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Abstract: This paper studies observer-based state-feedback control of a linear system, where
the observation signal is corrupted by the quantization error of an error feedback quantizer that
consists of a uniform quantizer and a feedback filter. To mitigate the effect of the quantization
error on the system output, we minimize the H2 norm of the transfer function from the round-off
error of the uniform quantizer to the system output with respect to the observer gain and the
feedback filter alternatively. The minimization with respect to the observer gain is formulated
into an optimization under a linear matrix inequality and a bilinear matrix inequality, whose
minimum is numerically found by an XY-centering algorithm. The minimization with respect
to the feedback filter is a convex optimization whose solution can be obtained numerically. The
two minimization problems are iteratively solved, until the H2 norm converges. A numerical
example is provided to see the performance of our method.
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1. INTRODUCTION

In a networked or a distributed control system, infor-
mation between the controller and the plant is trans-
mitted through rate limited communication channels. To
transmit signals over rate-limited digital communication
channels, continuous-valued or even discrete-valued signals
have to be quantized into low-resolution signals. When
only a small number of bits is assigned to represent the
signals, the quantization error may cause serious stabil-
ity/performance degradation. This motivates the research
on control under limited data rates.
In Wong and Brockett (1999), keeping the states of
a closed-loop system in a bounded region with state-
feedback control is called containability and the minimum
data rate for the containability is provided. Stabilizability
and observability under a communication constraint have
been studied in Tatikonda and Mitter (2004) for discrete-
time linear time-invariant (LTI) systems. A necessary and
sufficient condition on the information rate for asymptotic
stabilizability and observability has been presented. The
same condition has been shown in Nair and Evans (2003),
together with a necessary and sufficient condition for ex-
ponential stabilizability of discrete-time LTI systems with
random initial states.
The discussions on the minimum data rate based on the
information theory give valuable insights into control un-
der limited data rates. However, even if the rate is assured,
the closed-loop system may not always be stabilized, since
an ideal quantization is necessitated.

Indeed, Sontag (1984) shows that any unstable LTI sys-
tems cannot be globally exponentially stabilized with
bounded control signals. Thus, to guarantee the global
stability, an infinite-level quantization is required. If one
can utilize a dynamic quantizer that changes its quantiza-
tion law dynamically depending on its input, a finite-level
quantization enables the global stability. For example, Fu
and Xie (2009) prove a finite-level logarithmic quantizer
can globally stabilize unstable feedback control systems.
In Brockett and Liberzon (2000); Liberzon (2003), adap-
tive logarithmic quantizers that change their ranges and
resolutions have been used to attain global asymptotic
stabilization with quantized signals. Using the adaptive
logarithmic quantizers, Chang et al. (2018) design a static
output feedback control for discrete-time systems. How-
ever, since a fine quantization is necessary around the
convergent point of the signal to be quantized, the global
stability is possible only if there exists only one convergent
point which is known a priori to the quantizer.
On the other hand, in Wakaiki et al. (2019), bounds
for the ranges of the quantizers have been provided by
using an observer to obtain sufficient conditions for local
practical stability under bounded disturbances and noises
when there is no reference signal. However, since the
bounds depend on the reference signal, the bounds cannot
be determined a priori without the knowledge of the
reference signal. When a fixed known reference signal is
not available, we can develop a control that minimizes
the region of the state-vector in a certain sense. Ferrante
et al. (2014) designs an observer to minimize the ellipsoid
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that contains the state-vector for a feedback control system
with quantized output.
This paper considers an observer-based state-feedback
control for linear systems, whose feedback control is syn-
thesized with an existing technique, e.g., the conventional
linear quadratic regulator technique, and the state-vector
is estimated by an observer based on the quantized ob-
servation. To reduce the quantization error, we adopt
the error feedback quantizer, which consists of a uniform
quantizer and an error feedback filter. The error feedback
quantizer is equivalent to a linearized discrete ∆Σ mod-
ulator which is widely used for analog to digital (A/D)
conversion. For ∆Σ modulators, see, e.g., Schreier and
Temes (2004) and references therein.
The quantization induces an error signal at the system
output. We evaluate the mean squared error (MSE) of the
error signal, assuming that the quantization range is large
enough to prevent overflows, and the quantization error is
an i.i.d. white noise with zero mean. The MSE is expressed
as the H2 norm of the transfer function from the round-
off error of the uniform quantizer in the error feedback
quantizer to the system output, which is a function of the
observer gain and the noise transfer function (NTF) of the
error feedback quantizer.
Our objective is to find the optimal observer gain and NTF
that minimize the MSE. However, it is difficult to simul-
taneously minimize the MSE with respect to the observer
gain and the NTF. To obtain reasonable observer gain and
NTF, we utilize an alternate minimization. For a given er-
ror feedback filter, the observer is obtained by numerically
solving an optimization problem under a linear matrix in-
equality (LMI) and a bilinear matrix inequality (BMI) by
an XY-centering algorithm originally developed by Iwasaki
and Skelton (1995). On the other hand, for a given observer
gain, the optimal NTF that minimizes the MSE is given by
solving a convex optimization problem as shown in Ohno
and Tariq (2017). We iteratively minimize the MSE with
respect to the observer gain and the error feedback filter,
until the MSE converges. A numerical example is provided
to see that our method exhibits reasonable performance.
Notation: R is the set of real numbers and R+ is the
set of non-negative numbers. In is the identity matrix of
size n × n. The z transform of a sequence (or a vector)
h = {hk}∞k=0 is denoted as H[z] =

