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Abstract: In this paper, topology identification of fractional complex networks is investigated.
First of all, an important result is obtained, which reveals some special relations between the
primitive function and its fractional derivative. Then an auxiliary network consisting of isolated
nodes and a regulation mechanism are designed in order that there is no need to check the linear
independence condition (LIC) and the identification failure caused by network synchronization
can be avoided. By applying inequality techniques, the realizability of topology identification
for fractional systems is proved. And then two algorithms are given to identify the unknown
parameters in the original network. In order to have more realistic significance, the accuracy
function, which is an upper bound of the estimation error between the estimated results and
the corresponding unknown parameters, is considered to evaluate the validity of our estimation
algorithms. Furthermore, an example is provided to demonstrate the effectiveness of the main
results.
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1. INTRODUCTION

Complex networks Strogatz (2001), which consist of a
great number of nodes interconnected by edges, are ubiqui-
tous in various fields of the real world, such as power grids
Albert et al. (2004), telecommunication networks Schintler
et al. (2005), the Internet Maslov et al. (2004) and so on.
Over the past few decades, research on complex networks
has been done and fruitful results have been obtained, such
as synchronization control Yi et al. (2017),Xu et al. (2018),
structure optimization Zhou et al. (2006) and so on. Note
that the dynamical systems with known parameters have
been investigated in the aforementioned papers. But, in
most of practical situations, the topology of a large-scale
network is usually not accessible. Thus an important topic
called topology identification or parameter estimation has
emerged and it has attracted more and more attention Xu
et al. (2017),Wu et al. (2016).

One of the main methods used in the field of topolo-
gy identification for unknown network is the so-called
synchronization-based method Yu et al. (2006),Zhou et al.
(2007),Wu. (2008),Liu et al. (2009) and a key assumption
is needed in these existing papers that all coupling terms
of the unknown network are linearly independent of the
synchronization manifold between the drive (unknown)
network and a designed response network, which is called
the linear independence condition (LIC). However, there
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are two shortcomings associated with the LIC that should
be noted. Firstly, there is still no effective method to verify
the LIC so far. Secondly, the topology identification is
likely to fail if the LIC does not hold. For example, a
conclusion has been obtained in Chen et al. (2009) that, if
the drive network is in a synchronous situation, the LIC
will not be satisfied and the topology identification process
based on Yu et al. (2006),Zhou et al. (2007),Wu. (2008),Liu
et al. (2009) will fail. Therefore, it is necessary to explore
some new methods on topology identification, which can
overcome the disadvantages. Note that some efforts have
been devoted in Zhu et al. (2019) but it is still a challenging
problem.

It should be pointed out that all the mathematical models
considered in this paper are fractional systems. As one of
the important branches of mathematics, fractional calculus
Oldham et al. (1974) was born in 1695 almost simultane-
ously with classical integer-order integration and differen-
tiation. In recent years, people have gradually realized that
fractional systems can provide an excellent instrument
for the description of memory and hereditary properties
of various materials and processes. And the theories of
fractional calculus have been applied to a wide range
of areas successfully, which include mathematical biology
Ahmed et al. (2007), finance Laskin. (2000), engineering
Zhang et al. (2017),Ren et al. (2016) and so on. Therefore
to investigate fractional complex networks will enrich and
perfect the nonlinear theories and applications.
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It is noteworthy that some conclusions may not hold in
the sense of fractional calculus while they are holding in
the sense of integer-order calculus. For example, Lemma 1
in Zhu et al. (2018) (or Lemma 2.2 in Zhao et al. (2020)),
which plays a key role in the process of topology identifica-
tion, has not been proved in the sense of fractional calcu-
lus. Based on the difference between fractional and integer-
order calculus and the lack of some important conclusions,
two problems should be highlighted. 1) By using control
theories, such as synchronization-based method, can the
topology identification of fractional systems be realized?
2) How to design an effective strategy to identify unknown
parameters? And can an appropriate mechanism be given
to evaluate the validity of the estimation strategy?

According to the above discussion, the main contributions
of this manuscript are summarized as follows. An impor-
tant result is proposed and proved, which can reveal some
special relations between the primitive function and its
fractional derivative. And an auxiliary network consisting
of isolated nodes is constructed and a regulation proto-
col is designed in order that there is no need to check
the LIC and the identification failure caused by network
synchronization can be avoided. And then, by using the
synchronization-based method and inequality techniques,
the realizability of topology identification for fractional
systems is proved. Then two algorithms are proposed to
estimate the unknown parameters in the original network.
And the accuracy function is considered to denote the
accuracy of estimated results and this function can also
be used to evaluate the effectiveness of the algorithms.

The rest of this paper is organized as follows. Section
2 gives some mathematical preliminaries. The main re-
sults about topology identification of fractional complex
networks are presented in section 3. Next, a numerical
simulation in section 4 is provided to demonstrate the
effectiveness and correctness of the theoretical results.
Finally, this manuscript is concluded in section 5.

