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Abstract: We propose a new approach to compute an interval over-approximation of the
finite time reachable set for a large class of nonlinear systems. This approach relies on the
notions of sensitivity matrices, which are the partial derivatives representing the variations of
the system trajectories in response to variations of the initial states. Using interval arithmetics,
we first over-approximate the possible values of the second-order sensitivity at the final time
of the reachability problem. Then we exploit these bounds and the evaluation of the first-order
sensitivity matrices at a few sampled initial states to obtain an over-approximation of the first-
order sensitivity, which is in turn used to over-approximate the reachable set of the initial system.
Unlike existing methods relying only on the first-order sensitivity matrix, this new approach
provides guaranteed over-approximations of the first-order sensitivity and can also provide such
over-approximations with an arbitrary precision by increasing the number of samples.
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1. INTRODUCTION

Reachability analysis is the problem of evaluating the set
of all the successor states that can be reached in finite time
by a system starting from a given set of initial states (Blan-
chini and Miani, 2008). Since the reachable set can rarely
be computed exactly, we often rely on methods to over-
approximate this set. In the literature, we primarily find
two classes of reachability approaches. The first class con-
siders complex and flexible set representations, such as
zonotopes (Althoff, 2015), zonotope bundles (Althoff and
Krogh, 2011) ellipsoids (Kurzhanskiy and Varaiya, 2007),
support functions (Girard and Le Guernic, 2008), paving
of intervals (Jaulin, 2001). Their main focus is to over-
approximate the reachable set as tightly as possible, which
is particularly interesting to solve simple verification prob-
lems such as those with safety or reachability specifications
where the obtained over-approximation is immediately
checked against a set of unsafe or target states.

The second class considers a simpler set representation in
the form of (multi-dimensional) intervals, using methods
based on differential inequalities (Scott and Barton, 2013),
Taylor models (Chen et al., 2012), growth bounds (Reissig
et al., 2016) or monotonicity (Meyer et al., 2019). Due to
the simpler set representation, these methods tend to offer
better efficiency and scalability at the cost of the accuracy
of the over-approximations, and are thus particularly used
in the field of abstraction-based control synthesis (see e.g.
Moor and Raisch, 2002; Coogan and Arcak, 2015; Reissig
et al., 2016; Meyer and Dimarogonas, 2019) where the
number of reachable set over-approximations required for
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the creation of an abstraction grows exponentially in the
dimension of the state space.

In the subset of monotonicity-based interval reachability
approach, the simplest method, used in Moor and Raisch
(2002), relies directly on a monotonicity property (Angeli
and Sontag, 2003) and guarantees that an interval over-
approximation of the reachable set can be computed by
evaluating the successors of only two vertices of the in-
terval of initial states. A generalization of this property
called mixed-monotonicity was then introduced and used
for reachability analysis in Coogan and Arcak (2015),
where an auxiliary monotone system can be created by
decomposing the initial system into its increasing and
decreasing components. A further generalization of mixed-
monotonicity to any system with a bounded Jacobian
matrix was recently proposed in Yang et al. (2019) and
used for reachability analysis in Meyer and Dimarogonas
(2019). Finally, another interval reachability method in-
spired by the notion of mixed-monotonicity and applica-
ble to continuous-time nonlinear systems was proposed
in Meyer et al. (2018), where bounds on the sensitivity
matrix (partial derivative describing the influence of initial
conditions on successor states) are used to compute an
over-approximation interval of the reachable set.

While Meyer et al. (2018) considers two approaches to
evaluate these sensitivity bounds, both have shortcomings:
one provides very conservative bounds by applying the
interval arithmetics results from Althoff et al. (2007), the
other only computes empirical bounds through a time-
consuming sampling procedure which is not guaranteed to
result in an over-approximation of the sensitivity values. In
this paper, we propose a novel and more flexible algorithm
to obtain sensitivity bounds by combining the advantages
of these two approaches while overcoming their main
drawbacks. In addition to the first-order sensitivity matrix
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used above, the proposed approach also relies on the
second-order sensitivity in the following 3-step procedure:

• first over-approximate the reachable tube (over the
whole time range) for the first-order sensitivity matrix
using interval arithmetics,
• next use these bounds to over-approximate the reach-

able set (at the final time only) for the second-order
sensitivity using interval arithmetics,
• finally combine the second-order sensitivity bounds

with the numerical evaluation of the first-order sen-
sitivity on some sampled initial states to obtain an
over-approximation of the reachable set of the first-
order sensitivity.