∑∞
k=0 hkz

−k. The
output sequence y of a discrete-time LTI system H[z] with
the input sequence x (i.e. y = h ∗ x where ∗ denotes the
convolution) is expressed as y = H[z]x. The H2 norm of
H[z] is defined as

∥H[z]∥2 =

{
1

2π

∫ π

−π

trace
(
H∗[ejω]H[ejω]

)
dω

} 1
2

where (·)∗ is the complex conjugate transpose operator,
whereas the H∞ norm of H[z] is

∥H[z]∥∞ = max
θ∈[−π,π)

σmax(H[ejω])

where σmax(H[ejω]) is the maximum singular value of
H[ejω] for ω ∈ [−π, π).
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Fig. 1. Generalized plant

+ q(·)

R[z]− 1
wη

y uq ỹ
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Fig. 2. Error feedback quantizer

2. FEEDBACK SYSTEM AND QUANTIZATION

Fig. 1 depicts a generalized plant, in which the plant
is assumed to be LTI and the signals we, z, y, and u
are functions of time. The inputs to the plant are the
exogenous input we and the output u of the controller.
The controller generates the input u to the plant, using
the observation signal y of the plant.
For simplicity, we consider discrete-time equivalent sys-
tems and express signals and systems in discrete-time
and assume that the plant has a strictly proper single-
input and single-output LTI system of order np. Let us
denote its minimal state-space matrices of the plant as
(Ap, Bp, Cp, 0). Then, the plant is expressed as

xk+1 =Apxk +Bpuk (1)
yk =Cpxk (2)

where xk is the state-vector at time k.
Suppose that the observation signal y is transmitted over
a digital communication channel. We have to convert the
observation signal y into a discrete-valued signal by using
a quantizer. We adopt an error feedback quantizer that
exhibits better performance than the conventional uniform
quantizer.
Fig. 2 shows an error feedback quantizer that consists of
a uniform quantizer q(·) and an error feedback filter. The
error feedback quantizer is equivalent to a ∆Σ modulator
which is widely used for analog to digital (A/D) conversion
(see Schreier and Temes (2004) and references therein).
Let d ∈ R+ be the quantization step-size, and N + 1 be
the number of bits to represent a binary number, where N
be a positive integer. For a scalar input ξ, the output of
the mid-tread uniform quantizer is given by
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Fig. 3. Input/output characteristics of a mid-tread uniform
2-bit quantizer

q(ξ) =


L− d, ξ > L− d

2
ld, ξ ∈ [(l − 1

2 )d, (l +
1
2 )d)

for an integer l and − L− d
2 ≤ ξ ≤ L− d

2

−L, ξ < −L− d
2

(3)
where L = 2Nd. Fig. 3 illustrates the input/output
characteristics of a mid-tread uniform quantizer when
N = 1.
We assume that the dynamic range of the quantizer is large
enough to prevent overflows. Under this assumption, we
model the quantization error as a uniform random variable
with zero mean and variance σ2