Notations: Let R+ = [0,+∞), R = (−∞,+∞), Rn

be the n-dimensional Euclidean space and Rn×m be the
space of n×m real matrices. Z+ represents the collection
of all positive integers. In denotes n × n real identity
matrix. AT means the transpose of the matrix A. B−1

means the inverse of the matrix B. ‖ β ‖ denotes the
Euclidean norm of a vector β, which is defined by ‖ β ‖=√∑n

i=1 β
2
i where β = (β1, · · · , βn)T . ‖ Ψ ‖ stands for the

Euclidean norm of a matrix Ψ, which is defined by ‖ Ψ ‖=√
λmax(ΨTΨ) where λmax(·) represents the maximum

eigenvalue of the corresponding matrix. Rank(A) denotes
the rank of matrix A. | f(t) | denotes the absolute value
of a function f(t) ∈ R. Let Ct0D

α
γ x(t) = C

t0D
α
t x(t) |t=γ .

2. PRELIMINARIES

2.1 Fractional calculus

In this subsection, two common definitions of fractional
calculus are introduced and several necessary lemmas are
presented.

Definition 1. (Kilbas et al. (2006)) Caputo fractional
derivative with order α for a function x : R+ → R is
defined as

C
t0D

α
t x(t) =

1

Γ(m− α)

t∫
t0

(t− τ)m−α−1 d
mx(τ)

dτm
dτ,

where 0 ≤ m − 1 < α < m, m ∈ Z+ and Γ(·) is Gamma
function.

Definition 2. (Kilbas et al. (2006)) Riemann-Liouville
fractional integral with order α for a function f : R+ → R
is defined by

R
t0I

α
t f (t) =

1

Γ (α)

t∫
t0

(t− τ)α−1f(τ)dτ,

where α > 0 and Γ(·) is Gamma function.

Lemma 3. (Kilbas et al. (2006)) For any constants k1

and k2 , the linearity of Caputo fractional derivative is
described by

C
t0D

α
t (k1g(t) + k2h(t)) = k1

C
t0D

α
t g(t) + k2

C
t0D

α
t h(t).

Lemma 4. (Kilbas et al. (2006)) If 0 < α < 1 and
x(t) : R→ R is a differentiable function, then the following
equality holds,

R
t0I

α
t
C
t0D

α
t x(t) = x(t)− x(t0),

where t ≥ t0.

Lemma 5. (Duarte-Mermoud et al. (2015)) Let v(t) : R→
Rn be a vector of differentiable function. Then, for any
time instant t ≥ t0, the following inequality holds,

C
t0D

α
t (vT (t)Pv(t)) ≤ 2vT (t)(PCt0D

α
t v(t)),

where P ∈ Rn×n is a positive definite matrix and 0 < α <
1.

Lemma 6. (Kilbas et al. (2006)) If α > 0 and β > 0, then

R
t0I

α
t (t− t0)β−1 =

Γ(β)

Γ(α+ β)
(t− t0)α+β−1,

where Γ(·) is Gamma function.

2.2 Problem formulation

A fractional complex network consisting of N nodes is
considered as follows,

C
t0D

α
t xi(t) = fi(xi(t)) +

N∑
j=1

aijGxj(t− τ(t)),

1 ≤ i ≤ N, i ∈ Z+,

(1)

where 0 < α < 1, xi(t) = (xi1(t), xi2(t), · · · , xin(t))T ∈ Rn
is the state vector of the ith node at time t, fi : Rn → Rn

is a continuously differentiable vector function, τ(t) ≥ 0
denotes time-varying delay at time t, G 6= 0 ∈ Rn×n

is the inner coupling matrix and A = (aij)N×N is the
unknown weight configuration matrix. If there exists a link
from node i to node j (i 6= j), then aij > 0; otherwise,

aij = 0 (i 6= j); aii = −
∑N
j=1,j 6=i aij . Note that the

configuration matrix A does not have to be symmetric or
irreducible, which means that network (1) can be directed
or undirected, connected or unconnected.

In this paper, the topological structure of network (1) will
be identified. In order to estimate the configuration matrix
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A, an auxiliary network composed of N isolated nodes is
constructed as follows,

yi(t) = vig(t), 1 ≤ i ≤ N, i ∈ Z+, (2)

where yi(t) = (yi1(t), yi2(t), · · · , yin(t))T ∈ Rn is the state
vector of the ith node, vi ∈ Rn is a constant vector and
g(t) : R → R is a continuously differentiable function.
Furthermore, a regulation mechanism is added to network
(1) and the regulated network can be described by

C
t0D

α
t xi(t) = fi(xi(t)) +

N∑
j=1

aijG xj(t− τ(t)) + ui(t),

1 ≤ i ≤ N, i ∈ Z+,

(3)

where ui(t) is the regulation protocol which will be de-
signed later.