This result has two major advantages. Compared to the
purely empirical sampling approach from Meyer et al.
(2018), the proposed algorithm is sound since for any
number of samples we are guaranteed to over-approximate
the set of first-order sensitivity values. Compared to the
one-step interval arithmetics method from Meyer et al.
(2018), which is conservative, we can now obtain arbitrar-
ily tight bounds of the first-order sensitivity by increasing
the number of samples. Indeed, the sampling in our third
step can be used to tune the desired tradeoff between
the computational complexity and the conservativeness of
the over-approximation. Compared to methods relying on
Taylor models (Chen et al., 2012) which usually require a
decomposition of the time range to reduce the accumula-
tion of errors, the proposed approach relying on mixed-
monotonicity does not have this problem and all over-
approximations can be computed in a single time step.

Due to space limitation, proofs and additional details are
provided in the extended version of this paper. 1

2. PRELIMINARIES

Let R and N be the sets of reals and positive integers,
respectively. Let In ∈ Rn×n and 0n×p,1n×p ∈ Rn×p
denote the identity matrix of dimension n and the n × p
matrices filled with zeros and ones, respectively. Given two
matrices A ∈ Rn×p and B ∈ Rq×r, we denote their matrix
product (if p = q) as A ∗ B = AB ∈ Rn×r and their
Kronecker product as A⊗B ∈ Rnq×pr.

Let I ⊆ 2R be the set of closed real intervals, i.e., for all
X ∈ I, there exist x, x ∈ R such that X = [x, x] = {x ∈
R | x ≤ x ≤ x} ⊆ R. In and In×p then represent the sets
of interval vectors in Rn and interval matrices in Rn×p,
respectively. Given two interval matrices [A,A], [B,B] ∈
In×p, their sum is: [A,A] + [B,B] = [A + B,A + B].
From Jaulin (2001), the product of two scalar intervals
is defined as

[a, a] ∗ [b, b] = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)] ∈ I.
For [A,A] ∈ In×p and [B,B] ∈ Ip×q, the product [C,C] =
[A,A] ∗ [B,B] ∈ In×q is defined elementwise such that

[Cij , Cij ] =

p∑
k=1

[Aik, Aik] ∗ [Bkj , Bkj ] ∈ I,

and the product of a scalar interval with a matrix interval
is defined as [C,C] = [a, a] ∗ [B,B] ∈ Ip×q with

[Cij , Cij ] = [a, a] ∗ [Bij , Bij ] ∈ I.
1 Available at: https://arxiv.org/abs/1911.09775

For [A,A] ∈ In×p and [B,B] ∈ Iq×r, the interval
Kronecker product [C,C] = [A,A] ⊗ [B,B] ∈ Inq×pr is
defined as a n× p block interval matrix with (i, j) block

[Cij , Cij ] = [Aij , Aij ] ∗ [B,B] ∈ Iq×r.

2.1 Functional matrices

In this section, we provide definitions and results on the
manipulation of functional matrices used throughout the
paper. We first introduce the differential operator D for a
scalar differentiable function f : Rn → R to be:

Df(x) =

(
∂f(x)

∂x1
· · · ∂f(x)

∂xn

)
.

Then for a functional matrix A : Rn → Rp×q, its
differential DA(x) ∈ Rp×nq is the p×q block matrix where
each element Aij(x) ∈ R of A(x) ∈ Rp×q is replaced by the
row vector of its differential DAij(x) ∈ R1×n:

DA(x) =

DA11(x) · · · DA1q(x)
...

. . .
...

DAp1(x) · · · DApq(x)

 (1)

=


∂A11(x)

∂x1
· · · ∂A11(x)

∂xn
· · · ∂A1q(x)

∂x1
· · · ∂A1q(x)

∂xn
...

...
...

...
...

