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Abstract: This paper focuses on deal with the finite-time consensus with event-triggered control
strategy for multi-agent systems (MASs). An event-triggered protocol for finite-time consensus
is designed using relative measurements. The coordination measurement error is utilized in
the triggering condition design for the purpose of removing the prerequisite of topology graph
knowledge. Under strongly connected graph assumptions, by utilizing the proposed consensus
protocol, all agents can complete consensus and Zeno behaviour will not happen in a settling
time. Next, by decomposing the Laplacian matrix in Frobenius norm form, the results are
extended to the more general graphs containing a directed spanning tree. At last, a numerical
example demonstrates the validity of the algorithm results.

Keywords: Multi-agent system, finite-time consensus, event-triggered, directed graphs

1. INTRODUCTION

Last few decades have witnessed the much progress in the
research of multi-agent systems (MASs) Qin et al. (2017);
Olfati-Saber et al. (2007). The essential concern in the filed
of MASs is consensus Tang et al. (2015); Wu et al. (2016),
which aims to propose a protocol to drive all the agents to
reach an agreement. Owing to the widely applications, this
topic has been investigated in various research domains
such as attitude synchronization Thunberg et al. (2014),
formation control Dong et al. (2015), and distributed
optimization Nedić and Olshevsky (2015).

In the most of real applications of consensus control for
MASs, the computation, energy and communication re-
sources are quite limited. For example, in the formation
control of quadrotors, each quadrotor is battery-driven
with a very limited power. In addition, since the com-
munication channels of wireless networks is limited, the
network congest will easily occur with a large number of
quadrotors. Due to these facts, it is meaningful to consider
how to use the resource efficiently in MASs. In the past few
years, a novel event-triggered mechanism is put forward
to deal with this issue Dimarogonas et al. (2012); Zhu
et al. (2014); Zhang et al. (2019). In the event-triggered
mechanism, each agent updates their control protocol at
triggering instants, which implies that they don’t need to
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continuously interact with their neighbours. The triggering
moments of each agent are defined through an event-
triggered condition (ETC), which should be appropriately
designed.

The pioneering result of event-triggered control for MASs
is reported in Dimarogonas et al. (2012). The centralized
and distributed event-triggered consensus protocols for
MASs are both discussed. In Zhu et al. (2014), each agent
samples their neighbors’ state information and update
the protocol at its own triggering instants which can
further reduce the update times of controllers. To avoid the
continuous communication in the event-detection, the self-
triggered mechanism is taken into account in Tang et al.
(2016). The latest progress in event-triggered consensus
control is survey by Nowzari et al. (2019). Note that
in some research Dimarogonas et al. (2012); Zhu et al.
(2014), the global information of the topology network
is required to be known in event-triggered consensus
protocols and event-triggered conditions (ETCs), which
makes these protocols are not fully distributed. Recently,
an adaptive event-based consensus protocol is put forward
to overcome this drawback Cheng and Li (2019); Li et al.
(2019). However, in Cheng and Li (2019), the assumption
of undirected graphs is still needed.

It should be mentioned that the existing research in
event-triggered consensus of MASs above are to achieve
the asymptotic consensus. Note that in some real appli-
cations, the consensus convergence performance is quite
meaningful for MASs. In addition, event-triggered control
only takes a control action at some triggering instants
which may decrease the convergence rate. Thus, it is
worth proposing a finite-time consensus protocol under
the event-triggered mechanism to guarantee convergence
performance and low resource consumption both.
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Motivated by these discussion, we focus on event-triggered
control of finite-time consensus under directed graphs
for MASs in this paper. Inspired by the early works on
the finite-time consensus Bhat and Bernstein (2000), a
finite-time protocol under event-triggered mechanisms is
studied for MASs under directed graphs. Furthermore,
considering about the fully distributed protocol, the event-
triggered finite-time protocol should not use the graph
knowledge. Since the protocol and ETC are both related
to graphs, designing an event-triggered protocol without
utilizing graph knowledge under directed graphs is a
great challenge. The merits in this paper are outlined
below, 1) An event-triggered protocol is proposed for the
finite-time consensus of MASs. It can be revealed that
consensus is achieved by using the proposed protocol in
a settling time. The communication consumptions and
control protocol updates will be reduced compared with
continuous consensus protocols. 2) Compare with Zhu
et al. (2014); Cheng and Li (2019), the consensus protocol
and ETC designed in this work are fully distributed.
Furthermore, the results is improved under the directed
graphs with spanning trees.

