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Abstract: The Dynamic Programming approach for optimal control problem establishes
that the necessary condition for optimality is that the minimum cost function (the Bellman
functional) must satisfy the Hamilton-Jacobi-Bellman equation. A sufficient condition is that
if there exists a functional that satisfies the Hamilton-Jacobi-Bellman equation, then it is
the minimum cost function. For linear time-delay systems, Krasovskii proposed the Bellman
functional, and an optimal structure for the controller was reported. The Dynamic Programming
combined with prescribed derivative functionals leads to an iterative procedure which allows
finding suboptimal controls law at each step. There is numerical evidence that shows that
these functionals are equivalent. However, their algebraic structure is different. The Bellman
functional has only three terms and the iterative functional is composed by thirteen summands.
The algebraic relation between both functionals is not easy to see. The present contribution
gives a proof of this connection by using Fubini’s Theorem.
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1. INTRODUCTION

The design of optimal control laws using Dynamic Pro-
gramming was introduced in Bellman (1957). This ap-
proach uses the well-known Bellman functional to find
the optimal control. For this reason, the issue of its con-
struction or proposal is fundamental to solve the problem.
For time-delay linear systems, the Bellman functional was
proposed in Krasovskii (1962) and constructed in Ross and
Flügge-Lotz (1969). Subsequently, these works were ex-
panded and extended. For example in Kushner and Barnea
(1970), the conditions under which the Riccati equation
has at least one solution are analyzed. Some methods
are proposed for the solution of this equation in Kim
and Lozhnikov (2000). In Santos (2006) and Santos et al.
(2009), a Lyapunov-Krasovskii functional with prescribed
derivative (which is equal minus the quadratic function
under the integral) is introduced to obtain suboptimal
control laws.

To establish the connection between both functionals we
use variable changes together with Fubini’s Theorem (see
Thomas and Finney (1996)). We show that these functio-
nals have the same structure. The above correspondance
was validated by numerical verification on an example
presented in Ross (1971) and in Santos et al. (2009).

? This work was supported by Projects: Conacyt 239371, Conacyt
A1-S-24796 and SEP-Cinvestav 155.

The contribution is organized as follows: the preliminaries
are given in section 2. The main results of this research
can be found in section 3: there, the two functionals are
compared. The conclusions of this contribution are in
section 4.

We denote the space of Rn-valued piecewise-continuous
functions on [−h, 0] by PC([−h, 0],Rn). For a given initial
function ϕ(θ), xt(ϕ) denotes the state of the delay system
{x(t+ θ, ϕ), θ ∈ [−h, 0]}, with delay h > 0. The Euclidian
norm for vectors is represented by ‖ · ‖. The set of
piecewise continuous functions is equipped with the norm
‖ ϕ ‖h= supθ∈[−h,0] ‖ ϕ(θ) ‖. The notations Q > 0 and
R > 0 mean that matrices Q and R are positive definite.

2. PRELIMINARIES AND PROBLEM STATEMENT

Consider time-delay systems of the form

ẋ(t) = Ax(t) +Bx(t− h) +Du(t),

ϕ ∈ PC([h, 0],Rn)
(1)

where x(t), xt in D ⊂ Rn, the set D represents a domain
for the space of solutions which contains the trivial one,
the matrices A,B ∈ Rn×n, D ∈ Rn×r are constant and
the vector u(t) ∈ Rr with r ≤ n. The control u(t) is a
piecewise continuous function.

Consider the following quadratic performance index:

J =

∫ ∞
0

g(xt, u(t))dt, (2)
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with

g(xt, u(t)) = xT (t)Qx(t) + uT (t)Ru(t),

where Q ∈ Rn×n, R ∈ Rr×r, Q > 0, R > 0.

The optimal control problem consists in the synthesis of
the optimal control u0(t) that minimizes the quadratic
performance index (2). According to Krasovskii (1962),
and Ross and Flügge-Lotz (1969), the admissible controls
for system (1) are stabilizing controls that depend on the
state xt. The system (1) in closed-loop with an admissible
control is an exponentially stable system of the form:

ẋ(t) = A0x(t) +A1x(t− h) +

∫ 0

−h
G(θ)x(t+ θ)dθ, t ≥ 0.