Then three necessary assumptions are given as follows.

Assumption 7. Assume that τ(t) is bounded and differ-
entiable. And τ̇(t) is also bounded. Namely, there exist
two positive constants φ1, φ2 such that τ(t) ≤ φ1 and
| τ̇(t) |≤ φ2.

Assumption 8. Suppose that there exists a non-negative
constant ξ such that

‖ fi(u(t))− fi(h(t)) ‖≤ ξ ‖ u(t)− h(t) ‖,
1 ≤ i ≤ N, i ∈ Z+,

(4)

for t ≥ t0 and ∀u, h ∈ Rn.

Assumption 9. Assume that there exist two positive con-
stants η1, η2 such that η1 ≤| g(t) |≤ η2.

Remark 10. Assumption 7 is proposed to prevent the oc-
currence of high-frequency chattering phenomena, which
may become an obstacle to identification of network topol-
ogy, in the evolution of the function τ(t).

3. MAIN RESULTS

In this section, an important proposition is derived. Based
on this proposition, the realizability of topology identifi-
cation for fractional complex networks is proved and two
algorithms are proposed to estimate unknown parameters.

3.1 A necessary proposition

A proposition is given and proved as follows, which will be
used to derive the main results in this paper.

Proposition 11. Let C
t0D

α
t x(t) = f(t), where x(t), f(t) :

R→ R and 0 < α < 1. If there exist two positive constants
θ1 and θ2 such that | x(t) |≤ θ1 and | f(t) |≤ θ2, then there
exists a time sequence {tk}∞k=1 such that | f(tk) |≤ 1

tβ
k

,

where β is an arbitrary constant and 0 < β < α. And
t0 ≤ t1 < t2 < · · ·, lim

k→∞
tk = ∞ and tk+1 − tk ≤ Tk =

inf
s>0
{s | sα

(tk+s)β
≥ 2θ1Γ(α+ 1) + θ2(tk − t0)α}.

Proof. Assume, for the purpose of contradiction, that
there exists a time instant t∗ < ∞ such that | f(t) |> 1

tβ

for t ≥ t∗. Further suppose that f(t) > 1
tβ

for t ≥ t∗.
From Lemmas 4, 6, the following inequality holds for
t ≥ t∗,

x(t) = x(t0) + R
t0I

α
t f(t)

= x(t0) +
1

Γ(α)
[

t∗∫
t0

f(τ)

(t− τ)1−α dτ

+

t∫
t∗

f(τ)

(t− τ)1−α dτ +

t∗∫
0

1

τβ(t− τ)1−α dτ

−
t∗∫

0

1

τβ(t− τ)1−α dτ ]

≥ x(t0) +
1

Γ(α)

t∗∫
t0

f(τ)

(t− τ)1−α dτ

+R
0 I

α
t

1

tβ
− 1

Γ(α)

t∗∫
0

1

τβ(t− τ)1−α dτ

= x(t0) +
1

Γ(α)

t∗∫
t0

f(τ)

(t− τ)1−α dτ

+
Γ(1− β)

Γ(1− β + α)
tα−β − 1

Γ(α)

t∗∫
0

1

τβ(t− τ)1−α dτ.

(5)

Since |f(τ)|
(t−τ)1−α ≤

|f(τ)|
(t∗−τ)1−α for t ≥ t∗ and t0 ≤ τ ≤ t∗,

| 1

Γ(α)

t∗∫
t0

f(τ)

(t− τ)1−α dτ |≤
1

Γ(α)

t∗∫
t0

| f(τ) |
(t− τ)1−α dτ

≤ 1

Γ(α)

t∗∫
t0

θ2

(t∗ − τ)1−α dτ

=
θ2

Γ(α+ 1)
(t∗ − t0)α,

(6)

which implies that 1
Γ(α)

∫ t∗
t0

f(τ)
(t−τ)1−α dτ is bounded when

∀t ≥ t∗. Similarly, when t ≥ t∗,

1

Γ(α)

t∗∫
0

1

τβ(t− τ)1−α dτ ≤
1

Γ(α)

t∗∫
0

1

τβ(t∗ − τ)1−α dτ

=
Γ(1− β)

Γ(1− β + α)
(t∗)α−β ,

(7)

which implies that 1
Γ(α)

∫ t∗
0

1
τβ(t−τ)1−α

dτ is bounded.

Then, it follows from inequality (5) that

lim
t→∞

x(t) =∞. (8)

This contradicts the previous hypothesis. Similarly, in the
case that f(t) < − 1

tβ
for t ≥ t∗, conflicting results can still

be derived. Thus, there exists a time sequence {tk}∞k=1 such
that | f(tk) |≤ 1

tβ
k

. Meanwhile, lim
k→∞

tk =∞.

Next, the conclusion that tk+1 − tk ≤ Tk = inf
s>0
{s |

sα

(tk+s)β
≥ 2θ1Γ(α + 1) + θ2(tk − t0)α} can be proved.

