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Abstract: Signed networks have been widely used to describe cooperative and competitive
interactions in multiagent systems (MASs) so far. Most of the existing dynamics results of
MASs on signed networks have a certain constraint on the network topology, that is, the
network topology is required to have sufficient connectivity for realizing consensus or bipartite
consensus. The highlight of this article is to extend the existing dynamics of MASs to a more
general signed network, in which there are no any structural constraints on the topology. This
general setting of the network topology unifies most existing models, such as consensus, bipartite
consensus, and bipartite containment, which are usually analyzed separately in the same
framework using different methods. Relying on a method of constructing cooperative auxiliary
digraphs, it is theoretically proved that the agents in closed strong connected components with
balanced structure and unbalanced structure gradually reach separately bipartite consensus and
consensus, and the agents outside the closed strong connected components gradually enter the
convex hull formed by the agents in the closed strong connected components, that is, achieving
bipartite containment. Finally, a computer simulation is presented to verify the theoretical
discovery.

Keywords: Multiagent systems; Signed networks; Consensus; Bipartite consensus; Bipartite
containment

1. INTRODUCTION

In recent decades, coordinated control of multi-agent
systems (MASs) has been a hot topic that is of great
interest to researchers in various fields. This is because
coordinated control system has many advantages over the
traditional single-chip system, such as reducing system
cost and extending the life of the system. The fundamental
problem in coordination control of MASs is to design a
distributed protocol based on local relative information to
ensure that all agents achieve the final desired states (e.g.,
see Kozma and Barrat (2008); Huang (2017); Shao et al.
(2018); Shi et al. (2019)).

In most of the existing literatures on coordinated
control of MASs, the agents are usually assumed to be
cooperative, i.e., the weight of each edge in the interaction
topology is positive. However, cooperation and compe-
tition among agents generally coexist in most practical

? This research was supported in part by the National Natural
Science Foundation of China (U1830207, 61772003).

scenarios, such as friends and enemies in social networks
Wasserman and Faust (1994), trust and distrust in the
context of opinion dynamics Altafini (2017). Cooperation
and competition among agents can be described by signed
networks. Generally, signed networks include structurally
balanced networks and structurally unbalanced networks.
In structurally balanced networks, the agents are usually
divided into two subsets with intra-subset cooperation and
inter-subset competition. It has been shown in Qin et al.
(2016); Zhang and Chen (2016); Zhu et al. (2018); Shi
(2019) that the whole system will gradually appear a bi-
partite consensus phenomenon, namely, the these two sub-
sets gradually reach two different consensus states with the
same modulus but opposite signs. One study by Valcher
and Misra (2014); Meng et al. (2016) found that all agents
reach a consistent final state with the value being zeros
when they interact by structurally unbalanced networks.
Moreover, the reference Meng (2017); Zuo et al. (2018);
Meng and Gao (2019) found that bipartite containment
phenomenon will occurs when there are stubborn agents
in the system.
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Most noticeably, the above results on the dynamics
of MASs on signed networks have a certain limitation
on the topology structure, that is, the network topology
needs to have sufficient connectivity to achieve consensus,
bipartite consensus, or bipartite containment. However,
a more general setting, in the sense that the network
topology does not have any structural constraints, should
be explored due to the complex interaction between agents.
This general setting of the network topology has proven
to unify most existing models, such as consensus, bipartite
consensus, bipartite containment. In this paper, we extend
the dynamic model to the case where the network topology
is an arbitrary signed network without any structural
constraints. Based on a method of constructing cooper-
ative auxiliary digraphs, it is theoretically proved that
the agents in closed strong connected components with
balanced structure and unbalanced structure gradually
reach separately bipartite consensus and consensus, and
the agents outside the closed strong connected components
gradually enter the convex hull of the agents in the closed
strong connected components, that is, achieving bipartite
containment.