(3)
Here x(t), xt ∈ D, A0, A1 are given real n × n matrices,
h > 0 is the delay, and G(θ) is a continuous matrix defined
for θ ∈ [−h, 0]. As system (3) is Lipschitz, for any initial
condition x0 = ϕ, ϕ ∈ PC([h, 0],Rn), the solution exists
and is unique. The Cauchy formula for system (3) is given
in the following theorem.

Theorem 1. (Bellman and Cooke (1963)) The solution
x(t, ϕ) of system (3) is given by

x(t, ϕ) = K(t)ϕ(0) +

∫ 0

−h
K(t− h− ζ)A1ϕ(ζ)dζ

+

∫ 0

−h

∫ 0

−h
K(t− ζ + θ)G(θ)dθϕ(ζ)dζ, t ≥ 0,

(4)

where the n× n matrix function K(t) satisfies the matrix
equation

K̇(t) = K(t)A0+K(t−h)A1+

∫ 0

−h
K(t+θ)G(θ)dθ, t ≥ 0,

and the initial condition K(0) = I, and K(θ) = 0 for all
θ ∈ [−h, 0).

The necessary conditions of Dynamic Programming pro-
vide the structure of Bellman functional V (xt) and some
of its properties.

Proposition 2. (Ross and Flügge-Lotz (1969)). If uL =
uL(xt), t ≥ 0, is an admissible linear control, ϕ is an
initial function defined on [−h, 0], then the functional

V (ϕ) = J(ϕ, uL) =

∫ ∞
0

(xT (t)Qx(t) + uL(t)TRuL(t))dt,

(5)
can be expressed as

V (ϕ) = ϕT (0)Π0ϕ(0) + 2ϕT (0)

∫ 0

−h
Π1(θ)ϕ(θ)dθ

+

∫ 0

−h

∫ 0

−h
ϕT (ξ)Π2(ξ, θ)ϕ(θ)dξdθ,

(6)

where

i) Π0 > 0 is a symmetric positive matrix.
ii) Π1(θ) is defined on [−h, 0].

iii) Π2(ξ, θ) is defined on ξ, θ ∈ [−h, 0],
ΠT

2 (ξ, θ) = Π2(θ, ξ).

It is worthy of mention that there exist no report on
the construction of the Bellman functional, but only an
indication in Ross and Flügge-Lotz (1969): a Riesz ap-
proximation may be used.

In Santos et al. (2009) a method is proposed for the con-
struction of an approximation of the Bellman functional,
denoted V1(xt). Indeed for a control law

uL(t) = Γ0x(t) +

∫ 0

−h
Γ1(θ)x(t+ θ)dθ, (7)

it appears from (5) that the Bellman functional can be
obtained by substituting (7) into (5) and carrying out the
integration from 0 to ∞ along the system trajectories (4).
More precisely

V1(ϕ) =

∫ ∞
0

w(xt(ϕ))dt, (8)

where

w(xt) = xTW00x(t) + 2xT (t)

∫ 0

−h
W01(θ)x(t+ θ)dθ

+ 2

∫ 0

−h

∫ 0

θ1

xT (t+ θ1)W11(θ1, θ2)x(t+ θ2)d1dθ2,

(9)

and

W00 = Q+ ΓT0 RΓ0,

W01(θ) = ΓT0 RΓ1(θ),

W11(θ1, θ2) = Γ1(θ1)RΓ1(θ2).

Here W00 ∈ Rn×n is a positive definite matrix, and
W01(θ),W11(θ1, θ2) ∈ Rn×n are matrix functions with
θ, θ1, θ2 ∈ [−h, 0] respectively, and

WT
11(θ1, θ2) = W11(θ2, θ1).