Assume, for the purpose of contradiction, that tk+1 > tk+
Tk, which implies that | f(t) |> 1

(tk+Tk)β
for t ∈ [tk, tk +
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Tk]. Further assume that f(t) > 1
(tk+Tk)β

for t ∈ [tk, tk +

Tk]. Based on Lemmas 4, 6, the following inequality can
be obtained for t ∈ [tk, tk + Tk],

x(t) = x(t0) +
1

Γ(α)

t∫
t0

f(τ)

(t− τ)1−α dτ

= x(t0) +
1

Γ(α)

tk∫
t0

f(τ)

(t− τ)1−α dτ

+
1

Γ(α)

t∫
tk

f(τ)

(t− τ)1−α dτ

> −θ1 −
θ2

Γ(α+ 1)
(tk − t0)α

+
1

Γ(α)(tk + Tk)β

t∫
tk

1

(t− τ)1−α dτ

= −θ1 −
θ2

Γ(α+ 1)
(tk − t0)α

+
(t− tk)α

(tk + Tk)βΓ(α+ 1)
.

(9)

Obviously, x(tk + Tk) > −θ1 − θ2
Γ(α+1) (tk − t0)α +

(Tk)α

(tk+Tk)βΓ(α+1)
≥ θ1. Similarly, if f(t) < − 1

(tk+Tk)β
for

t ∈ [tk, tk + Tk], a conclusion can be derived that x(tk +
Tk) < −θ1. This contradicts the previous hypothesis that
| x(t) |≤ θ1. Therefore, the conclusion that tk+1 − tk ≤
Tk = inf

s>0
{s | sα

(tk+s)β
≥ 2θ1Γ(α + 1) + θ2(tk − t0)α} has

been proved.

This completes the proof.

Remark 12. It is worth noting that the existence of
lim
t→∞

x(t) does not necessarily imply that lim
t→∞

C
t0D

α
t x(t) =

0. For example, the following function is considered,

x(t) =
1

t
cos(t2), t ∈ (1,∞).

Obviously, lim
t→∞

x(t) = 0 but lim
t→∞

ẋ(t) does not exist.

However, according to Proposition 11, the weaker conclu-
sion that there exists a time sequence {tk}∞k=1 such that
lim
k→∞

C
t0D

α
tk
x(t) = 0 can be obtained when some additional

conditions, like that x(t),Ct0D
α
t x(t) are bounded, are sat-

isfied. Since Proposition 11 reveals some special relations
between the primitive function and its fractional deriva-
tive, it may be helpful to some theoretical derivations and
practical engineering applications.

3.2 Analysis on the realizability of topology identification

Since G 6= 0, there exist two constant vectors µ, ζ ∈ Rn

and a positive integer m ∈ {1, 2, · · · , n} such that Gµ = ζ,
ζm 6= 0 and ζi = 0 (1 ≤ i ≤ n, i 6= m, i ∈ Z+), where

Rank(G) = Rank(G
...ζ) and ζ = (ζ1, ζ2, · · · , ζn)T .

Denote ei(t) = (ei1(t), ei2(t), · · · , ein(t))T = xi(t) − yi(t),
1 ≤ i ≤ N . Next, the regulation protocol in system (3) is
designed as

ui(t) = C
t0D

α
t yi(t)− fi(yi(t))

−
N∑
j=1

âij(t)Gxj(t− τ(t))− diei(t),
(10)

C
t0D

α
t âij(t) = eTi (t)Gxj(t− τ(t)), (11)

where 1 ≤ i, j ≤ N , i, j ∈ Z+, âij(t) is an adaptive
parameter and di is a positive constant. Then, a theorem
is given to prove that topology identification of fractional
complex network (3) is realizable.

Theorem 13. Let vs = µ and vi = 0 (i ∈ Z+, 1 ≤
i ≤ N, i 6= s), where s is a positive integer and s ∈
{1, 2, · · · , N}. Suppose that Assumptions 7− 9 hold and

di > ξ, (12)

where 1 ≤ i ≤ N, i ∈ Z+. Then, under regulation
protocols (10)(11), there exists a time sequence {tisk }∞k=1
(1 ≤ i ≤ N, i ∈ Z+) such that

lim
k→∞

| âis(tisk )− ais |= 0, (13)

where t0 ≤ tis1 < tis2 < · · · < ∞, lim
k→∞

tisk = ∞, tisk+1 −

tisk ≤ T isk = inf
σ>0
{σ | σα

(tis
k

+σ)β
≥ 2θ1Γ(α+1)+θ2(tisk −t0)α},

θ1 =
√

2V (t0), θ2 = (ξ + di + η2 | ζm |)
√

2V (t0) +√
2V (t0) ‖ G ‖ ϕ, ϕ = max{ max

s∈[t0−φ1,t0]
(
N∑
j=1

‖ ej(s) ‖

),
√

2NV (t0)}, V (t0) = 1
2

N∑
i=1

‖ ei(t0) ‖2 + 1
2

N∑
i=1

N∑
j=1

(aij −

âij(t0))2, β is an arbitrary constant and 0 < β < α.