Notation: N, N+ denote a non-negative integer and a
positive integer, respectively. RN and RN×N stand for
vector space and matrix space with N dimension and
N × N dimension. Define a vector x ∈ RN , |x| =[
|x(1)|, ..., |x(N)|

]T
and xσ =

[(
x(1)

)σ
, ...,

(
x(N)

)σ]T
de-

note absolute value and power of the vectors, where
x(v) typifies the vth element of the vector. Denote

sig(x)γ =
[
|x(1)|

(
x(1)

)γ
, ..., |x(N)|

(
x(N)

)γ]
. ‖x‖ denotes

the Euclidean norm of x and ⊗ represents Kronecker
product.

2. MATHEMATICAL KNOWLEDGE AND PROBLEM
STATEMENT

2.1 Graph

Denote G = {N , E} a directed graph, in which N =
{1, ..., N} represents the node set and E ⊆ N × N
represents the edge set. If agent j can send messages to
agent i, then (i, j) is in the E and agent j is known as
a neighbor of agent i. Let Ni denote the all the agent i’s
neighbors set. One directed link between agent i and agent
j in the graph is defined as a sequence of connections such
as (j, l1), (l1, l2), ..., (lk, i), k ∈ N+. One directed graph is a
tree means that the graph contains a spanning tree means
that there is a root node which has directed links to other
nodes. An adjacency matrix of a directed graph is formed
as aij > 0 if agent j is the neighbors of agent i and aij = 0
otherwise. In addition, it assumes that aii = 0 here which
means that the self-loop is excluded. A Laplacian matrix

of a directed graph is formed as lii =
∑N
j=1 aij , for i 6= j,

lij = −aij where i, j = 1, ..., N .

2.2 Problem statement

Define a MAS comprising N agents under directed graphs.
The agents are modelled by i = 1, ..., N ,

ẋi(t) = ui(t), (1)

where xi ∈ Rn denotes the state variable, ui ∈ Rn denotes
the input for each agent.

Definition 1. Given a MAS comprising N agents, then
finite-time consensus is accomplished if ∀i, j = 1, ...N ,

lim
t→T

(xi(t)− xj(t)) = 0, (2)

where T is a positive settling time constant.

Since event-triggered control is introduced, the control
input is reformed as i = 1, ..., N,

ui(t) = ui(t
i
k), t ∈ [tik, t

i
k+1), (3)

where tik, k ∈ N+, i = 1, ..., N denote event-triggered
moments of each agent.

The primary task in the next subsection is to propose
a event-triggered algorithm that can complete the finite-
time consensus in Definition 1.

Before introducing the main results, some useful lemmas
should be presented firstly.

Lemma 1. (Bhat and Bernstein (2000)) Given a Lyapunov
function V : Rn → R such that V (x) > 0 where x 6= 0,
V (0) = 0 and

D+V (x) ≤ −εV (x)β , x ∈ Rn\{0}, (4)

where 0 < β < 1 and ε > 0, then x = 0 is a finite-
time stability point and there exists a settling time T =

1
ε(1−β)V (0)1−β .

Lemma 2. (Zhang et al. (2012)) Given a strongly con-
nected graph G containing N nodes and the associated
Laplacian matrix L ∈ RN×N . Then there exists a positive
vector w ∈ RN such that wTL = 0. Furthermore, let
W = diag{wi}, i = 1, ..., N , then WL+ LTW ≥ 0.

3. EVENT-TRIGGERED FINITE-TIME CONSENSUS
UNDER DIRECTED GRAPHS

In this part, an event-triggered protocol for finite-time
consensus is designed for (1). By means of Lyapunov
methods, consensus will be accomplished in finite time
under assumptions of strongly connected graphs. Next,
with the help of decomposing the Laplacian matrix into
a Frobenius norm form, the event-triggered finite-time
consensus is considered under a tree topology.