The final result (see Santos et al. (2009)) is

V1(xt) = 2xT (t)

∫ 0

−h

∫ −θ
0

KT (s)W01(θ)x(t+ s+ θ)dsdθ

+ 2

∫ 0

−h

∫ 0

−h

∫ −θ
0

xT (t+ ζ)AT1K
T (s− h− ζ)W01(θ)

× x(t+ s+ θ)dsdθdζ + 2

∫ 0

−h

∫ 0

−h

∫ 0

θ1

xT (t+ ζ)GT (θ1)

×

[∫ −θ
0

KT (s− ζ + θ1)W01(θ)x(t+ s+ θ)ds

]
dζdθ1dθ

+ 2

∫ 0

−h

∫ 0

θ1

∫ θ1−θ2

θ1

xT (t+ σ)W11(θ1, θ2)

× x(t+ σ + θ2 − θ1)dσdθ2dθ1

+ 2

∫ 0

−h

∫ 0

θ1

∫ 0

θ1−θ2
xT (t+ σ)W11(θ1, θ2)

×K(σ + θ2 − θ1)dσdθ2dθ1x(t)

+ 2

∫ 0

−h

∫ 0

−h

∫ 0

θ1

∫ 0

θ1−θ2
xT (t+ σ)W11(θ1, θ2)

×K(σ + θ2 − θ1 − h− ζ)dσdθ2dθ1A1x(t+ ζ)dζ

+ 2

∫ 0

−h

∫ ζ

−h

∫ 0

−h

∫ 0

θ1

∫ 0

θ1−θ2
xT (t+ σ)W11(θ1, θ2)

×K(σ + θ2 − θ1 − ζ + θ3)dσdθ2dθ1
×G(θ3)x(t+ ζ)dθ3dζ

+ xT (t)F (0,W00,W01(θ),W11(θ1, θ2))x(t)
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+ 2xT (t)

∫ 0

−h
F (−h− ζ,W00,W01(θ),W11(θ1, θ2))

×A1x(t+ ζ)dζ

+ 2xT (t)

∫ 0

−h

∫ ζ

−h
F (−ζ + θ3,W00,W01(θ),W11(θ1, θ2))

×G(θ3)x(t+ ζ)dθ3dζ

+

∫ 0

−h

∫ 0

−h
xT (t+ ζ1)AT1

× F (ζ1 − ζ2,W00,W01(θ),W11(θ1, θ2))

×A1x(t+ ζ2)dζ2dζ1 + 2

∫ 0

−h

∫ 0

−h

∫ ζ2

−h
xT (t+ ζ1)AT1

× F (h+ ζ1 − ζ2 + θ3,W00,W01(θ),W11(θ1, θ2))

×G(θ3)dθ3x(t+ ζ2)dζ2dζ1

+

∫ 0

−h

∫ 0

−h

∫ ζ2

−h

∫ ζ1

−h
xT (t+ ζ1)GT (θ3)

× F (ζ1 − θ3 − ζ2 + θ4,W00,W01(θ),W11(θ1, θ2))

×G(θ4)x(t+ ζ2)dθ3dθ4dζ2dζ1,
(10)

with

F (τ,W00,W01(θ),W11(θ1, θ2)) = U(τ,W00)

+

∫ 0

−h

[
U(θ + τ,W01(θ)) + UT (θ − τ,W01(θ))

]
dθ

+

∫ 0

−h

(∫ 0

θ1

[U(θ2 − θ1 + τ,W11(θ1, θ2))

+ UT (θ2 − θ1 − τ,W11(θ1, θ2))dθ2dθ1.

The Lyapunov matrix U(τ,M) is defined as

U(τ,M) =

∫ ∞
0

KT (t)MK(t+ τ)dt,

where M is a real n×n matrix and K(t) is the fundamental
matrix of system (3). The Lyapunov matrix satisfies the
conditions

U ′(τ,M) = U(τ,M)A0 + U(τ − h,M)A1

+

∫ 0

−h
U(τ + θ,M)G(θ + τ)dθ, τ ≥ 0,

U(−τ,M) = UT (τ,MT ),

and

−M = U ′(+0,M)− U ′(−0,M).

3. FUNCTIONALS COMPARISON

The main purpose of this contribution is to present the
structural connection between the Lyapunov-Krasovskii
functional (10) constructed via the prescribed derivative
functional approach and the proposed form for the Bell-
man functional (6). Our main motivation was our long
lasting concern about the apparent complexity of the thir-
teen summands of the constructed approximation Santos
et al. (2009), when compared to the three terms Bellman
functionals introduced in Krasovskii (1962) and Ross and
Flügge-Lotz (1969).