2. PRELIMINARIES

2.1 Notations

Let ‖S‖∞ = max{
∑n

j=1 |sij | | i = 1, 2, . . . , n} denote

the infinite norm of a real matrix S = [sij ] ∈ Rn×n. Matrix
S is nonnegative if sij ≥ 0, i, j = 1, 2, . . . , n. A nonnegative
matrix S is row-stochastic if

∑n
j=1 sij = 1, i = 1, 2, . . . , n,

and it is sub-stochastic if
∑n

j=1 sij ≤ 1, i = 1, 2, . . . , n.
N denotes the natural number set. ⊗ is the Kronecker
product. In is an n-order identity matrix and 0 denotes
a matrix whose all elements are equal to 0. Define the
signum function sgn(x) as

sgn(x) =


1, x > 0

0, x = 0

− 1, x < 0

.

Lemma 1. For any real matrix A ∈ Rp×p, there exists
β > 0 such that ‖Ak‖∞ ≤ βkp−1ρk, where ρ denotes the
spectral radius of matrix A.

2.2 Signed Network

Let G = (V ,E ) be an n-order directed signed net-
work, where V = {1, 2, . . . , n} and E ⊆ V ×V denote the
node set and edge set, respectively. The directed exchange
link from node i to node j is denoted by an edge (i, j). Let
Ni = {j ∈ V | (j, i) ∈ E } be the set of node i’s neighbors.
The adjacency matrix is denoted by A = [aij ], which
satisfies: aji 6= 0 if and only if (i, j) ∈ E , otherwise aji = 0.
Denote the signed Laplacian matrix of G by L = [lij ],
where

lij = −aij , ∀ j 6= i,

lii =
∑
j∈Ni

|aij |, i = 1, 2, . . . , n.

Let i0 → i1 → · · · → ir denote a path from i0 to
ir, where i0, i1, . . . , ir ∈ V are different nodes. Denote
the distance from node i to node j by di→j , which is
the number of edges in the shortest path from node

i to node j. For any different nodes i, j, if there are
pathes from i to j and from j to i, then G is said to
be strongly connected. G is weakly connected if there is
at least one path between any two nodes. Digraph G1

is called a strongly connected component of G if it is a
largest strongly connected subgraph of G , and further,
G1 is a closed strongly connected component of G if
there are no edges reaching the nodes in G1. In a weakly
connected digraph, for any a node i outside the closed
strong connected components, there exists at least path
from the closed strongly connected components to it.

Generally speaking, signed networks include struc-
turally balanced networks and structurally unbalanced
networks. A signed network G is structurally balanced if
all nodes are divided into two non-empty subsets V1, V2

such that: 1) V1 ∪ V2 = V and V1 ∩ V2 = ∅; 2) for any
(i, j) ∈ E , aji > 0 if nodes i and j are in the same subset,
and aji < 0 if nodes i and j belong to different subsets.
A signed digraph G is structurally unbalanced if it is not
structurally balanced.

In an n-order signed network, there is at least one
closed strong connected component and at most n closed
strong connected components. Without loss of generality,
it is assumed that the digraph G has q (1 ≤ q ≤ n)
closed strong connected components G1,G2, · · · ,Gq with,
respectively, the node sets

V1 = {r0 + 1, r0 + 2, · · · , r1},
V2 = {r1 + 1, r1 + 2, · · · , r2},

...

Vq = {rq−1 + 1, rq−1 + 2, · · · , rq},
where r0 = 0 and rq ≤ n. The set of nodes outside the
closed strong connected components is represented as

Vq+1 = {rq + 1, rq + 2, · · · , n}.
Thus, the signed Laplacian matrix of G takes the parti-
tioned form as

L =


L1 · · · 0 0
...

. . .
...

...
0 · · · Lq 0

R1 · · · Rq Rq+1

 ,
where Ls is the signed Laplacian matrix of the closed
strong connected component Gs, s ∈ {1, 2, · · · , q}.