∂Ap1(x)

∂x1
· · · ∂Ap1(x)

∂xn
· · · ∂Apq(x)

∂x1
· · · ∂Apq(x)

∂xn

 .

This notation ensures that we only work with 2-dimensional
matrices, instead of matrices with more than two dimen-
sions for which cumbersome matrix product definitions
would need to be introduced.

For a time-varying functional matrix A : R×Rn → Rp×q,
its time derivative is denoted with a dot

Ȧ(t, x) =
∂A(t, x)

∂t
,

and we keep the notation DA(t, x) as in (1) to denote its
derivative with respect to the second variable x ∈ Rn.

For the product of two functional matrices, its differential
is obtained as in the following result from (Cheng et al.,
2012, Corollary 18.1).

Lemma 1. (Product rule). Given A : Rn → Rp×q, B :
Rn → Rq×r, we have D(A(x)B(x)) ∈ Rp×nr given by

D(A(x)B(x)) = DA(x) ∗ (B(x)⊗ In) +A(x) ∗DB(x).

Next, we introduce the chain rule for the composition of a
functional vector and functional matrix.

Lemma 2. (Chain rule). Given A : Rm → Rp×q and b :
Rn → Rm, we have D(A(b(x))) ∈ Rp×nq given by

D(A(b(x))) = DA(y)|y=b(x) ∗ (Iq ⊗Db(x)).

2.2 Reachability analysis of interval affine systems

The method presented in this paper partly relies on results
from Althoff et al. (2007) which use interval arithmetics
to over-approximate the reachable set and reachable tube
of affine interval systems. These results are summarized in
this section for self-containment of the paper.

Consider an affine interval system of the form

ż ∈ Az + B, (2)
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with state z ∈ Rp×q and interval matrices A = [A,A] ∈
Ip×p and B = [B,B] ∈ Ip×q. Given an interval matrix of
initial states Z0 = [z0, z0] ∈ Ip×q and a time step τ > 0, we
denote the reachable set of (2) as z(τ, Z0) ⊆ Rp×q and its
reachable tube as z([0, τ ], Z0) =

⋃
t∈[0,τ ] z(t, Z0) ⊆ Rp×q.

The results from Althoff et al. (2007) rely on Taylor
series truncated at an order r ∈ N which needs to satisfy
r > ‖A‖∞τ − 2, where the infinity norm of the interval
matrix is defined by ‖A‖∞ = ‖max(|A|, |A|)‖∞ using
componentwise absolute value and max operators. Then
we introduce

C(τ) = [−1p×p,1p×p] ∗
(‖A‖∞τ)r+1

(r + 1)!

r + 2

r + 2− ‖A‖∞τ
,

D(τ) =

r∑
i=0

(Aτ)i

i!
+ C(τ),

E(τ) =

r∑
i=0

Aiτ i+1

(i+ 1)!
+ C(τ)τ,

F (τ) =

[
r∑
i=2

(
i

−i
i−1 − i −1

i−1

) (Aτ)i

i!
,0p×p

]
+ C(τ),

where all sums and products of interval matrices follow
the definitions in Section 2. We also define the inter-
val hull of two interval matrices [a, a], [b, b] ∈ Ip×q as
H([a, a], [b, b]) = [min(a, b),max(a, b)] using the compo-
nentwise min and max operators.

Lemma 3. (Althoff et al. (2007)). The reachable set of (2)
at time τ ≥ 0 is over-approximated by an interval in Ip×q
as follows:

z(τ, Z0) ⊆ D(τ)Z0 + E(τ)B. (3)

If in addition we have B = {0p×q}, then the reachable
tube of (2) over time range [0, τ ] is over-approximated by
an interval in Ip×q as follows:

z([0, τ ], Z0) ⊆ H(Z0, D(τ)Z0) + F (τ)Z0. (4)

3. PROBLEM FORMULATION

We consider a continuous-time, time-varying system

ẋ = f(t, x), (5)

with state x ∈ Rn and vector field f : R × Rn → Rn
assumed to be twice differentiable in the state. We denote
as Φ(t; t0, x0) ∈ Rn the state reached by (5) at time t ≥ t0
from initial state x0.