Proposition 3. Consider the functional V1(xt) given in
(10), then it can be expressed as

V1(xt) = xTΘ0x(t) + 2xT (t)

∫ 0

−h
Θ1(ζ)x(t+ ζ)dζ

+

∫ 0

−h

∫ 0

−h
xT (t+ ζ1)Θ2(ζ1, ζ2)x(t+ ζ2)dζ1dζ2,

(11)

with

Θ0 = F (0,W00,W01(θ),W11(θ1, θ2)), (12)

Θ1(ζ) = F (−h− ζ,W00,W01(θ),W11(θ1, θ2))A1

+

∫ ζ

−h
F (−ζ + θ3,W00,W01(θ),W11(θ1, θ2))G(θ3)dθ3

+

∫ ζ

−h
KT (ζ − θ)W01(θ)dθ

+

∫ ζ

−h

∫ 0

θ1−ζ
KT (ζ + θ2 − θ1)WT

11(θ1, θ2)dθ2dθ1,

(13)

and

Θ2(ζ1, ζ2) = AT1 F (ζ1 − ζ2,W00,W01(θ),W11(θ1, θ2))A1

+ 2

∫ ζ2

−h
AT1K

T (ζ2 − θ − h− ζ1)W01(θ)dθ

+ 2

∫ ζ1

−h

∫ ζ2

−h
GT (θ1)KT (ζ2 − θ − ζ1 + θ1)W01(θ)dθdθ1

+

∫ ζ1

−h
W11(θ1, ζ2 − ζ1 + θ1)dθ1

+ 2

∫ ζ1

−h

∫ 0

θ1−ζ1
W11(θ1, θ2)K(ζ1 + θ2 − θ1 − h− ζ2)

×A1dθ2dθ1

+ 2

∫ ζ2

−h

∫ ζ1

−h

∫ 0

θ1−ζ1
W11(θ1, θ2)K(ζ1 + θ2 − θ1 − ζ2 + θ3)

×G(θ3)dθ2dθ1dθ3

+ 2

∫ ζ2

−h
AT1 F (h+ ζ1 − ζ2 + θ3,W00,W01(θ),

W11(θ1, θ2))G(θ3)dθ3

+

∫ ζ2

−h

∫ ζ1

−h
GT (θ3)F (ζ1 − θ3 − ζ2 + θ4,W00,

W01(θ),W11(θ1, θ2))G(θ4)dθ3dθ4.
(14)

Proof

Our aim is to prove that the Bellman functional (6) and
functional (10) have same structure. The proof mainly
relies on the use of Fubini’s Theorem, together with
appropriate changes of variables.

The first integral on the right-hand side of (10) can be
transformed as follows:

2xT (t)

∫ 0

−h

∫ −θ
0

KT (s)W01(θ)x(t+ s+ θ)dsdθ

= 〈ζ = s+ θ〉 = 2xT (t)

∫ 0

−h

∫ 0

θ

KT (ζ − θ)W01(θ)

× x(t+ ζ)dζdθ.

(15)

The region of integration on the right-hand side of (15) is
given by Fig. 1, which helps us to introduce the following
equality
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Fig. 1. Region of integration in (15)

2xT (t)

∫ 0

−h

∫ −θ
0

KT (s)W01(θ)x(t+ s+ θ)dsdθ

= 2xT (t)

∫ 0

−h

[∫ ζ

−h
KT (ζ − θ)W01(θ)dθ

]
x(t+ ζ)dζ.

(16)

The second summand of (10) can be transformed as
follows:

2

∫ 0

−h

∫ 0

−h

∫ −θ
0

xT (t+ ζ1)AT1K
T (s− h− ζ1)W01(θ)

× x(t+ s+ θ)dsdθdζ1 = 〈ζ2 = s+ θ〉

= 2

∫ 0

−h

∫ 0

−h

∫ 0

θ

xT (t+ ζ1)AT1K
T (ζ2 − θ − h− ζ1)W01(θ)

× x(t+ ζ2)dζ2dζ1 = 2

∫ 0

−h
R1(ζ1)dζ1,

with

R1(ζ1) =

∫ 0

−h

∫ 0

θ

xT (t+ ζ1)AT1K
T (ζ2 − θ − h− ζ1)W01(θ)

