–735.

McKay, M.D., Beckman, R.J., and Conover, W.J. (1979).
Comparison of three methods for selecting values of in-
put variables in the analysis of output from a computer
code. Technometrics, 21(2), 239–245.

Piga, D., Formentin, S., and Bemporad, A. (2018). Direct
data-driven control of constrained systems. IEEE Trans-
actions on Control Systems Technology, 25(4), 331–351.

Piga, D., Forgione, M., Formentin, S., and Bemporad, A.
(2019). Performance-oriented model learning for data-
driven MPC design. IEEE Control Systems Letters,
3(3), 577–582.

Roveda, L., Forgione, M., and Piga, D. (2020). Two-stage
robot controller auto-tuning methodology for trajectory
tracking applications. In Proc. of the 21st IFAC World
Congress 2020, Berlin, Germany, July 12-17 2020.

Sacks, J., Welch, W., Mitchell, T., and Wynn, H. (1989).
Design and analysis of computer experiments. Statistical
Science, 409–423.

Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., and
De Freitas, N. (2016). Taking the human out of the
loop: A review of Bayesian optimization. Proc. of the
IEEE, 104(1), 148–175.

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and
Boyd, S. (2018). OSQP: An operator splitting solver for
quadratic programs. In 2018 UKACC 12th International
Conference on Control (CONTROL), 339–339. https:
//osqp.org.

Vaz, A. and Vicente, L. (2009). PSwarm: A hybrid solver
for linearly constrained global derivative-free optimiza-
tion. Optimization Methods and Software, 24, 669–685.
http://www.norg.uminho.pt/aivaz/pswarm/.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5268

