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Abstract: Over the last three decades, energy management strategies considering minimum energy 

consumption have been extensively studied in the field of automotive engineering. On the contrary, the 

fatigue life of mechanical parts in powertrains is rarely considered. This paper addresses a Real-time-

oriented Multi-Objective Energy Management Strategy aimed at both the energy consumption and the 

fatigue life of mechanical parts in the powertrain of a Two-Motor Multi-Speed Battery Electric Vehicle 

(BEV). This strategy is based on Model Predictive Control (MPC), while Dynamic Programming (DP) is 

embedded to solve the non-linear optimal control problem in the prediction horizon. The online simulation 

results show that this MPC-based strategy prolongs the service life of the powertrain with a minor sacrifice 

in energy consumption, and that this strategy achieves a sub-optimal result close to the offline optimal 

result from DP. Moreover, the result from MPC-based strategy approaches the optimal result with 

prolonging prediction horizon. 

Keywords: Automotive Control; Battery Electric Vehicle; Powertrain; Multi-Objective Energy 

Management Strategy; Optimal Control; Fatigue Life; Service Life; Model Predictive Control; Real-Time 

Control. 

 

1. INTRODUCTION 

Under the ascending pressure from the emission and fuel 

consumption regulation (EU Parliament (2019)), vehicle 

electrification has been receiving continuously uprising 

attention both in market and in academia. Being completely 

electrified, Battery Electric Vehicles (BEV) generate zero 

operational emissions compared with conventional vehicles 

and have more simple propulsion systems compared with 

Hybrid Electric Vehicles (HEV). The problem of high pricing, 

one of the main obstacles between BEVs and consumers, is 

gradually eased by declining battery prices (Wolfram et al. 

(2016)). Therefore, BEVs are playing a stronger role in the 

market: BEVs took 31.3 % and 44.7 % of new passenger car 

sales in 2018 and the first 9 months of 2019 respectively 

(Grundhoff (2019)); the market share of BEV in a Belgian city 

is forecasted to reach 15 % by 2030 (Lebeau et al. (2012)). 

Another main bottleneck keeping BEVs from popular 

adoption is the low energy density of Lithium-ion battery 

compared with standard fuel (Manzetti et al. (2015)). Thus, 

efficiency of the whole powertrain plays an important role to 

extend the range of BEVs. A pioneer Project ‘Speed4E’ 

introduced an innovative Two-Motor Multi-Speed powertrain 

(Mileti et al. (2019)). Compared with normal BEV powertrain 

topologies shown in Fig. 1 (a) and (b) (Ivanov et al. (2015)), 

the Speed4E powertrain (c) consists of two electric motors and 

corresponding sub-transmissions, which enables a power-split 

between the motors as well as a gear selection in favour of 

higher overall efficiency of the powertrain. Besides, the 

combination of hyper-high-speed electric motors (maximum 

motor speed 50000 rpm) and high gear ratio meets the output 

torque requirement and has the advantage of downsized and 

lightweight electric motors. 

 

Fig. 1. BEV powertrain topologies. EM: Electric Motor, T: 

Transmission, D: Final Drive, ST: Sub-Transmission. Variants: 

(a) Direct Central; (b) Central with Transmission; (c) Speed4E 

powertrain with two electric motors and corresponding sub-

transmission. 

Given this Speed4E powertrain, certain energy management 

strategies are investigated. Shortly after rule-based strategies 

(Opila et al. (2000)) were proposed, the focus of this area 

shifted to optimal control theory, viewing the energy 

management problem as an Optimal Control Problem (OCP). 

Dynamic Programming (DP), a direct method delivering a 

global optimum, has received attention since then (Brahma et 

al. (2000)). In the same period, Equivalent Consumption 

Minimization Strategy (ECMS), an application and a 
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simplification of an indirect method, Pontryagin’s Maximum 

Principle (PMP), was proposed (Paganelli et al. (2002)). 

Though simplified, ECMS still achieved nearly identical result 

as PMP (Kim et al. (2011)). 

In order to achieve better real-time control performance, 

Model Predictive Control (MPC) was applied in HEV energy 

management strategies; a review of these applications was 

written by Huang (Huang et al. (2017)). MPC solves an OCP 

over a receding horizon and apply the control policy in the 

control horizon, which results in a suboptimal control. Certain 

MPC algorithms were studied and achieved 96% of the 

optimality from DP under the examined drive cycle (H. 