3.1 Strongly connected graphs case

Let xij(t) = xi(t) − xj(t), j ∈ Ni represent the relative
measurement between ith agent and its neighbours. Next,
a finite-time consensus protocol based on event-triggered
mechanism is constructed by

ẋi(t) = −βisig
( N∑
j=1

aij(xij(t
i
k))
)σ
, (5)

where 0 < σ < 1 and βi > 0. According to the
event-triggered protocols above, each agent will sample
the relative information between neighbors at its own

triggering instants tik. Let x̃i(t
i
k) =

∑N
j=1 aij(xij(t

i
k)) and

define the measurement error as,

ei(t) = sig(x̃i(t
i
k))σ − sig(x̃i(t))

σ, t ∈ [tik, t
i
k+1). (6)
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Then, the event-triggered instants of each agent are deter-
mined as,

tik+1 = inf
{
t > tik : βi‖ei(t)‖2 > k3

(
δi‖x̃σi (t)‖2 + ηri (t)

)}
,

(7)

where r is a positive constant such that 0 < r < 1. βi, δi
are positive parameters that will be defined later. ηi is
a dynamic variable which is governed by the following
equation,

η̇i(t) = −k1ηri (t) + k2

(
δi‖x̃σi (t)‖2 − βi

k3
‖ei(t)‖2

)
, (8)

where ηi(0) > 0, k1 > 0 and k2 > 0 which will be defined
later.

Lemma 3. Given a dynamic variable ηi by (8), under the

ETC (7), it can be shown that ηi(t) ≥ (−w1t + w2)
1

1−r ,
where w1 = (k1 + k2)(1− r), w2 = ηi(0)(1−r).

Proof. Combining with the ETC (7) and (8), one has

η̇i(t) ≥ −(k1 + k2)ηri (t). (9)

Supposed that y(t) is a solution of the differential equation
ẏ(t) = −(k1 + k2)yr(t). Multiplying y−r(t) on the both
sides of the equation, we have the following equivalent
equation

d(y1−r)

dt
= −(k1 + k2)(1− r). (10)

The differential equation above can be solved by separat-
ing variables, which means that y1−r(t) = −(k1 + k2)(1−
r)t+y(0)1−r. By using comparison lemma, one can obtain

that ηi(t) ≥ y(t) = [−(k1+k2)(1−r)t+y(0)1−r]
1

1−r . Hence,
the proof is competed.

Remark 1. Inspired by Girard (2015), a dynamic internal
variable ηi is introduced in the ETC (7). In the event-
triggered mechanism, the important task is to exclude
the Zeno behavior. Note that this issue has not been well
solved for the static triggering condition Yi et al. (2019).
For the purpose of excluding the Zeno behavior explicitly,
a dynamic event-triggering condition is introduced in this
paper.

Now, the main results can be given below,

Theorem 1. Given a MAS (1) with the strongly connected
graph, under event-triggered protocol (5), then the finite-
time consensus is accomplished and the Zeno behavior is
avoided both in a settling time.

Proof. Given a candidate function as,

V (t) =

n∑
p=1

N∑
i=1

wi
λ(1 + σ)

∣∣∣x̃(p)i (t)
∣∣∣1+σ +

N∑
i=1

ηi(t), (11)

where wi is defined in Lemma 2 above. Since the discon-
tinuity of the right hand side of (5), the Dini derivative of
V is calculated below,

D+V (t) =

n∑
p=1

N∑
i=1

−wi
λ

sig
(
x̃
(p)
i (t)

)σ N∑
j=1

Lij

×
[
βjsig

(
x̃
(p)
j (t)

)σ
+ βje

(p)
j (t)

]
+

N∑
i=1

η̇i(t)

=

n∑
p=1

N∑
i=1

−wi
λ

sig
(
x̃
(p)
i (t)

)σ N∑
j=1

Lij

×
[
βjsig

(
x̃
(p)
j (t)

)σ]
−

n∑
p=1

N∑
i=1

wi
λ

sig
(
x̃
(p)
i (t)

)σ
×

N∑
j=1

Lij
[
βje

(p)
j (t)

]
+

N∑
i=1

η̇i(t). (12)

In order to make the proof concise, we define x̂i =[(
x̃
(1)
i

)σ
,
(
x̃
(2)
i

)σ
, ...,

(
x̃
(n)
i

)σ]T
and x̂ = [x̂1, x̂2, ..., x̂N ].