× x(t+ ζ2)dζ2dθ.
(17)

The region of integration in (17) is similar to the one in
Fig. 1 with ζ equal to ζ2. Then, using Fubini’s Theorem,
we can find that,

2

∫ 0

−h

∫ 0

−h

∫ −θ
0

xT (t+ ζ)AT1K
T (s− h− ζ)W01(θ)

× x(t+ s+ θ)dsdθdζ

=

∫ 0

−h

∫ 0

−h
xT (t+ ζ1)

[
2

∫ ζ2

−h
AT1K

T (ζ2 − θ − h− ζ1)

×W01(θ)dθ

]
x(t+ ζ2)dζ1dζ2.

(18)

The third summand of (10) can be transformed as follows:

2

∫ 0

−h

∫ 0

−h

∫ 0

θ1

∫ −θ
0

xT (t+ ζ1)GT (θ1)KT (s− ζ1 + θ1)W01(θ)

× x(t+ s+ θ)dsdζ1dθ1dθ = 〈ζ2 = s+ θ〉

= 2

∫ 0

−h

∫ 0

−h

∫ 0

θ1

∫ 0

θ

xT (t+ ζ1)GT (θ1)KT (ζ2 − θ − ζ1 + θ1)

×W01(θ)x(t+ ζ2)dζ2dζ1dθ1dθ = 2

∫ 0

−h
R2(θ)dθ,

with

R2(θ) =

∫ 0

−h

∫ 0

θ1

R3(ζ1, θ1, θ)dζ1dθ1 (19)

and

R3(ζ1, θ1, θ) =

∫ 0

θ

xT (t+ ζ1)GT (θ1)

×KT (ζ2 − θ − ζ1 + θ1)W01(θ)x(t+ ζ2)dζ2.

(20)

The region of integration in (19) is similar to the one in
Fig. 1 where ζ is equal to ζ1 and θ is changed by θ1. The
above implies that

R2(θ) =

∫ 0

−h

∫ ζ1

−h
R3(ζ1, θ1, θ)dθ1dζ1. (21)

Then, using equations (20) and (21), the same procedure
leads to

2

∫ 0

−h

∫ 0

−h

∫ 0

θ1

xT (t+ ζ)GT (θ1)

[∫ −θ
0

KT (s− ζ + θ1)

×W01(θ)x(t+ s+ θ)ds

]
dζdθ1dθ

=

∫ 0

−h

∫ 0

−h
xT (t+ ζ1)

[
2

∫ ζ1

−h

∫ ζ2

−h
GT (θ1)

×KT (ζ2 − θ − ζ1 + θ1)W01(θ)dθdθ1

]
x(t+ ζ2)dζ1dζ2.

(22)

Now, we analyze the fourth term of (10). First, the variable
σ is changed to ζ1, hence this summand rewrites as

2

∫ 0

−h

∫ 0

θ1

∫ θ1−θ2

θ1

xT (t+ ζ1)W11(θ1, θ2)

× x(t+ ζ1 + θ2 − θ1)dζ1dθ2dθ1.

(23)

Defining the functional

R4(t, θ1) =

∫ 0

θ1

∫ θ1−θ2

θ1

xT (t+ ζ1)W11(θ1, θ2)

× x(t+ ζ1 + θ2 − θ1)dζ1dθ2,

(24)

then the term (23) takes the form

2

∫ 0

−h
R4(t, θ1)dθ1. (25)

We can find the region of integration of (24) depicted on
Fig. 2.

Fig. 2. Region of integration of (24)

Fig. 2 helps to rewrite (24) as

R4(t, θ1) =

∫ 0

θ1

∫ θ1−ζ1

θ1

xT (t+ ζ1)W11(θ1, θ2)

× x(t+ ζ1 + θ2 − θ1)dθ2dζ1.