Banvait et al. (2014)). 

Though sharing same methods from optimal control theory, 

developing energy management strategies for BEV differs in 

certain area. First of all, the strategy aims at minimum fuel 

consumption in the case of HEV and minimum battery 

discharge in the case of BEV; Secondly, though the time 

directive of SOC depends both on the battery power and itself, 

the battery power is independent of SOC; Thirdly, the total 

power request must be met by the battery no matter the SOC 

condition. Therefore, SOC no longer exists in the OCP and the 

cost function is transformed to battery power for BEV.  

Plenty of energy management strategies were developed from 

DP, ECMS, MPC and so forth. However, these strategies 

mainly considered energy consumption. Although occasional 

considerations of shift frequency (Yuan et al. (2013)), 

emission (Pisu et al. (2007)), and battery aging (Li et al. 

(2018)) also exist, the fatigue life of the mechanical parts in 

the powertrain is neglected. The downside is that an energy 

consumption oriented control strategy would split the power 

between power sources as well as select the gear in a fixed 

manner given fixed drive cycle and drive routine, which leads 

to higher accumulated fatigue of certain mechanical parts and 

therefore an uneven distribution of accumulated fatigue in the 

powertrain. In the best case, these parts are to be replaced after 

they meet the fatigue limit. In the worst case, the whole system 

is to be replaced. A strategy aimed at both energy consumption 

and fatigue life of mechanical parts could reduce the 

economical and ecological cost and waste in this process. 

Besides, all mechanical parts are designed to meet certain 

fatigue life requirements. A control strategy aimed also at 

fatigue life of mechanical parts can intelligently arrange loads 

on different gears and power sources and therefore has the 

potential benefit of vehicle lightweighting through lowering 

these fatigue life requirements. 

This paper proposes a real-time-control-oriented energy 

management strategy considering both the energy 

consumption and the fatigue life of the mechanical parts in the 

powertrain of the Speed4E vehicle. It can also be applied to 

other powertrain topologies if the vehicle and the powertrain 

models are modified. This strategy is based on a DP-embedded 

MPC algorithm and a simulation study is conducted. Because 

computational cost is crucial to real-time application, the 

influence from the length of the prediction horizon to 

simulation results and computation durations is investigated. 

This paper is organized as follows. The architecture of the 

studied BEV and the model of mechanical fatigue life are 

presented in Section II. The multi-objective OCP is 

formulated and the algorithms to solve this optimal control 

problem with MPC are presented in Section III. In Section 

IV, simulation results of the control strategy developed from 

MPC are compared with the results from DP. The influence 

of prediction horizon to the results and computational cost is 

studied in Section IV. Latter comes conclusion as Section V. 

2. VEHICLE AND MECHANICAL FATIGUE LIFE 

MODELS 

2.1 Vehicle Model 

This study considers the prototype BEV designed in the 

project “Speed4E”. As discussed in the introduction, its 

powertrain consists of two electric motors, two corresponding 

sub-transmissions and a final drive. Electric Motor 1 (EM1) 

is connected with the fixed gear sub-transmission 1 (ST1), a 

planetary gear set, while Electric Motor 2 (EM2) is connected 

with sub-transmission 2 (ST2), a 3-stage 2-speed helical gear 

set. As the two EMs as well as STs work independently from 

each other, the output torque can be split between the two 

sub-powertrains and the ST2 can be shifted to 1st gear with 

high gear ratio in favour of high output torque for 

acceleration or 2nd gear with low gear ratio in favour of the 

operational efficiency of EM2. The schematic representation 

Speed4E powertrain is presented in Figure 2. The vehicle 

configurations are reported in Table 1. The speed-torque 

relation of the powertrain is described in (3). 

 

Fig. 2. Schematic representation of the Speed4E powertrain 

(Mileti et al. (2019)) 

 

Table 1. Basic Vehicle Information 

Fronted area 2.38 m² 

Aerodynamic 

coefficiency 
0.294 

Rolling 

coefficient 
Velocity dependent curve 

Electric Motor 1 

Induction motor 

Rated speed: 20000 rpm 

Rated torque: 28 Nm 

Maximum speed: 30000 rpm 

Maximum torque: 60 Nm 
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Electric Motor 2 