Problem 4. Given a time range [t0, tf ] ∈ I and an interval
of initial states X0 = [x, x] ∈ In, find an interval in In
over-approximating the reachable set of system (5) defined
as R(tf ; t0, X0) = {Φ(tf ; t0, x0) | x0 ∈ X0}.

To solve Problem 4 with the method presented in Sec-
tion 5, we assume that bounds on both the first-order and
second-order Jacobian matrices of (5) are provided by the
user. These two Jacobian matrices are defined below using
the differential operator D of the vector field f(t, x) with
respect to state x as introduced in Section 2.1:

Jx(t, x) = Df(t, x) ∈ Rn×n,
Jxx(t, x) = DJx(t, x) ∈ Rn×n

2

.

Assumption 5. Given an invariant state space X ⊆ Rn for
system (5), there exist [Jx, Jx] ∈ In×n and [Jxx, Jxx] ∈

In×n2

such that for all t ∈ [t0, tf ] and x ∈ X we have

Jx(t, x) ∈ [Jx, Jx] and Jxx(t, x) ∈ [Jxx, Jxx].

4. SENSITIVITY EQUATIONS

The method presented in Section 5 to solve Problem 4
relies on the definition of the sensitivity matrices of system
(5) representing the differential influence of the initial
conditions on the successor Φ(t; t0, x0) at time t. Similarly
to the definition of the Jacobian matrices above, we use
D to denote the differential operator of the trajectory
Φ(t; t0, x0) with respect to initial state x0. Then the first-
order and second-order sensitivity matrices are defined as:

Sx(t; t0, x0) = DΦ(t; t0, x0) ∈ Rn×n, (6)

Sxx(t; t0, x0) = DSx(t; t0, x0) ∈ Rn×n
2

. (7)

Both sensitivity matrices defined in (6) and (7) can also
be described by the time-varying affine systems below.

Proposition 6. Using the short-hand notations Sx :=
Sx(t; t0, x0), Sxx := Sxx(t; t0, x0), Jx := Jx(t,Φ(t; t0, x0))
and Jxx := Jxx(t,Φ(t; t0, x0)), the sensitivity matrices
defined in (6) and (7) follow:

Ṡx = Jx ∗ Sx, (8)

Ṡxx = Jx ∗ Sxx + Jxx ∗ (Sx ⊗ Sx), (9)

with Sx(t0; t0, x0) = In and Sxx(t0; t0, x0) = 0n×n2 .

Alternative derivations of second-order sensitivity equa-
tions have been obtained in Choi et al. (2016) for differen-
tial algebraic equations and Geng and Hiskens (2019) for
hybrid systems.

5. REACHABILITY ALGORITHM

The proposed approach to solve Problem 4 is summarized
in Algorithm 1 and Figure 1. Below, we briefly explain this
algorithm by going backwards from step 4 to step 1.

The end goal in step 4 is to over-approximate the reachable
set of the nonlinear system (5) using the recent reachability
method in Meyer et al. (2018) that relies on interval
bounds on the reachable set of the first-order sensitivity
Sx(tf ; t0, X0). The method in Meyer et al. (2018) uses
either conservative bounds from a direct application of
Lemma 3 or empirical bounds from a sampling procedure.
In contrast, here we derive guaranteed bounds on Sx in
step 3 by combining bounds on the reachable set of the
second-order sensitivity Sxx(tf ; t0, X0) with the numerical
evaluation of Sx at time tf on a finite set of sampled initial
states. The resulting bounds on Sx(tf ; t0, X0) can be made
arbitrarily tight by increasing the number of samples.

The bounds on Sxx are computed in step 2 by applying
(3) in Lemma 3 to (9), which requires the knowledge of
bounds of both Jacobian matrices (from Assumption 5)
and on the reachable tube of the first-order sensitivity
Sx([t0, tf ]; t0, X0). This reachable tube of Sx is over-
approximated in step 1 by applying (4) in Lemma 3 to (8),
which requires bounds on Jx taken from Assumption 5.