Then follows from (12), we have

D+V (t) =− 1

2λ
x̂T (t)

[
B(GL+ LTG)⊗ In

]
x̂(t)

− 1

2λ
x̂T (t)

[
B(GL+ LTG)⊗ In

]
e(t)

+

N∑
i=1

k2

(
δi‖x̂i(t)‖2 − βi‖ei(t)‖2

)
−

N∑
i=1

k1η
r
i (t). (13)

According to Lemma 2 and by virtue of the facts that
WL+ LTW ≥ λIN , we have

D+V (t) ≤− 1

2
x̂(t)T (B ⊗ In)x̂(t)− 1

2
x̂(t)T (B ⊗ In)e(t)

+

N∑
i=1

k2

(
δi‖x̂i(t)‖2 − βi‖ei(t)‖2

)
−

N∑
i=1

k1η
r
i (t)

≤− 1

2

N∑
i=1

βi‖x̂i(t)‖2 +
γ

4

N∑
i=1

βi‖x̂i(t)‖2

+
1

4γ

N∑
i=1

βi‖ei(t)‖2 +

N∑
i=1

k2

(
δi‖x̂i(t)‖2

− βi‖ei(t)‖2
)
−

N∑
i=1

k1η
r
i (t). (14)

Using the ETC (7) and choosing γ = 1
2 , we have

D+V (t) ≤− 1

4

N∑
i=1

[
βi − k2δi − (1− k2)k3δi

]
‖x̂i(t)‖2

−
N∑
i=1

[
k3(1− k2) + k1

]
ηri (t)

=− C3

n∑
p=1

N∑
i=1

[ βi
λ(1 + σ)

|x̃pi (t)|
1+σ
] 2σ

1+σ

− C2

N∑
i=1

ηri (t), (15)
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where C1 = βmin−[k2+(1−k2)k3]δmax

4 , C2 = k3(1 − k2) +

k1, C3 = C1
λ(1+σ)
wmax

. Choosing r = 2σ
1+σ , k3(1− k2) + k1 > 0

and βmin − [k2 + (1 − k2)k3]δmax > 0, from (15), we can

derive that D+V ≤ −KV
2σ

1+σ , where K = min{C2, C3}.

By using Lemma 3, it shows that V = 0 after a settling

time T = (1+σ)V (0)
1+σ
1−σ

K(1−σ) . Thus, one has x̃(t) = Lx = 0.

Since the Null(L) = aIN and a is a constant, then one
can derive that the consensus is accomplished in a settling
time.

The following part is to show that Zeno-behavior will
not happen before the settling time T2. Note that ‖f −
g‖2 ≤ 2‖f‖2 + 2‖g‖2,∀f, g ∈ Rn, we have βi‖ei(t)‖2 ≤
2βi(‖x̂i(tik)‖2 + ‖x̂i(t)‖2). Using Lemma 3 and the ETC
(7), we can derive a sufficient condition for (7),

2βi‖x̂i(tik)‖2 + (2βi − δi)‖x̂i(t)‖2 ≤ (−w1t+ w2)
r

1−r .
(16)

Based on the proof above, we know that ‖x̂i‖ is bounded
before the settling time T . Thus, there exists a triggering
instant tik such that (4βi−δi)‖x̂i(tik)‖2 ≥ (−w1t

i
k+w2)

r
1−r .

LetM(tik) = (4βi− δi)‖x̂i(tik)‖2. Since ‖x̂i‖ is decreasing,
there must exist another triggering instants tik+1 such that

M(tik+1) <M(tik). Since the next event will trigger when

M(tik+1) ≥ (−w1t
i
k+1 + w2)

r
1−r , we can conclude that

M(tik)−M(tik+1) ≤ µ(tik)(tik+1 − tik), (17)

where µ(tik) denotes the derivative of the function in the
right side of (16) at triggering instant tik. Then, we can

obtain that (tik+1 − tik) >
M(tik)−M(tik+1)

µ(ti
k
)

, which means

that the Zeno behavior can not happen before the settling
time T . 2

Remark 2. In this subsection, a finite-time consensus pro-
tocol is investigated under the event-triggered mechanism,
which has two aspects of benefits. Firstly, the protocol
and ETC only contain the relative measurement infor-
mation for each agent. Note that the relative information
is more easily obtained than the absolute information in
some situations such as vision based multi-robot systems.
Each robot can measure the relative bearing information
by vision sensors. Secondly, by using the coordination
measurement error which is different from the traditional
measurement error, the Laplacian matrix information is
not included in the protocol and ETC, which means that
the protocol we designed is fully distributed.

Remark 3. Note that the continuous relative information
are utilized in the ETC (7) which requires each agent
continuously monitors the relative information with their
neighbors. This problem can be solved by predicting the
current neighbors’ states. In fact, from (5) we know that
each agent dynamics is piece-wise constant in t, thus each
agent can calculate their neighbors’ current states based
on the sampling information of their neighbors.