Permanent magnet motor 

Rated speed: 26000 rpm 

Rated torque: 27 Nm 

Maximum speed: 50000rpm 

Maximum torque: 43 Nm 

Sub-

Transmission 1 
Fixed gear ratio: 26.4 

Sub-

Transmission 2 

1st gear ratio: 36 

2nd gear ratio: 20 

The vehicle dynamics are calculated as in 

𝑃𝑟𝑒𝑞(𝑡) = (𝑒𝑖𝑚𝑎𝑣𝑒ℎ(𝑡) + 𝑐𝑟𝑜𝑙𝑙(𝑡)𝑚𝑔𝑐𝑜𝑠(𝜃(𝑡))

+
1

2
𝑐𝑎𝑒𝑟𝑜 ∙ 𝜌𝑎𝑖𝑟𝐴𝑓𝑣𝑣𝑒ℎ

2 (𝑡)

+ 𝑚𝑔𝑠𝑖𝑛(𝜃(𝑡))) 𝑣𝑣𝑒ℎ(𝑡), 

(1) 

where Preq is the requested power; ei is the mass factor, which 

is an effect of rotating components in the powertrain; 𝑚 is the 

total mass of the vehicle; aveh is the vehicle acceleration; 

rolling resistance is calculated according to coefficient croll 

and gravity force normal to the ground 𝑚𝑔cos𝜃; 

aerodynamic resistance is calculated according to coefficient 

caero, density of the air 𝜌𝑎𝑖𝑟 , fronted aero Af and the vehicle 

velocity vveh; 𝑚𝑔sin𝜃 is the gravity force parallel to the 

ground. 

The requested power is balanced by the output power of the 

powertrain as in 

𝑃𝑟𝑒𝑞(𝑡) = 𝑀𝑟𝑒𝑞(𝑡) ∙ 𝜔𝑤ℎ𝑒𝑒𝑙(𝑡), (2) 

𝑀𝑟𝑒𝑞(𝑡) = 𝑀𝐸𝑀1(𝑡) ∙ 𝑖𝑆𝑇1 ∙ 𝜂𝑆𝑇1
𝑙 (𝜔𝐸𝑀1, 𝑀𝐸𝑀1) 

         +𝑀𝐸𝑀2(𝑡) ∙ 𝑖𝑆𝑇2(𝐺) ∙ 𝜂𝑆𝑇2
𝑙 (𝜔𝐸𝑀2, 𝑀𝐸𝑀2, 𝐺), 

(3) 

where Mreq is the requested output torque of the powertrain; 

MEM is the output torque of an electric motor; 𝜔 is the 

rotational speed; i is the gear ratio (fixed for ST1 and 

depending on gear selection for  ST2); 𝜂 is the efficiency 

(depending on the speed and the torque of EM1 for ST1 and 

on the speed and the torque of EM2 as well as the gear 

selection G for ST2); l is -1 when motoring and 1 when 

recuperating. 

All the power is provided by the battery as in 

𝑃𝑏𝑎𝑡𝑡(𝑡) = 𝑃𝐸𝑀1(𝑡) ∙ 𝜂𝐸𝑀1
𝑙 (𝜔𝐸𝑀1, 𝑀𝐸𝑀1)

∙ 𝜂𝑃𝐸1
𝑙 (𝜔𝐸𝑀1 , 𝑀𝐸𝑀1) 

             +𝑃𝐸𝑀2(𝑡) ∙ 𝜂𝐸𝑀2
𝑙 (𝜔𝐸𝑀2 , 𝑀𝐸𝑀2)

∙ 𝜂𝑃𝐸2
𝑙 (𝜔𝐸𝑀2, 𝑀𝐸𝑀2), 

(4) 

where 𝑃𝑏𝑎𝑡𝑡 is the battery electric power; 𝜂𝐸𝑀 is the 

efficiency of the electric motor; 𝜂𝑃𝐸 is the efficiency of the 

power electronic. 

The efficiency of power electronics, electric motors and 

transmissions are modelled as corresponding maps based on 

the simulation results from project partners Lenze, IAL-AS 

University of Hannover and FZG Technical University of 

Munich respectively. 

2.2 Fatigue Life Model of Mechanical Parts 

This part presents the method used in this paper to calculate 

certain mechanical parts’ fatigue life under operational 

condition. Gear sets and their tooth flank pitting are chosen as 

the object of the fatigue life model in this study. However, 

fatigue life of other mechanical parts in the powertrain, for 

instance bearings, can also be modelled (Tong et al. (2017)) 

and implemented. 