5.1 Interval arithmetics on the sensitivity systems

For the first step of Algorithm 1, we first need to rewrite
the time-varying linear system of the first-order sensitivity
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Input: Reachability problem for (5): t0, tf , X0 = [x, x]

Data: Jacobian bounds [Jx, Jx], [Jxx, Jxx]
Step 1: Apply (4) to (8) and obtain an interval
over-approximation of Sx([t0, tf ]; t0, X0)
Step 2: Apply (3) to (9) and obtain an interval
over-approximation of Sxx(tf ; t0, X0)
Step 3: Obtain an interval over-approximation of
Sx(tf ; t0, X0) from the bounds on Sxx and the evaluation
of Sx(tf ; t0, x0) on a finite subset of X0

Step 4: Obtain an interval over-approximation of
R(tf ; t0, X0) using the bounds on Sx (Meyer et al., 2018)
Output: Interval solving Problem 4

Algorithm 1: Reachability analysis of system (5).

[Jx, Jx] [Jxx, Jxx]

[Sxx, Sxx]

[Sx, Sx]

[Sx
RT , S

x
RT ]

Lemma 3 (3)
OA of Sxx(tf ; t0, X0)

Lemma 3 (4)
OA of Sx([t0, tf ]; t0, X0)

Ṡx in (8)

Ṡxx in (9)

Sx in (6) Sampling {y1, . . . , yN} ⊆ X0

Evaluations Sx(tf ; t0, y
i)

OA of Sx(tf ; t0, X0)

Reachability analysis
from Meyer et al. (2018)

ẋ = f(t, x) in (5)

OA of R(tf ; t0, X0)

Fig. 1. Sketch of the 4-step reachability procedure in Al-
gorithm 1 where “OA” stands “over-approximation”.
For each box, top arrows are the input requirements,
side arrows are the equations used and bottom arrows
are the output results.

(8) into a linear interval system similarly to (2). This is
done using the bounds on Jx from Assumption 5:

Ṡx(t; t0, x0) ∈ [Jx, Jx] ∗ Sx(t; t0, x0). (10)

Then, applying (4) in Lemma 3 with A = [Jx, Jx], B =
{0n×n} and Z0 = {In} leads to an over-approximation
of the reachable tube Sx([t0, tf ]; t0, [x, x]) ⊆ [SxRT , S

x
RT ] ∈

In×n defined as:

[SxRT , S
x
RT ] = H({In}, D(tf − t0)) + F (tf − t0).

For the second step in Algorithm 1, we use the bounds
[SxRT , S

x
RT ] obtained in the previous step alongside the

Jacobian bounds from Assumption 5 to rewrite the time-
varying affine system of the second-order sensitivity (9)
into an affine interval system as in (2) with A =
[Jx, Jx], B = [Jxx, Jxx] ∗ ([SxRT , S

x
RT ] ⊗ [SxRT , S

x
RT ]) and

the initial condition Z0 = {0n×n2} from Proposition 6.
This leads to an over-approximation of the reachable set

Sxx(tf ; t0, [x, x]) ⊆ [Sxx, Sxx] ∈ In×n2

defined as:

[Sxx, Sxx] = E(tf − t0)B.

5.2 Sampling for the first-order sensitivity

Step 3 of Algorithm 1 relies on the evaluation of the
first-order sensitivity for some sampled initial states. Let
{y1, . . . , yN} = Y ⊆ [x, x] be a finite set of N samples
in the interval of initial states [x, x]. Similarly to (Tempo
et al., 2012, Section 7.4.4), we define below the dispersion
of this set of samples, where the infinity norm of a state
x ∈ Rn is defined as ‖x‖∞ = maxi∈{1,...,n} |xi|.
Definition 7. Given a finite set Y ⊆ [x, x], the dispersion
of Y in [x, x] is defined as: d(Y ) = sup

x∈[x,x]
min
y∈Y
‖x−y‖∞ ∈ R.

Smaller values of d(Y ) imply that the sample states in Y
are well scattered in the interval [x, x]. After evaluating
the first-order sensitivity Sx(tf ; t0, y

i) at time tf for each
of these sampled states through numerical integration of
(6) or (8), we can derive guaranteed bounds on the set
Sx(tf ; t0, [x, x]) as follows.