Remark 4. The finite-time event-triggered consensus pro-
tocol is proposed in Dong and Xian (2017) recently. In or-
der to handle with directed graph cases, the signed control
law is used in the consensus protocol. However, it should
be noted that the signed control law is a discontinuous
signal, which may result in chattering phenomenon. In

addition, the parameter in protocol is dependent on the
global information of the graph. Compared with the result
in Dong and Xian (2017), the consensus protocol proposed
in this paper under directed graphs is continuous and does
not use any global information of the graph.

3.2 Directed graphs cases

This part, we strengthen the result in above subsection
to the directed graphs which contains a directed span-
ning tree. Noted that the Laplacian matrix of a strongly
directed graph is an irreducible matrix. For a Laplacian
matrix of a tree topology, we can decomposite it into a
Frobenius norm form as follows,

PTLP =


L̄11 L̄12 · · · L̄1m

0 L̄22 · · · L̄2m

...
...

. . .
...

0 0 0 L̄mm

 =

[
Lp Lpq
0 Lq

]

(18)

where P is a permutation matrix and the diagonal block
matrices L̄ii, i = 1, ...,m are irreducible matrices. There-
fore, the Frobenius norm form of the Laplacian matri-
ces associated with directed graphs containing a directed
spanning tree corresponds to the decomposing the graph
into strongly connected components. For the matrix L̄q,
according to Lemma 2, there is a positive vector hq sat-
isfying that hTq L̄q = 0. Furthermore, let Hq = diag{hq},
one has HqL̄q + L̄q

T
Hq ≥ λqIN , where λq is the second

smallest eigenvalue of the matrix HqL̄q+L̄q
T
Hq. Also note

that the matrix L̄q has a single zero eigenvalue. Thus, we
can deduce that eigenvalues of matrix L̄p are positive.

Following from the Frobenius norm form (18), we define[
x̃p
x̃q

]
=

[
Lp Lpq
0 Lq

]
⊗ In

[
xp
xq

]
} N −Nq rows
} Nq rows

(19)

where x = [xq, xp]
T , xq ∈ RnNq and xp ∈ RnNq . Similar

from above, let e = [ep, eq]
T and η = [ηp, ηq]

T . The main
results in this subsection are shown below,

Theorem 2. Given a MAS (1) under a tree topology,
using the event-triggered protocol (5), then the finite-time
consensus is accomplished and Zeno behavior is avoided in
a settling time.

Proof. Firstly, we consider the following Lyapunov can-
didate function,

Vq(t) =

n∑
κ=1

N∑
i=N−Nq+1

hi
λq(1 + σ)

∣∣∣x̃(κ)i (t)
∣∣∣1+σ

+

N∑
i=N−Nq+1

ηi(t). (20)

where λq is the smallest eigenvalue of the matrix Lq.
After using similar techniques in the proof of Theorem

1, it can be shown that D+Vq ≤ −KqV
2σ

1+σ
q , where

Kq = min{C4, C5}, C4 =
λq(1+σ)
hmax

× βmin−[k2+(1−k2)k3]δmax

4 ,

C5 = k3(1 − k2) + k1. Therefore, we can obtain that
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x̃q = 0 after the settling time T1 =
(1+σ)Vq(0)

1+σ
1−σ

Kq(1−σ) . Next,

considering the Lyapunov candidate function,

Vp(t) =

n∑
κ=1

N−Nq∑
i=1

1

λp(1 + σ)

∣∣∣x̃(κ)i (t)
∣∣∣1+σ +

N−Nq∑
i=1

ηi(t).

(21)

Taking the Dini derivative of the Vp follows that,

D+Vp(t) =

n∑
κ=1

N−Nq∑
i=1

− 1

λp
sig
(
x̃
(κ)
i (t)

)σ
×

[
N−Nq∑
j=1

Lij
[
βjsig

(
x̃
(κ)
j (tik)

)σ]
+

N∑
j=N−Nq+1

Lij
[
βjsig

(
x̃
(κ)
j (tik)

)σ]]

+

N−Nq∑
i=1

η̇i(t). (22)

In line with the analysis above, there is a settling time T1
such that x̃q(t̃) = 0, t̃ > T1. Hereafter,

D+Vp(t̃) =

n∑
κ=1

N−Nq∑
i=1

− 1

λp
sig
(
x̃
(κ)
i (t̃)

)σ
×
N−Nq∑
j=1

Lij
[
βjsig

(
x̃
(κ)
j (t̃)