2.2.1 Miner Rule 

Miner rule is the basis of almost all known fatigue life 

calculation methods for cyclically loaded components 

characterized by a nominal stress, especially in the 

automotive field (Bertsche (2008), 325–329). The 

fundamental ideas and assumptions are: 1) the component 

absorbs work during fatigue process, and the ratio of already 

absorbed work w to the maximum absorbable work W is the 

measure of the fatigue D. This can be converted to the ratio 

of already happened cycle number n to the maximum 

permissible cycle number N under certain cycle stress S from 

Woehler curve, also known as S-N curve; 2) every cycle 

under the same stress condition causes same fatigue; 3) all 

partial fatigues Di can be linearly accumulated to calculate 

total fatigue D; 4) a failure occurs when total fatigue reaches 

1. These statements can be represented by (5) and (6), in 

which k means the number of cycle stress levels. The S-N 

curves used in this study are based on the calculation from 

FZG Technical University of Munich. 

𝐷 =
𝑤

𝑊
=
𝑛

𝑁
 

(5) 

𝐷 =∑𝐷𝑖

𝑘

𝑖=1

=∑
𝑤𝑖
𝑊

𝑘

𝑖=1

=∑
𝑛𝑖
𝑁𝑖

𝑘

𝑖=1

 
(6) 

2.2.2 Nominal Stress on Gear Flank 

As stated in the beginning of this chapter, this study consider 

the tooth flank pitting as failure in this study and therefore 

need to calculate the stress on the flank. In this study, the 

Hertzian contact pressure (Niemann et al. (2003)) based 

method from DIN 3990 (Deutsches Institut für Normung 

E.V. (DIN)) is used and presented as in 
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𝜎𝐻
= 𝑍𝐻 ∙ 𝑍𝐸 ∙ 𝑍𝜀 ∙ 𝑍𝛽       

∙ 𝑍1,2√
2000 ∙ 𝑇input

𝑑1 ∙ 𝑏
.
𝑑1 + 𝑑2
𝑑1 ∙ 𝑑2

∙ 𝐾𝑣 ∙ 𝐾𝐻𝛽 ∙ 𝐾𝐻𝛼 , 
(7) 

where 𝜎𝐻  is Hertzian pressure; 𝑍𝐻  is zone factor;  𝑍𝐸  is 

elasticity factor; 𝑍𝜀  is contact ratio factor; 𝑍𝛽  is helix angle 

factor; 𝑍1,2 is tooth contact factor; 1 for pinion, 2 for gear; Tinput 

is input torque to the gear set; d is pitch circle diameter; Kv is 

dynamic factor; 𝐾𝐻𝛽 is face load distribution factor for contact 

pressure; 𝐾𝐻𝛼 is transverse factor for contact pressure. A more 

detailed description and how to pick these factors can be found 

in DIN3990.  

2.2.3 Fatigue Life of Mechanical Parts and Mechanical 

Service Life of the Powertrain 

The fatigue life F is defined as in 

𝐹 =
1

𝐷
∙ 𝐿𝑐𝑦𝑐𝑙𝑒 , (8) 

where Lcycle is the distance of the tested drive cycle or the 

driving distance in real world. The mechanical part with the 

shortest fatigue life determines the mechanical service life of 

the powertrain. 

3. FORMULATION AND SOLUTION OF OPTIMAL 

CONTROL PROBLEM 

3.1 Formulation of the Optimal Control Problem 

The OCP is formulated here in a discrete form with a time 

index k. The optimization horizon [t0,tf] is evenly discretised 

to N steps with 1 second time step. The system state 𝑥(𝑘) =

(𝑥1(𝑘), 𝑥2(𝑘) )
𝑇 = (𝑃𝑏𝑎𝑡𝑡(𝑘), 𝜔𝐸𝑀1(𝑘) )

𝑇 evolves as (9) 

under constraints of (10), where f  is transformed from (1), 

(2), (3) and (4), which describe the dynamics of the vehicle 

and the powertrain under certain requested power (Preq). The 

torque of EM1 and the gear selection are chosen as the 

control (𝑢(𝑘) = (𝑢1(𝑘) , 𝑢2(𝑘)  )
𝑇 = (𝑀𝐸𝑀1(𝑘) , 𝐺 (𝑘) )

𝑇). 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) 

               ∀𝑘 ∈ {0,1,2…𝑘, 𝑘 + 1…𝑁 − 1,𝑁} 
(9) 

𝑠. 𝑡.