w = d2/12.
For scalar inputs, the validity of this model has been well
demonstrated (see, e.g., Widrow and Kollár (2008)). The
so-called white noise assumption further assumes that the
errors at different time are statistically independent of
each other. Bennett (1948) demonstrates that the white-
ness assumption on the quantization error approximately
holds true when there is no overflow, the quantization
interval is sufficiently small, and a sufficiently large num-
ber of bits is assigned to each value. On the other hand,
Gray (1990) shows that the whiteness assumption for the
quantization error of the uniform quantizer in the error
feedback quantizer is not always true. However, even if
the whiteness assumption does not strictly hold, our design
method below is still valid, since it minimizes the H2 norm
of the transfer function from the error to the output.
The round-off error of the uniform quantizer q(·) is given
by

w = ỹ − uq (4)
where uq is the input to the uniform quantizer; see Fig. 2.
It is filtered by the error feedback filter R[z]− 1 and then
it is fed back to the input to the uniform quantizer. (Here
−1 in R[z]− 1 is just for simplicity of presentation. ) The
error feedback filter R[z]− 1 is assumed to strictly proper,
that is, R[∞] = 1. It should be noted that if R[z] = 1,
there is no feedback and the quantizer boils down into a
conventional uniform quantizer.
The quantization error of the error feedback quantizer is
defined as

e = ỹ − y (5)
which is found from (4) and uq = y + (R[z]− 1)w to be

e = R[z]w. (6)

Then, the output signal of the error feedback quantizer
can be expressed as

ỹ = y +R[z]w. (7)
The filter R[z] is called a noise transfer function (NTF) or
noise shaping filter (NSF).
Azuma and Sugie (2012); Okajima et al. (2016) have
utilized a type of ∆Σ modulators different from ours,
named as a dynamic quantizer, to reduce the effect of
quantization in which the output of the uniform quantizer
rather than the round-off error is filtered and fed back
to the input of the uniform quantizer. As pointed out by
Ohno et al. (2018), our error feedback quantizer subsumes
the dynamic quantizer; if the NTF R[z] has minimum
phase, the two quantizers are equivalent but the dynamic
quantizer cannot be optimal if the optimal R[z] has non-
minimum phase.

3. EFFECT OF QUANTIZATION IN
OBSERVER-BASED STATE-FEEDBACK CONTROL

We adopt the conventional state-feedback control. Let we,k

be the reference signal for the state-vector at time k. If the
state-vector is available at the controller, the input to the
plant is generated by

uk = K(we,k − xk) (8)
where K is the feedback gain, which is designed, e.g., by
a control law for the optimal linear quadratic regulator.
Since the state-vector is not available at the controller,
we estimate the state-vector based on quantized output
ỹk. The linear minimum variance filter is known as the
optimal linear filter that minimizes the estimation variance
of the state-vector; however, it is not always optimal for
other purposes. This paper utlizes a Luenberger observer
to minimize the effect of the round-off error on the output
of the plant.
The observer generates the estimate x̂k+1 of the state-
vector at time k + 1 by

x̂k+1 =Apx̂k +Bpuk + F (ỹk − Cpx̂k) (9)
where F is the observer gain. Let us define an augmented
state as [xT

k , ξ
T
k ]

T with the state-estimation error
ξk = xk − x̂k. (10)

The augmented state-space equations can be expressed as[
xk+1

ξk+1

]
= Ah

[
xk

ξk

]
+

[
BpK
0

]
rk +Bhek (11)

yk = Ch

[
xk

ξk

]
(12)

where

Ah =

[
Ap −BpK BpK

0 Ap − FCp

]
(13)

Bh =

[
0
F

]
(14)

Ch = [Cp 0 ] . (15)