)σ
+ βje

(κ)
j (t̃)

]

+

N−Nq∑
i=1

η̇i(t̃)

=− 1

λp
x̂p(t̃)

T
(
BpLp ⊗ In

)
x̂p(t̃)

− 1

λp
x̂p(t̃)

T
(
BpLp ⊗ In

)
ep(t̃) +

N−Nq∑
i=1

η̇i(t̃)

≤− 1

2

N−Nq∑
i=1

βi‖x̂i(t̃)‖2 +
1

2

N−Nq∑
i=1

βi‖ei(t̃)‖2

+

N−Nq∑
i=1

k2

(
δi‖x̂i(t̃)‖2 − βi‖ei(t̃)‖2

)
−
N−Nq∑
i=1

k1η
r
i (t̃). (23)

Then combining with the ETC (7), it follows that,

D+Vp(t̃) ≤−
1

2

N−Nq∑
i=1

[
βi − k2δi − (1− k2)k3δi

]
‖x̂i(t̃)‖2

−
N−Nq∑
i=1

[
k3(1− k2) + k1

]
ηri (t̃)

≤− C6

n∑
p=1

N−Nq∑
i=1

[ 1

λp(1 + σ)
|x̃pi (t)|

1+σ
] 2σ

1+σ

− C7

N−Nq∑
i=1

ηri (t̃), (24)

where C6 = λp(1 + σ) × βmin−[k2+(1−k2)k3]δmax

4 , C7 =

k3(1 − k2) + k1. Choosing r = 2σ
1+σ , then we can ob-

tain that D+Vp(t̃) ≤ −KpVp(t̃)
2σ

1+σ , t > T1, where Kp =
min{C6, C7}. Hereafter, we can conclude that Vp(t) → 0

after a settling time T2 =
(1+σ)Vp(T1)

1+σ
1−σ

Kp(1−σ) , which means

that x̃(t) = 0, t > T2. The exclusion of the Zeno behavior
can be obtained by using the similar procedure in the proof
of Theorem 1.

Remark 5. At this part, the result of event-triggered finite-
time consensus protocol (5) and ETC (7) is extended to the
more general graph cases which has a directed spanning
tree. In a recent research Hu et al. (2019), an event-
triggered protocol for finite-time consensus is proposed for
MASs under undirected graphs and the agents’ states are
restricted to one dimension. In this paper, the directed
graph with a tree topology is considered and each agent
state is a N dimensional vector.

4. SIMULATION

In this part, an illustrative example is shown to verify
the validity of event-triggered protocols in Theorem 1 and
Theorem 2. Given a MAS involving seven agents under
directed graphs with a tree topology. In addition, we
present the Laplacian matrix associated with the graph
below,

L =


1 0 0 -1 0 0 0
-1 3 -1 0 0 0 -1
0 0 1 -1 0 0 0
0 -1 0 0 2 -1 0
0 0 -1 0 0 1 0
-1 0 0 0 -1 0 2

 . (25)

The initial value of each agent is chosen as xi(0) = [0.1 ∗
i, 0.5 ∗ i]T , i = 1, ..., N . Without losing the generality, the
parameters in the event-triggered protocol (5) and ETC
(7) are chosen as σ = 0.8, β = 1, δ = 0.5, k1 = 0.5, k2 =
0.125, k3 = 1. Simulation conclusions are demonstrated
in Figs. 1-3. As illustrated in Fig. 1 and Fig. 2, the first
and the second component of states for each agent reach
consensus in finite-time, respectively. In Fig. 3, the trig-
gering instants of each agent are illustrated, which shows
the advantages compared with the continuous protocols.
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Fig. 1. The first coordinates of each agent.
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Fig. 2. The second coordinates of each agent.
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Fig. 3. The event-triggered instants for each agent.

5. CONCLUSION

This paper considers the event-triggered finite-time con-
sensus of MASs under directed graphs. Firstly, an event-
triggered protocol of finite-time consensus is proposed
for MASs under the strongly connected graph. Each
agent only need to measure the relative information with
neighors to update the control protocols and decide trig-
gering or not. In addition, a dynamic ETC is considered to
obtain the larger inter-event intervals. Secondly, the more
general directed graph with a tree topology is considered.
Furthermore, the event-triggered protocol and ETC are
fully distributed without the usage of the global informa-
tion. Future works will concentrate on the event-triggered
consensus with switching topologies.
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