{
  
 

  
 

𝑃𝑏𝑎𝑡𝑡,𝑚𝑖𝑛 ≤ 𝑥1(𝑘) ≤ 𝑃𝑏𝑎𝑡𝑡,𝑚𝑎𝑥
𝜔𝐸𝑀1,𝑚𝑖𝑛 ≤ 𝑥2(𝑘) ≤ 𝜔𝐸𝑀1,𝑚𝑎𝑥

𝑀𝐸𝑀1,𝑚𝑖𝑛 ≤ 𝑀𝐸𝑀1(𝑥(𝑘), 𝑢(𝑘)) ≤ 𝑀𝐸𝑀1,𝑚𝑎𝑥

𝜔𝐸𝑀2,𝑚𝑖𝑛 ≤ 𝜔𝐸𝑀2(𝑥(𝑘), 𝑢(𝑘)) ≤ 𝜔𝐸𝑀2,𝑚𝑎𝑥
𝑀𝐸𝑀1,𝑚𝑖𝑛 ≤ 𝑢1(𝑘) ≤ 𝑀𝐸𝑀1,𝑚𝑎𝑥

𝑢2(𝑘) ∈ {0,1,2}

 
(10) 

Determined by the state at 0 and the policy 𝜋, a sequence of 

controls described in (12), the cost function (11) consists of 

two parts and a fatigue weight factor 𝛽. Battery electric 

power in (13) represents the energy consumption. Function 

(14) is the squared deviation of the fatigue of the pinion of 

stage 1 in ST1 and the fatigue of the sun gear of stage 1 in 

ST2. To make the sentences more compact, we call them 

fatigue of ST1 and ST2. Minimizing the squared deviation 

means balancing the fatigue of ST1 and ST2 so that the 

mechanical service life of the powertrain is prolonged. 

Solving an OCP means finding the value function 𝐽∗(𝑥(0)) 

described as in (15) and corresponding optimal control policy 

𝜋∗. 

𝐽(𝑥(0), 𝜋) = ∑(𝑔𝑒𝑛𝑒𝑟𝑔𝑦(𝑥(𝑘), 𝑢(𝑘))

𝑁

𝑘=0

+ 𝛽𝑔𝑓𝑎𝑡𝑖𝑔𝑢𝑒(𝑥(𝑘), 𝑢(𝑘))) 
(11) 

𝜋 = {𝑢(0), 𝑢(1)…𝑢(𝑁)} (12) 

𝑔𝑒𝑛𝑒𝑟𝑔𝑦(𝑥(𝑘), 𝑢(𝑘)) = 𝑃𝑏𝑎𝑡𝑡(𝑥(𝑘), 𝑢(𝑘)) (13) 

𝑔𝑓𝑎𝑡𝑖𝑔𝑢𝑒(𝑥(𝑘), 𝑢(𝑘))

= (𝐷𝑠𝑢𝑛𝑔𝑒𝑎𝑟,𝑆𝑇1(𝑥(𝑘), 𝑢(𝑘))

− 𝐷𝑝𝑖𝑛𝑖𝑜𝑛,𝑆𝑇2(𝑥(𝑘), 𝑢(𝑘)))
2

 

(14) 

𝐽∗(𝑥(0)) = min
𝜋
{𝐽(𝑥(0), 𝜋)} (15) 

3.2  Dynamic Programming Solution 

Bellman’s equation is applied to the OCP as in (16) with the 

final stage condition 𝐽∗(𝑥(𝑁)) = 0, and thereafter the 

optimal policy 𝜋∗ in (17) is determined. 

𝐽∗(𝑥(𝑘)) = 𝑚𝑖𝑛
𝑢
{𝑔𝑒𝑛𝑒𝑟𝑔𝑦(𝑥(𝑘), 𝑢(𝑘))

+ 𝛽𝑔𝑓𝑎𝑡𝑖𝑔𝑢𝑒(𝑥(𝑘), 𝑢(𝑘))

+ 𝐽∗(𝑓(𝑥(𝑘), 𝑢(𝑘)) )} 
(16) 

𝜋∗ = {𝑢∗(0), 𝑢∗(1)…𝑢∗(𝑁)} (17) 

3.3  Application of Model Predictive Control 

Fig. 3(a) shows the flowchart of the MPC algorithm with a 

time step of 1 second in this study. At every time step j, the 

future driver torque request is generated according to the 

exponential decreasing function (Borhan et al. (2009)) 

described as in (18) and (19), determining the system state in 

the prediction horizon (mp red circled line in Fig. 3 (b)). The 

choice of an inconsistent Td is based on the observation from 

the daily life that the higher the requested torque, the shorter 

the duration of the request.  The DP algorithm described in 

3.2 is embedded to determine the optimal policy 𝜋∗ in the 

prediction horizon (light blue steps in Fig. 3(b)). 𝜋∗ is applied 
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in the control horizon (mc) following the past control, the 

darker blue steps. This procedure repeats until the end of the 

total simulation horizon N. 