Suppose that Ah is of Shur. Since the round-off error is
bounded if there is no overflow, the quantization error
e is bounded for a stable NTF R[z]; then each entry of
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the state-vector is bounded. Thus, there exists an ellipsoid
described by a positive definite matrix P̃ that satisfies[

xk+1

ξk+1

]T
P̃

[
xk+1

ξk+1

]
≤ 1 (16)

for all k ≥ N̄ for a given integer N̄ ≥ 0. Ferrante et al.
(2014) construct an observer to find a minimum ellipsoid
that contains the state-vector at any time, while keeping
the global ultimate boundedness stabilization property,
defined in Khalil (2002), of the observer-based control for
continuous-time linear systems with quantized observa-
tion.
This paper focuses on the system output rather than the
state-vector. We would like to find the optimal observer
and the NTF that minimize the effect of the quantization
error on the output of the plant. For simplicity, let the
system output z be identical with the observation signal
y; see Fig. 1. We denote the transfer function from the
quantization error e to the output of the plant y as H[z],
which is given by
H[z] = Ch(zInh

−Ah)
−1

Bh

= Cp(zInp −Ap +BpK)−1BpK(zInp −Ap + FCp)
−1F
(17)

where nh = 2np.
The quantization error e goes through H[z]. At the output,
the error due to quantization is given by

ϵ = H[z]e = H[z]R[z]w. (18)
If the round-off error w of the uniform quantizer is a
statistically white random signal with zero mean and
variance σ2

w, then the mean squared error (MSE) is given
by

E{∥ϵk∥22} = ∥H[z]R[z]∥22σ2
w (19)

where E{·} denotes the expectation operator. Similarly
the feedback signal η has zero mean and variance given by

E{∥ηk∥22} = ∥R[z]− 1∥22σ2
w. (20)

The variance of the feedback signal has to be suppressed
to avoid overflows.
Now, we would like to minimize the MSE with respect
to the observer gain F and the NTF R[z], under the
constraint on the variance of the feedback signal η. More
specifically, we consider the following minimization prob-
lem:

min
F∈Rnp×1,R[z]∈RH∞

µϵ (21)

subject to

∥H[z]R[z]∥22 < µϵ (22)
∥R[z]− 1∥22 < µη (23)

where RH∞ is the set of stable proper rational functions
with real coefficients.

4. SYNTHESIS OF OBSERVER AND QUANTIZER

Since H[z]R[z] has multiplications of design variables, it
is not that easy to obtain the global optimum for µϵ by
simultaneously minimizing it with respect to the observer

gain F and the NTF R[z]. Here, we utilize a simple
iterative procedure to obtain a sub-optimal solution, which
can be obtained with a reasonable cost.
The transfer function H[z] depends on the observer gain
F , while the NTF R[z] does not. Thus, we can apply an
alternate optimization which minimizes the objective with
respect to F and R[z] alternatively .
Suppose that an NTF R[z] is given, we can optimize our
objective with respect to F as follows:

min
F∈Rnp×1

µϵ (24)

subject to

∥H[z]R[z]∥22 < µϵ (25)
which can be formulated as an optimization.
Let the order of R[z] be nr. We denote the state-space
matrices for R[z] as (Ar, Br, Cr, 1). Then, the state-space
equations from wk to ϵk is expressed as

x̃k+1 =Ax̃k + Bwk (26)
ϵk = Cx̃k (27)

where

A =

[
Ah BhCr

0 Ar

]
(28)

B =

[
Bh

Br

]
(29)

C = [Ch 0 ] . (30)

It is known that ||H[z]R[z]||22 < µϵ if and only if there exists
a positive definite matrix P such that (see e.g., Boyd et al.
(1997))  P PA PB

ATP P 0
BTP 0 1

 ≻ 0 (31)

[
µϵ C
CT P

]
≻ 0. (32)

Then, the problem is equivalent to the minimization of µϵ

with respect to F ∈ Rnp×1 and a positive definite matrix
P subject to (31) and (32).
We can express A as

A =

[
Ap −BpK −BpK BpCr

0 Ap 0
0 0 Ar

]
−

[
0
F
0

]
[ 0 Cp −Cr ]

(33)
Although (32) is an LMI of P, (31) is a non-convex BMI,
since PA contains a multiplication of P and F . This also
holds true for PB. Here, we minimize µϵ with respect to
P and F alternately; for a fixed P, µϵ is minimized with
respect to F and then for the obtained F , µϵ is minimized
with respect to P. This alternate optimization is repeated
until µϵ converges. To obtain a smaller µϵ, we utilize the
XY-centering algorithm originally developed by Iwasaki
and Skelton (1995).
On the other hand, for a given H[z], we can minimize our
objective with respect to R[z], that is, we can solve the
following minimization problem:
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min
R[z]∈RH∞

µϵ (34)

subject to

∥H[z]R[z]∥22 < µϵ (35)
∥R[z]− 1∥22 < µη (36)

As shown in Ohno and Tariq (2017), by putting the order
of R[z] to be nh, which equals the order of H[z], the prob-
lem above can be converted into a convex optimization; the
latter can be solved numerically and efficiently by using a
numerical solver.