Theorem 8. Given bounds on the second-order sensitivity

Sxx(tf ; t0, [x, x]) ⊆ [Sxx, Sxx] ∈ In×n2

and a finite set
Y ⊆ [x, x] of sampled initial states, define M ∈ Rn×n as

M = max
(
|Sxx|, |Sxx|

)
∗ (In ⊗ (1n ∗ d(Y ))),

using componentwise absolute value and max operators.
Then the set of first-order sensitivity values at time tf is

over-approximated as Sx(tf ; t0, [x, x]) ⊆ [Sx, Sx] ∈ In×n
with, for all i, j ∈ {1, . . . , n}:

Sxij = max
y∈Y

(
Sxij(tf ; t0, y)

)
+Mij ,

Sxij = min
y∈Y

(
Sxij(tf ; t0, y)

)
−Mij .

The over-approximation interval [Sx, Sx] in Theorem 8
thus corresponds to the interval hull of the sampled
sensitivity evaluations {Sx(tf ; t0, y)|y ∈ Y } dilated by M .

From the definition of M in Theorem 8, we can see
that the size of the obtained bounds on the first-order
sensitivity Sx grows with the dispersion of the sampling
set Y . As a consequence, the set Y can be used to tune
the tradeoff between reducing the conservativeness of the
sensitivity bounds [Sx, Sx] and limiting the computation
time (related to the number of samples). If computation
capabilities were unlimited, Theorem 8 could then provide
interval bounds of the first-order sensitivity values with
arbitrary precision, as formulated below.

Proposition 9. If the sample number grows to infinity
N → ∞, we can design the sampling set Y such that
[Sx, Sx] from Theorem 8 converges to the unique tight
interval over-approximation of the set Sx(tf ; t0, [x, x]),
i.e. the smallest (in terms of inclusion) interval over-
approximation.

5.3 Reachability analysis of the initial system

This section corresponds to step 4 of Algorithm 1 in which
we apply the method for reachability analysis introduced
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in Meyer et al. (2018). This reachability result is summa-
rized below for self-containment of this paper.

Let Sx∗ ∈ Rn×n denote the center of [Sx, Sx] and define
the decomposition function g : R× Rn × Rn → Rn whose
ith component with i ∈ {1, . . . , n} is

gi(t0, x, y) = Φi(tf ; t0, z
i) + αi(x− y), (11)

where the state zi = [zi1; . . . ; zin] ∈ Rn and row vector αi =
[αi1, . . . , α

i
n] ∈ R1×n are such that for all j ∈ {1, . . . , n},

(zij , α
i
j) =

{
(xj ,max(0,−Sxij)) if Sx∗ij ≥ 0,

(yj ,max(0, Sxij)) if Sx∗ij < 0.
(12)

Then an over-approximation of the reachable set of (5)
is obtained by computing only two evaluations of the
decomposition function g.

Lemma 10. (Meyer et al. (2018)). Given bounds on the
first-order sensitivity Sx(tf ; t0, [x, x]) ⊆ [Sx, Sx] ∈ In×n
and the definitions in (11)-(12), an over-approximation of
the reachable set of (5) is given by:

R(tf ; t0, [x, x]) ⊆ [g(t0, x, x), g(t0, x, x)].

6. NUMERICAL ILLUSTRATION

In this section, we illustrate the approach in Algorithm 1
and compare it to the alternative methods from Meyer
et al. (2018) on a numerical example. We consider the
continuous-time uncertain unicycle model described as:

ẋ = [v cos(x3) + x4; v sin(x3) + x5;ω + x6; 0; 0; 0], (13)

where [x1;x2] is the 2D position of the unicycle, x3
is its orientation, [x4;x5;x6] are constant uncertain pa-
rameters in the dynamics of the first three states,
v = 0.25 is the controlled forward velocity and ω =
0.3 is the controlled angular velocity. Using the con-
servative bounds cos(x3), sin(x3) ∈ [−1, 1], global Ja-
cobian bounds of (13) satisfying Assumption 5 are
obtained by taking [Jx1,4, J

x
1,4] = [Jx2,5, J

x
2,5] =

[Jx3,6, J
x
3,6] = {1}, [Jx1,3, J

x
1,3] = [Jx2,3, J

x
2,3] =

[Jxx1,15, J
xx

1,15] = [Jxx2,15, J
xx

2,15] = [−v, v] and

[Jxij , J
x
ij ] = [Jxxij , J

xx
ij ] = {0} for all other elements.