(26)

Replacing (26) into (25), (23) reduces to
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2

∫ 0

−h

∫ 0

θ1

∫ θ1−ζ1

θ1

xT (t+ ζ1)W11(θ1, θ2)

× x(t+ ζ1 + θ2 − θ1)dθ2dζ1dθ1

= 2

∫ 0

−h

∫ 0

θ1

R5(t, ζ1, θ1)dζ1dθ1,

(27)

with

R5(t, ζ1, θ1) =

∫ θ1−ζ1

θ1

xT (t+ ζ1)W11(θ1, θ2)

× x(t+ ζ1 + θ2 − θ1)dθ2.

The region of integration in the right-hand side of (27) is
similar to the one in Fig. 1, with ζ equal to ζ1, and θ with
θ1, then by Fubini’s Theorem, this equality is transformed
to

2

∫ 0

−h

∫ ζ1

−h

∫ θ1−ζ1

θ1

xT (t+ ζ1)W11(θ1, θ2)

× x(t+ ζ1 + θ2 − θ1)dθ2dθ1dζ1 = 〈ζ2 = ζ1 + θ2 − θ1〉

= 2

∫ 0

−h
R6(t, ζ1)dζ1

(28)

with

R6(t, ζ1) =

∫ ζ1

−h

∫ 0

ζ1

xT (t+ ζ1)W11(θ1, ζ2 − ζ1 + θ1)

× x(t+ ζ2)dζ2dθ1.

(29)

The region of integration in (29) is given by

Fig. 3. Region of integration in (29)

Using Fig. 3 to transform (29), it follows that the right-
hand side of (28) can be expresed as

2

∫ 0

−h

∫ 0

ζ1

xT (t+ ζ1)R7(ζ1, ζ2)x(t+ ζ2)dζ2dζ1, (30)

with

R7(ζ1, ζ2) =

∫ ζ1

−h
W11(θ1, ζ2 − ζ1 + θ1)dθ1.

Now, we can observe that the region of integration in (30)
is similar to the one in Fig. 1, with ζ equal to ζ2, and θ
with ζ1. Hence, the fourth summand of (10) is rewritten
as

2

∫ 0

−h

∫ 0

θ1

∫ θ1−θ2

θ1

xT (t+ σ)W11(θ1, θ2)

× x(t+ σ + θ2 − θ1)dσdθ2dθ1

=

∫ 0

−h

∫ 0

−h
xT (t+ ζ1)

[∫ ζ1

−h
W11(θ1, ζ2 − ζ1 + θ1)dθ1

]
× x(t+ ζ2)dζ1dζ2.

(31)

By carrying out a similar procedure for the fifth to seventh
summands in (10), we obtain that these terms rewrite as

2

∫ 0

−h

∫ 0

θ1

∫ 0

θ1−θ2
xT (t+ σ)W11(θ1, θ2)K(σ + θ2 − θ1)

× dσdθ2dθ1x(t)

= 2xT (t)

∫ 0

−h

[∫ ζ

−h

∫ 0

θ1−ζ
KT (ζ + θ2 − θ1)WT

11(θ1, θ2)

× dθ2dθ1

]
x(t+ ζ)dζ,

(32)

2

∫ 0

−h

∫ 0

−h

∫ 0

θ1

∫ 0

θ1−θ2
xT (t+ ζ1)W11(θ1, θ2)

×K(ζ1 + θ2 − θ1 − h− ζ2)A1x(t+ ζ2)dζ1dθ2dθ1dζ2

=

∫ 0

−h

∫ 0

−h
xT (t+ ζ1)

[
2

∫ ζ1

−h

∫ 0

θ1−ζ1
W11(θ1, θ2)

×K(ζ1 + θ2 − θ1 − h− ζ2)A1dθ2dθ1

]
x(t+ ζ2)dζ1dζ2,

(33)

and

2

∫ 0

−h

∫ ζ

−h

∫ 0

−h

∫ 0

θ1

∫ 0

θ1−θ2
xT (t+ σ)W11(θ1, θ2)

×K(σ + θ2 − θ1 − ζ + θ3)dσdθ2dθ1D(θ3)x(t+ ζ)dθ3dζ

=

∫ 0

−h

∫ 0

−h
xT (t+ ζ1)

[
2

∫ ζ2

−h

∫ ζ1

−h

∫ 0

θ1−ζ1
W11(θ1, θ2)

×K(ζ1 + θ2 − θ1 − ζ2 + θ3)D(θ3)dθ2dθ1dθ3

]
× x(t+ ζ2)dζ1dζ2.