Namely, the sth column of matrix A can be estimated
effectively at time sequence {tisk }∞k=1 (1 ≤ i ≤ N, i ∈ Z+).

Proof. Let ãij(t) = aij − âij(t). Under regulation proto-
cols (10)(11), the error system between (2) and (3) is given
by

C
t0D

α
t ei(t) = fi(xi(t))− fi(yi(t))

+

N∑
j=1

ãij(t)Gxj(t− τ(t))− diei(t),
(14)

where 1 ≤ i ≤ N, i ∈ Z+.

The following Lyapunov function for error system (14) is
considered,

V (t) =
1

2

N∑
i=1

eTi (t)ei(t) +
1

2

N∑
i=1

N∑
j=1

ã2
ij(t). (15)

By Assumption 8 together with Lemmas 3 and 5, we have
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C
t0D

α
t V (t) ≤

N∑
i=1

eTi (t)Ct0D
α
t ei(t)

−
N∑
i=1

N∑
j=1

ãij(t)
C
t0D

α
t âij(t)

=

N∑
i=1

eTi (t)[fi(xi(t))− fi(yi(t))]

+

N∑
i=1

N∑
j=1

ãij(t)e
T
i (t)Gxj(t− τ(t))

−
N∑
i=1

die
T
i (t)ei(t)

−
N∑
i=1

N∑
j=1

ãij(t)e
T
i (t)Gxj(t− τ(t))

≤
N∑
i=1

(ξ − di) ‖ ei(t) ‖2≤ 0.

(16)

According to Gu et al. (2017), it follows from in-
equality (16) that lim

t→∞
‖ e(t) ‖= 0 where e(t) =

(eT1 (t), eT2 (t), · · · , eTN (t))T . And, from Lemma 4, V (t) =
V (t0) + R

t0I
α
t
C
t0D

α
t V (t) ≤ V (t0), which implies that

ei(t), ãij(t), âij(t) are bounded.

Since vs = µ, vi = 0 (i ∈ Z+, 1 ≤ i ≤ N, i 6= s), error
system (14) can be rewritten as follows,

C
t0D

α
t ei(t) = fi(xi(t))− fi(yi(t))

+

N∑
j=1

ãij(t)Gej(t− τ(t))

+ãis(t)Gys(t− τ(t))− diei(t),

(17)

where 1 ≤ i ≤ N, i ∈ Z+.

From Assumption 9, the following inequality holds,

‖ Ct0D
α
t ei(t) ‖ ≤ (ξ + di) ‖ ei(t) ‖ +η2 | ζmãis(t) |

+

N∑
j=1

| ãij(t) |‖ Gej(t− τ(t)) ‖

≤ (ξ + di + η2 | ζm |)
√

2V (t0)

+
√

2V (t0) ‖ G ‖ ϕ,

(18)

where the property that

N∑
j=1

‖ ej(t− τ(t)) ‖≤

√√√√N

N∑
j=1

‖ ej(t− τ(t)) ‖2

is used above. Then C
t0D

α
t eim(t) is bounded and

| Ct0D
α
t eim(t) | ≤‖ Ct0D

α
t ei(t) ‖

≤ (ξ + di + η2 | ζm |)
√

2V (t0)

+
√

2V (t0) ‖ G ‖ ϕ,

where eim(t) is the mth component of ei(t).

According to Proposition 11, there exists a time sequence
{tisk }∞k=1 such that lim

k→∞
C
t0D

α
tis
k

eim(t) = 0, where t0 ≤ tis1 <

tis2 < · · · < ∞, lim
k→∞

tisk = ∞, tisk+1 − tisk ≤ T isk = inf
σ>0
{σ |

σα

(tis
k

+σ)β
≥ 2θ1Γ(α + 1) + θ2(tisk − t0)α}, θ1 =

√
2V (t0),

θ2 = (ξ + di + η2 | ζm |)
√

2V (t0) +
√

2V (t0) ‖ G ‖ ϕ, β is
an arbitrary constant and 0 < β < α.

From equation (17) and Assumption 9, the following
inequality can be obtained,

| Ct0D
α
t eim(t) | ≥ η1 | ζmãis(t) | −(ξ + di) ‖ ei(t) ‖

−
√

2NV (t0) ‖ G ‖‖ e(t− τ(t)) ‖ .
(19)

It follows from inequality (19) that

| ãis(t) | ≤
1

η1 | ζm |
{| Ct0D

α
t eim(t) |

+(ξ + di) ‖ ei(t) ‖
+
√

2NV (t0) ‖ G ‖‖ e(t− τ(t)) ‖}.