𝑀req(𝑗 + 𝑖) = 𝑀req(𝑗) exp (−
𝑖

𝑇𝑑
)     

𝑖 = 1,2…𝑚𝑝 

(18) 

𝑇𝑑 = {

0.1                     1000 ≤ 𝑀req(𝑗)

1           100 ≤ 𝑀req(𝑗) < 1000

0.1                       𝑀req(𝑗) < 100

 
(19) 

 

 
(a) 

 
(b) 

Fig. 3. Flowchart and schematic of MPC algorithm in this 

study 

4. SIMULATION RESULTS 

4.1  Simulation Results with DP 

DP is used to generate a global optimal control strategy given 

Worldwide Harmonized Light Vehicle Test 

Procedure (WLTP) drive cycle as a priori. The simulation 

results are shown in Fig. 4. Every green circle represents the 

squared deviation of fatigue and the energy consumption of 

one WLTP drive cycle with respective weight factor as in 

(20), where the subscript p is the index of the weight factors 

and the test cases. The red and the blue circle vertical to each 

green circle represent the fatigue of ST1 and ST2 after one 

WLTP drive cycle regarding the same weight factor as the 

green circle. 

𝛽𝑝 = 10
𝑞             𝑞 = {

2𝑝                     0 ≤  𝑝 ≤ 7
0.5𝑝 + 11          7 <  𝑝 ≤ 19

 
(20) 

Due to small order of magnitude of the fatigue part in the cost 

function (11), no obvious change takes place before the 

weight factor reaches 𝛽11. The nonlinear relation between the 

index of weight factor p and order q in (20) is intended to 

spare Fig. 4 from crowded data points between 𝛽1 and 𝛽11.  

When 𝛽 stays at a low level, the accumulated fatigue of ST1 

is more than two times of ST2, resulting half of the fatigue 

life. The reason is that the sub-powertrain 1, the combination 

of EM1 and ST1, operates with a higher efficiency in most of 

the operation states in WLTP.  Fig. 4 shows that a rising 

weight factor 𝛽 diminishes the squared deviation of fatigue. 

The fatigue of ST1 reaches its minimum at 𝛽14 resulting its 

longest fatigue life and the longest service life of the 

powertrain, which increases by 13.6 % compared with the 

one with 𝛽1 (𝛽1: 1.87x105 km and 𝛽14: 2.15x105 km). 

Meanwhile, only 1.7% more energy is consumed (𝛽1: 13.36 

kWh/100 km and 𝛽14: 13.59 kWh/100 km). 

 

Fig. 4. DP control strategy simulation results with different 

weight factors β 

Fig. 5 and Fig. 6 illustrate the gear selection and the resulting 

load spectra, accumulated cycle numbers regarding different 

stress levels on S-N curve diagram (Naunheimer et al. (2007), 

250–254), of ST1 and ST2 with different weight factors β. 

Comparing Fig. 5 (b) to Fig. 5 (a), a higher weight factor 

shrinks ST2-neutral-gear to vehicle velocities under 60 km/h 

and low battery power in favour of balanced fatigue. Thus, 

the loaded cycle numbers of ST1 decreased between 0.08 and 

0.25 normalized stress (Fig. 6 (a)); the load spectrum of ST2 

extend to 0.08 normalized stress (Fig. 6 (b)); the highest 

stress level of ST1 and ST2 both decrease. 
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(a) Gear selection with 𝛽1 

 
(b) Gear selection with 𝛽14 

Fig. 5. Gear selection with different weight factors 

 
(a) ST1 load spectrum after one cycle of WLTP 

 
(b) ST2 load spectrum after one cycle of WLTP 

Fig. 6. Load spectrum with different weight factors 

4.2  Online Simulation Results with MPC 

4.2.1  Online Simulation Results compared with Offline 

Results from DP 

Fig. 7 shows an overall comparison between MPC online 

simulation results and DP offline simulation results with 

same weight factors. Because the MPC algorithm does not 

consider the drive cycle a priori, it cannot exploit all the 

information and therefore reaches suboptimal results. A 

comparison of energy consumption and service life of the 

powertrain is presented in Table 2. When the control strategy 

neglects fatigue, the energy consumption of MPC is merely 

0.3% more than that of DP. When it shares 𝛽14 as DP, MPC 

consumes 0.4% more energy and causes the powertrain 

service life to be 1.4% less. 