Taking the initial time t0 = 0, we want to evaluate the
reachable set of (13) at time tf = 10 for the following
interval of initial conditions: X0 = [0, 1]× [0, 1]× [π8 ,

2π
8 ]×

[−0.05, 0.05]× [−0.05, 0.05]× [−0.03, 0.03]. This reachabil-
ity problem is solved in five ways described below.

• We first apply Algorithm 1 three times using a
uniform grid sampling with an increasing number of
samples per dimension of the state space a ∈ {1, 2, 3}
(leading to a total number of sample points of N =
a6 ∈ {1, 64, 729}). In Figures 2 and 3, these results
are plotted in dashed red, dot-dashed blue and plain
green, respectively.
• Next we use the one-step interval arithmetics (“IA”

in Table 1) approach from Meyer et al. (2018), plotted
in dotted purple.
• Finally we apply the sampling and falsification (“SF”

in Table 1) approach from Meyer et al. (2018) using
N = 64 samples, plotted in dashed orange.

The computation times for each of the four steps in
Algorithm 1 (or alternatively, for obtaining bounds on

Sx(tf ; t0, X0) in both methods from Meyer et al. (2018))
are reported in Table 1. The obtained bounds on Sx1,3
and Sx2,3 for step 3 are plotted in Figure 2 and the
final reachability analysis (step 4) on states x1 and x2
is shown in Figure 3. In both figures, the cloud of black
dots represents the numerical integration of (6) and (13),
respectively, for 500 random samples in X0.

From Table 1, we first note that the computation of the
final reachable set (step 4) is very fast and identical for
all methods since this step is oblivious to the way the
sensitivity bounds [Sx, Sx] are obtained. As expected, the
three steps relying on the interval arithmetics results from
Lemma 3 (steps 1 and 2 in Algorithm 1 and step 3 in
method “IA”) are also achieved quickly. The sampling
computations in step 3 of Algorithm 1 naturally grows
with the number of samples. For the sampling and falsifica-
tion approach from Meyer et al. (2018), the sampling time
is identical to the one in the second call of Algorithm 1
(due to having the same number of samples N = 64),
but then the total computation time is increased by the 2
iterations of the falsification procedure used to improve the
estimated bounds on Sx. Such expansion of the bounds is
not required in Algorithm 1 since from Theorem 8, step 3
is already guaranteed to over-approximate Sx(tf ; t0, X0).

In Figure 2, we can first note that, as hinted in Proposi-
tion 9, the bounds on the first-order sensitivity obtained in
Algorithm 1 shrink as we increase the number of samples.
We can also see that the one-step interval arithmetics
method from Meyer et al. (2018) gives very conservative
bounds on Sx (similar in size to Algorithm 1 with a
single sample point). While the sampling and falsifica-
tion method from Meyer et al. (2018) gives the closest
approximation of Sx(tf ; t0, X0), the obtained bounds are
not actually an over-approximation of this set (despite the
2 iterations of falsification), which means that applying
step 4 with such bounds is not sound for the reachability
analysis of (13).

Finally, we can combine Figure 3 and Table 1 to conclude
on the ability of Algorithm 1 to tune to our needs the
tradeoff between computation time and conservativeness.
The sampling and falsification approach from Meyer et al.
(2018) is discarded from this discussion as we already
showed above that it is unreliable when we want guar-
anteed over-approximations. When computation time is
our main concern, we can take N = 1 in Algorithm 1 to
obtain results comparable to the one-step “IA” method
from Meyer et al. (2018), in terms of both conservative-
ness and low computation time. In particular, although
the computation time of the interval arithmetics steps
1-2 would slightly increase with higher state dimension
n, the computational complexity of steps 3-4 is constant
(i.e. independent of the state dimension) when we take
N = 1. On the other hand, if more computational power
is available, increasing the number of samples tightens the
over-approximation and in this example, we can see in
Figure 3 that both N = 64 and N = 729 give tighter
bounds than the method from Meyer et al. (2018).
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