(20)

Obviously, lim
k→∞

| ãis(tisk ) |= 0, which means that the

unknown parameter ais can be identified at these special
moments {tisk }∞k=1. Therefore, under regulation protocols
(10)(11), the sth column of the configuration matrix A can
be identified.

This completes the proof.

Remark 14. It is easy to find that the larger the value
of the parameter di is, the easier condition (12) is to
satisfy and the more favorable it is to the topological
identification process. And note that, for a function z(t) :
R → R, lim

t→∞
C
t0D

α
t z(t) = 0 does not necessarily imply the

existence of lim
t→∞

z(t). For example, the following equality

is considered,

C
t0D

α
t z(t) =

1

tβ
, t0 > 0,

where β is a constant and 0 < β < α < 1. It is obvious that
lim
t→∞

C
t0D

α
t z(t) = 0 but lim

t→∞
z(t) = lim

t→∞
[z(t0) + R

t0I
α
t

1
tβ

] =

∞ (the derivation of this equality is similar to the
derivation of inequalities (5)(7)(8)). Thus the conclusion
that, from (11), lim

t→∞
âij(t) exists when lim

t→∞
ei(t) = 0 can

not be derived, which means the unknown parameter aij
can not be directly estimated by adaptive protocol (11).
But, based on Theorem 13, the conclusion has been proved
that the unknown topology matrix A can be identified at
the time sequences {tisk }∞k=1 (1 ≤ i, s ≤ N, i, s ∈ Z+).
And the characteristic tisk+1− tisk ≤ T isk of {tisk }∞k=1 ensures

a property that tisk+1 <∞ when tisk <∞, which guarantees
the realizability of topology identification for fractional
systems in practical engineering applications.

3.3 Two algorithms to estimate the unknown topology

Let āij(t) (1 ≤ i, j ≤ N, i, j ∈ Z+) represents the estima-
tor of the unknown parameter aij . Then an algorithm is
proposed to identify the unknown parameters in network
(3).

Theorem 15. Let vs = µ and vi = 0 (i ∈ Z+, 1 ≤
i ≤ N, i 6= s), where s is a positive integer and s ∈
{1, 2, · · · , N}. And let āis(t) be defined by

āis(t) = âis(εis), (21)

where t ≥ t0, 1 ≤ i ≤ N, i ∈ Z+ and εis = max{arg min
t0≤ς≤t

(|
C
t0D

α
ς eim(t) | + ‖ ei(ς) ‖ + ‖ e(ς − τ(ς)) ‖)}. Suppose that
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Assumptions 7−9 hold and the conditions in Theorem 13
are satisfied. Then, based on regulation protocols (10)(11),
the sth column of matrix A can be identified effectively by
estimators āis(t) (1 ≤ i ≤ N, i ∈ Z+). Precisely, the
following equality holds,

ais = lim
t→∞

āis(t), (22)

where 1 ≤ i ≤ N, i ∈ Z+.

Proof. According to Theorem 13 and Proposition 11,
lim
t→∞

‖ e(t) ‖= 0 and there exists a time sequence {tisk }∞k=1

such that lim
k→∞

| Ct0D
α
tis
k

eim(t) |= 0. Next, the following

equality can be obtained,

lim
t→∞

min
t≥t0
{| Ct0D

α
ς eim(t) | + ‖ ei(ς) ‖

+ ‖ e(ς − τ(ς)) ‖} = 0.
(23)

It is obvious that there exist two positive constants $1, $2

such that the following inequalities hold,

| Ct0D
α
t eim(t) | + ‖ ei(t) ‖

+ ‖ e(t− τ(t)) ‖≤ $1χis(t),
χis(t) ≤ $2{| Ct0D

α
t eim(t) | + ‖ ei(t) ‖

+ ‖ e(t− τ(t)) ‖},

(24)

where χis(t) = 1
η1|ζm|{|

C
t0D

α
t eim(t) | +(ξ + di) ‖ ei(t) ‖

+
√

2NV (t0) ‖ G ‖‖ e(t− τ(t)) ‖}. Therefore,

lim
t→∞

min
t≥t0
{| Ct0D

α
t eim(t) | + ‖ ei(t) ‖

+ ‖ e(t− τ(t)) ‖} = 0,
if and only if, lim

t→∞
min
t≥t0

(χis(t)) = 0.
(25)

It follows from inequality (20) that

| ais − âis(t) | ≤
1

η1 | ζm |
{| Ct0D

α
t eim(t) |

+(ξ + di) ‖ ei(t) ‖
+
√

2NV (t0) ‖ G ‖‖ e(t− τ(t)) ‖}.

(26)

Then, from inequalities (23)(25)(26), the following in-
equality holds,

lim
t→∞

| āis(t)− ais | = lim
t→∞

| âis(εis)− ais |

≤ lim
t→∞

1

η1 | ζm |
{| Ct0D

α
εiseim(t) |

+(ξ + di) ‖ ei(εis) ‖
+
√

2NV (t0) ‖ G ‖‖ e(εis
−τ(εis)) ‖} = 0.