 

Fig. 7. MPC online simulation results. mp=5, mc=1. 

Table 2. MPC (mp=5, mc=1) and DP Simulation Results 

Comparison 

 𝛽1 𝛽14 

 DP MPC DP MPC 

Energy 

consumption 

(kWh/100km) 

13.36 
13.40 

(+0.3 %) 
13.59 

13.65 

(+0.4 %) 

Powertrain 

service life 

under WLTP 

(x105 km) 

1.87 
1.88 

(+0.5 %) 
2.15 

2.12 

(-1.4 %) 

4.2.2  Simulation Results and Computation Duration of MPC 

with different Prediction Horizon 

Fig. 8 illustrates the influence of the prediction horizon’s 

length to the simulation results, whose exact numbers are 

presented in Table 3 (𝛽14 as the study case; mp sequentially 

increases from 5 to 15). The MPC online simulation results 

approach the optimal offline result from DP with prolonging 

prediction horizon. Increasing the prediction horizon from 5 

to 9 causes a decrement of energy consumption 4 times more 

than the decrement through increasing prediction horizon 
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from 9 to 15, while it’s a 1.5 times in the case of the 

powertrain service life. 

 

Fig. 8. MPC simulation results with prolonged prediction 

horizon 

Table 3. MPC Simulation Results with Prolonged 

Prediction Horizon 

 DP 
MPC, 

mp=5 

MPC, 

mp=9 

MPC, 

mp=15 

Energy 

consumption 

(kWh/100km) 

13.587 
13.652 

(+0.4 %) 

13.603 

(+0.1 %) 

13.596 

(+0.1 %) 

Powertrain 

service life 

under WLTP 

(x105 km) 

2.148 
2.119 

(-1.4 %) 

2.129 

(-0.9 %) 

2.133 
 (-0.7 %) 

 

Fig. 9 shows the computation duration for one WLTP of the 

cases presented in Fig. 8. Linear square regression (LSR) is 

applied to these data points and a clear linear correlation can 

be noticed. The reason is that DP is embedded to determine 

the optimal policy in the prediction horizon (subsection 3.3), 

while DP’s computational complexity grows linearly with 

recursion steps (equation (15)). 

 

Fig. 9. Computation duration of MPC algorithm for one 

WLTP cycle. Computer configuration: i5-8600K, 3.6 GHz. 

Prolonging prediction horizon length causes different 

improvement rates of the simulation results but linear growth 

of the computation durations. Therefore, we choose mp=9, 

where the decreasing of energy consumption in Fig. 8 

softened, for the future test of real-time control. This mindset 

is similar to the elbow method in clustering (Kodinariya et al. 

(2013)). It achieves a simulation duration 0.7 time of the 

WLTP cycle duration and delivers a result coinciding the 

offline optimal result with DP (Table 3). Thus, such a DP-

embedded-MPC algorithm has the potential to serve as real-

time controller and deliver close to optimal result.  

5. CONCLUSION 

This paper firstly proposes a non-linear multi-objective OCP 

considering the energy consumption and the fatigue life of 

mechanical parts in the powertrain as well as shows the 

integration of the mechanical fatigue life model into the 

Speed4E vehicle model. Secondly, DP-based energy 

management strategy regarding the proposed OCP prolongs 

the powertrain service life with subtle sacrifice in the energy 

consumption. With a weight factor of 𝛽14, the service life is 

prolonged by 13.6% while the EV consumes 1.7% more 

electric energy. Thirdly, a DP-embedded-MPC-based strategy 

is presented, achieving close to optimal results from DP. 

Moreover, the investigation of the prediction horizon length 

shows its linear correlation to the simulation duration and 

that the MPC-based strategy approaches the optimal result 

with prolonging prediction horizon. We choose a prediction 

horizon of 9 steps as a compromise.  
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