(34)

Now, one can easily verify that by using the same approach
the ninth to thirteenth summands in (10) can be rewritten
as follows

2xT (t)

∫ 0

−h
F (−h− ζ,W00,W01(θ),W11(θ1, θ2))

×A1x(t+ ζ)dζ

= 2xT (t)

∫ 0

−h

[
F (−h− ζ,W00,W01(θ),W11(θ1, θ2))

×A1

]
x(t+ ζ)dζ,

(35)

2xT (t)

×
∫ 0

−h

∫ ζ

−h
F (−ζ + θ3,W00,W01(θ),W11(θ1, θ2))

×G(θ3)x(t+ ζ)dθ3dζ = 2xT (t)

×
∫ 0

−h

[∫ ζ

−h
F (−ζ + θ3,W00,W01(θ),W11(θ1, θ2))

×G(θ3)dθ3

]
x(t+ ζ)dζ,

(36)
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∫ 0

−h

∫ 0

−h
xT (t+ ζ1)AT1

× F (ζ1 − ζ2,W00,W01(θ),W11(θ1, θ2))

×A1x(t+ ζ2)dζ2dζ1

=

∫ 0

−h

∫ 0

−h
xT (t+ ζ1)

×

[
AT1 F (ζ1 − ζ2,W00,W01(θ),W11(θ1, θ2))A1

]
× x(t+ ζ2)dζ1dζ2,

(37)

2

∫ 0

−h

∫ 0

−h

∫ ζ2

−h
xT (t+ ζ1)AT1

× F (h+ ζ1 − ζ2 + θ3,W00,W01(θ),W11(θ1, θ2))

×G(θ3)dθ3x(t+ ζ2)dζ2dζ1

=

∫ 0

−h

∫ 0

−h
xT (t+ ζ1)

[
2

∫ ζ2

−h
AT1

× F (h+ ζ1 − ζ2 + θ3,W00,W01(θ),W11(θ1, θ2))

×G(θ3)dθ3

]
x(t+ ζ2)dζ1dζ2,

(38)

and∫ 0

−h

∫ 0

−h

∫ ζ2

−h

∫ ζ1

−h
xT (t+ ζ1)GT (θ3)

× F (ζ1 − θ3 − ζ2 + θ4,W00,W01(θ),W11(θ1, θ2))

×G(θ4)x(t+ ζ2)dθ3dθ4dζ2dζ1

=

∫ 0

−h

∫ 0

−h
xT (t+ ζ1)

[∫ ζ2

−h

∫ ζ1

−h
GT (θ3)

× F (ζ1 − θ3 − ζ2 + θ4,W00,W01(θ),W11(θ1, θ2))

×G(θ4)dθ3dθ4

]
x(t+ ζ2)dζ1dζ2.

(39)

Finally, grouping terms with no integral, single integral
from −h to 0, and double integral from −h to 0, the
functional (11) is obtained, showing that the structure of
the Bellman functional is recovered.

�

4. CONCLUSIONS

We have proved that the functional corresponding to the
performance index of the suboptimal control constructed
at each step of the solution of Bellman’s equation has the
structure of the general functional proposed by Krasovskii
and Ross.
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Appendix A. FUBINI’S THEOREM

For the sake of completness, we remind below Fubini’s
Theorem (See Thomas and Finney (1996)).

First form

If f(x, y) is continuous on the rectangular region R : a ≤
x ≤ b, c ≤ y ≤ d, then∫ ∫

R

f(x, y)dA =

∫ d

c

∫ b

a

f(x, y)dxdy

=

∫ b

a

∫ d

c

f(x, y)dydx.

Stronger form

Let f(x, y) be continuous on region R.

1.- If R is defined by a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), with
g1 and g2 continuous on [a, b], then∫ ∫

R

f(x, y)dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y)dydx.

2.- If R is defined by c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y), with
h1 and h2 continuous on [c, d], then∫ ∫

R

f(x, y)dA =

∫ d

c

∫ h2(x)

h1(x)

f(x, y)dxdy.
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