(27)

This completes the proof.

Note that the condition, t→∞, is difficult to satisfy in re-
ality because most topology identification processes always
take place in a finite period of time. Therefore, in order
to have more practical significance, another algorithm will
be designed, in which the accuracy function is considered
to denote the accuracy of estimated results at any given
time.

Next, an assumption is needed.

Assumption 16. Suppose that there exists a constant M >
0 such that | aij |≤M .

Remark 17. Note that Assumption 16 is very mild. For
example, in the Internet, the communication bandwidth
between any two routers is always limited and its upper
bound can always be known.

An auxiliary function is defined as follows,

pij(t) =
1

η1 | ζm |
{| Ct0D

α
t eim(t) | +(ξ + di) ‖ ei(t) ‖

+ψ ‖ G ‖‖ e(t− τ(t)) ‖},
(28)

where 1 ≤ i, j ≤ N, i, j ∈ Z+ and

ψ =

√√√√N ‖ e(t0) ‖2 +2N(M2N2 +

N∑
i=1

N∑
j=1

â2
ij(t0)).

Let ωij(t) (1 ≤ i, j ≤ N, i, j ∈ Z+) denote the accuracy
function of the estimate of function āij(t) against aij at
time t, which is an upper bound of the estimation error
| āij(t) − aij | between āij(t) and aij . Next an algorithm
is presented to estimate the unknown topology of system
(3).

Theorem 18. Let vs = µ and vi = 0 (i ∈ Z+, 1 ≤
i ≤ N, i 6= s), where s is a positive integer and
s ∈ {1, 2, · · · , N}. And let functions āis(t) and ωis(t) be
defined by

āis(t) = âis(εis), (29)

ωis(t) = pis(εis), (30)

where t ≥ t0, 1 ≤ i ≤ N , i ∈ Z+ and εis =
max{arg min

t0≤ς≤t
(pis(ς))}. Suppose that Assumptions 7−9, 16

hold and the conditions in Theorem 13 are satisfied. Then,
based on regulation protocols (10)(11), the sth column of
matrix A can be estimated effectively by estimators āis(t)
(1 ≤ i ≤ N, i ∈ Z+). Precisely, the following equalities
hold

ais = lim
t→∞

āis(t), (31)

lim
t→∞

ωis(t) = 0, (32)

where 1 ≤ i ≤ N , i ∈ Z+ and | ais − āis(t) |≤ ωis(t) for
t ≥ t0.

Proof. It follows from Assumption 16 and inequality (20)
that

| ais − âis(t) | ≤
1

η1 | ζm |
{| Ct0D

α
t eim(t) |

+(ξ + di) ‖ ei(t) ‖
+
√

2NV (t0) ‖ G ‖‖ e(t− τ(t)) ‖}
≤ 1

η1 | ζm |
{| Ct0D

α
t eim(t) |

+(ξ + di) ‖ ei(t) ‖
+ψ ‖ G ‖‖ e(t− τ(t)) ‖}
= pis(t).

(33)

It is obvious that

| ais − āis(t) |=| ais − âis(εis) |≤ pis(εis) = ωis(t). (34)

According to Theorem 13 and Proposition 11, lim
t→∞

‖
e(t) ‖= 0 and there exists a time sequence {tisk }∞k=1 such
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that lim
k→∞

| Ct0D
α
tis
k

eim(t) |= 0. Next, the following equality

can be obtained,

lim
t→∞

min
t≥t0
{pis(t)} = 0. (35)

Obviously, from (30), lim
t→∞

ωis(t) = 0. And it follows from

inequality (34) that lim
t→∞

| āis(t)− ais |≤ lim
t→∞

ωis(t) = 0.

This completes the proof.

Remark 19. In Theorem 18, the conclusion is obtained
that, via equality (29) and regulation protocols (10)(11),
the unknown elements in the sth column of matrix A can
be estimated effectively. Then, because of the arbitrariness
of the value of s in the set {1, 2, · · · , N}, all the unknown
parameters in A can be identified in the same way.

Remark 20. Since the estimation error | āij(t) − aij |
between āij(t) and aij is always unknown, the accuracy
function ωij(t), which is an upper bound of | āij(t)− aij |
but can always be known, is considered to denote the
accuracy of the estimate of function āij(t) against aij at
time t and the reasonableness of using this function to
evaluate the validity of estimation algorithm (31) is shown
in equalities (32)(34).

Remark 21. It is easy to find that regulation protocols
(10)(11) are centralized and the individual information
of each node in these two algorithms need to be known,
such as the inner coupling matrix G and the nonlinear
function fi. These may become limiting factors when the
algorithms designed in this paper are applied to solve some
real-world engineering problems. Therefore, how to design
a distributed regulation protocol, which is more easily used
to solve the problem about topological identification, will
be the focus of our future work.