5. A NUMERICAL EXAMPLE

We compare our observer-based state-feedback control
with that of Ferrante et al. (2014) which uses a uniform
quantizer and an observer designed based on a minimum
ellipsoid that contains the state-vector. In our simulations,
we utilize zero-order hold equivalent discrete-time models
for continuous-time systems with sampling period Ts =
0.01.
The quantization interval for every quantizer is set to be
d = 1/24. Each entry of initial sate-vectors is unity. The
feedback gain K of Ferrante et al. (2014) is used for state-
feedback control, which is given by

K = [ 1.7047 1.0566 ] . (37)

For N = 1000, we evaluate the empirical MSE defined as

MSE =
1

N

N∑
k=1

ϵTk ϵk (38)

where ϵk is the error signal at the output given by (18).
It should be noted that the outputs for different observers
are not equal even if there is no quantization error since
the system depends on the observer gain.
We first design the observer gain for a uniform quantizer.
Then, we design the observer gain and the NTF alterna-
tively. For a fixed NTF, the MSE is numerically minimized
with respect to the observer gain L by the XY-centering
algorithm by Iwasaki and Skelton (1995), whereas, for a
fixed observer gain, the MSE is numerically minimized
with respect to the NTF R[z] by using a numerical solver
CVX by Grant and Boyd (2014).
The plant is a continuous-time system whose state-space
matrices are given by

A =

[
0 1
1 −1

]
, B =

[
1
1

]
, C = [ 1 0 ] . (39)

The state-space matrices of the discrete-time equivalent
are

Ap =

[
1 0.0100

0.0100 0.9901

]
, Bp =

[
0.0101
0.0100

]
, Cp = [ 1 0 ] .

(40)
Each entry of the initial sate-estimates is unity to see only
the effect of the round-off error, while the reference signal
rk is set to be a zero vector.
Table 1 displays theoretical and empirical MSEs for our
methods with a uniform quantizer and with our designed
feedback quantizer, and Ferrante et al. (2014). For each ob-
server, the empirical MSE is larger than its corresponding

Table 1. Theoretical and empirical MSEs of
our methods with a uniform quantizer and
with our designed error feedback quantizer,

and Ferrante et al. (2014).

theoretical MSE empirical MSE
Uniform quantizer 4.6656 · 10−6 7.2097 · 10−4

Feedback quantizer 2.3384 · 10−10 7.6826 · 10−10

Ferrante et al. (2014) 5.0689 · 10−6 6.5724 · 10−4

Fig. 4. System output y and round-off error e with the
designed observer and NTF

theoretical MSE. This is because our whiteness assumption
on the quantization error does not hold true after the
system output converges.
With the uniform quantizer, our method has a smaller
theoretical MSE than the method of Ferrante et al. (2014)
but has a larger empirical MSE. This is also due to the loss
of randomness of the round-off error after the convergence.
With the designed feedback quantizer, our method enjoys
the least theoretical and empirical MSEs.
Fig. 4 shows the system output y and the quantization
error e of the system with the designed observer and
NTF. It can be seen that as the system output converges,
the round-off error of the uniform quantizer in our error
feedback quantizer becomes deterministic. However, even
if the whiteness assumption is not valid, our method based
on the H2 norm works well.

6. CONCLUSIONS

We have studied observer-based state-feedback control
of a linear system whose observation signal is corrupted
by the quantization error. To mitigate the effect of the
quantization error, an alternate minimization of the MSE
at the system output has been proposed to design the
observer gain and the NTF of the error feedback quantizer.
The MSE is minimized with respect to the observer gain
and the NTF alternatively until it converges. A numerical
example demonstrates the effectiveness of our method.
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