4. NUMERICAL SIMULATIONS

In this section, an example is shown to illustrate the
correctness of the obtained theoretical results.

Example 22. Consider three-dimensional complex network
(3), which consists of six nodes. A nonlinear function is
given as follows,

f(s(t)) =


−0.8s1(t) + 2tanh(s1(t))− 1.2tanh(s2(t));
1.8tanh(s1(t)) + 1.71tanh(s2(t))

+ 1.15tanh(s3(t));
−1.6s3(t)− 4.75tanh(s1(t))

+ 1.1tanh(s3(t));


where s(t) = (s1(t), s2(t), s3(t))T . Let fi(s(t)) = f(s(t)),
1 ≤ i ≤ 6, i ∈ Z+. The weight configuration matrix
A = (aij)6×6 is described as follows,

A =


−0.3, 0.1, 0, 0, 0.1, 0.1;

0.2,−0.7, 0.3, 0, 0.1, 0.1;
0, 0, − 0.2, 0.05, 0.15, 0.05;
0, 0.1, 0.6,−0.8, 0.1, 0;
0.2, 0.2, 0.5, 0.05,−1, 0.05;
0.1, 0.2, 0.3, 0.4, 0.5,−1.5

 , (36)

where all the elements in this matrix are assumed to be
unknown. But suppose that a fact is known that | aij |≤ 10
for 1 ≤ i, j ≤ 6, i ∈ Z+. The inner coupling matrix G is

Fig. 1. The state of nodes in network (3) under protocols
(10)(11).

G =

[
2, 0,−1;
0, 1,−1;
−1, 0, 2

]
. (37)

Let µ = (1, 1, 1)T , then Gµ = ζ = (1, 0, 0)T . The oth-
er parameters in network (3) are assumed to be that
α = 0.65, t0 = 0 and τ(t) = 5. The initial conditions of
system (3) are chosen randomly: x1(s) = (0.5, 0.4, 0.7)T ,
x2(s) = (−0.4,−1.6, 0.5)T , x3(s) = (0.9,−0.6, 0.2)T ,
x4(s) = (−0.3,−0.8, 1.2)T , x5(s) = (−1.3,−2.1, 1.8)T ,
x6(s) = (0.7,−0.7, 0.7)T and s ∈ [−5, 0]. The initial values
of adaptive parameters âij(t) in equations (10)(11) are
supposed to be that âij(t0) = 0 for 1 ≤ i, j ≤ 6, i, j ∈ Z+.
Let di = 15 (1 ≤ i ≤ 6, i ∈ Z+), which can make condition
(12) be satisfied. Let g(t) = 6 for t ≥ t0. Then auxiliary
function (28) can be rewritten as follows,

pij(t) =
1

6
{| Ct0D

α
t ei1(t) | +25 ‖ ei(t) ‖

+ψ ‖ G ‖‖ e(t− τ(t)) ‖},
(38)

where ψ =
√

6 ‖ e(t0) ‖2 +43200 and 1 ≤ i, j ≤ 6, i, j ∈
Z+.

Let v1 = µ and vi = 0, 2 ≤ i ≤ 6, i ∈ Z+. Based
on equality (31), the elements in the first column of
matrix A can be identified. Figs. 1,2,3 show the simulation
results. Fig. 1 shows the state of nodes in network (3),
which indicates that network (3) and auxiliary network (2)
can achieve synchronization based on regulation protocols
(10)(11). Parameters identification are shown in Fig. 2.
The estimators āi1(t) (1 ≤ i ≤ 6, i ∈ Z+) converge
to constants in accordance with the values of unknown
parameters ai1 (1 ≤ i ≤ 6, i ∈ Z+). In Fig. 3, the
accuracy functions ωi1(t) (1 ≤ i ≤ 6, i ∈ Z+) converge
rapidly to zero, which demonstrates that the method for
topology identification proposed in Theorem 18 is very
effective. And, it can be obtained from Fig. 3 that | ai1 −
āi1(t) |≤ 0.43 (1 ≤ i ≤ 6, i ∈ Z+) when t = 250.

5. CONCLUSION

In this manuscript, topology identification of fractional
complex networks is studied. In order to facilitate the
derivation of the main conclusions, an important proposi-
tion is proposed and proved, which can reveal some special
relations between the primitive function and its fractional
derivative. Based on this proposition, two algorithms are
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Fig. 2. Time evolution of estimators āi1(t) (1 ≤ i ≤ 6, i ∈
Z+).

Fig. 3. Time evolution of accuracy functions ωi1(t) (1 ≤
i ≤ 6, i ∈ Z+).

designed, by which the unknown parameters in the original
network can be estimated. Moreover, the accuracy func-
tion is considered to denote the accuracy of the estimated
results and this function can also be used to evaluate the
validity of our estimation algorithms.
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