3. MODEL FORMULATION

Consider a system composed of n agents (denoted
through 1 to n) evolving on the discrete instant set T =
{0, τ, 2τ, · · · , kτ, · · · }, where τ is the time step-size. The
interactions among the agents are depicted by a signed
network G = (V ,E ). Each adjacency element in A satisfy:
aji > 0 (aji < 0) if agent j can receive the cooperative
(competitive) information of agent i, otherwise aji = 0.
The general linear dynamics of the ith agent can be
expressed as

xi[k + 1] = Axi[k] +Bui[k], (1)

where xi[k] = [x
(1)
i [k], x

(2)
i [k], · · · , x(p)i [k]]T ∈ Rp is the

state vector of the ith agent at instant kτ ; A ∈ Rp×p

and B ∈ Rp×z are the system matrix and input matrix,
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respectively. A distributed control input ui[k] for system
(1) is given by

ui[k] = K
∑
j∈Ni

|aij |
(
sgn(aij)xj [k]− xi[k]

)
, (2)

where K is a given feedback gain matrix.

4. A METHOD OF CONSTRUCTING
COOPERATIVE AUXILIARY DIGRAPH

In order to analyze the dynamic behavior of the
agents over signed networks, we proposes a method of
constructing cooperative auxiliary digraph. The details are
as follows.

For each agent i with the state xi[t], we construct an
opposing virtual agent i′ with the state −xi[t]. If agent i
can receive the competitive information from its neighbor
j, we can think that the following two scenarios can oc-
cur equivalently: 1) agent i can receive the cooperative
information of virtual agent j′; 2) virtual agent i′ can
receive the cooperative information of agent j. Similarly,
the situation that agent i can receive the cooperative
information of agent j can be regarded as that virtual
agent i′ can receive the cooperative information of virtual
agent j′. Let digraph G̃ = {Ṽ , Ẽ , Ã } describe the informa-
tion interactions among the real and virtual agents, where
Ṽ = {1, 1′, . . . , n, n′} and the details of the edge set Ẽ are
shown as follows:

A1) if (j, i) ∈ E and aij > 0, then (j, i) ∈ Ẽ and

(j′, i′) ∈ Ẽ , that is, [Ã ]2i−1,2j−1 = [Ã ]2i,2j = aij > 0,

A2) if (j, i) ∈ E and aij < 0, then (j, i′) ∈ Ẽ and (j′, i) ∈
Ẽ , that is, [Ã ]2i,2j−1 = [Ã ]2i−1,2j = −aij > 0,

where the sequential row indexes of the adjacency matrix
Ã correspond to nodes 1, 1′, . . . , n, n′, respectively. Divide
the nodes in Ṽ into the following subsets

Ṽ1 = {r0 + 1, (r0 + 1)′, · · · , r1, r′1},
Ṽ2 = {r1 + 1, (r1 + 1)′, · · · , r2, r′2},

...

Ṽq = {rq−1 + 1, (rq−1 + 1)′, · · · , rq, r′q},
Ṽq+1 = {rq + 1, (rq + 1)′, · · · , n, n′}.

The digraph associated with each set Ṽs is denoted by G̃s,
where s ∈ {1, 2, . . . , q}. The Laplacian matrix of digraph

G̃ takes the following form

L̃ =


L̃1 · · · 0 0
...

. . .
...

...

0 · · · L̃q 0

R̃1 · · · R̃q R̃q+1

 .
Obviously, for each closed strong connected compo-

nent Gs, there is a digraph G̃s corresponding to it. The
relationship between digraphs Gs and G̃s is shown below.

B1) If the closed strong connected component Gs is struc-
turally balanced, that is, the node set Vs can be
divided into two subsets Vs1 and Vs2 with intra-subset
cooperation and inter-subset competition, then the

(a) Gs (b) G̃s

Fig. 1. A closed strong connected component Gs with
balanced structure and the corresponding digraph
G̃s, where “+” and “–” represent cooperation and
competition, respectively.

(a) Gs (b) G̃s

Fig. 2. A closed strong connected component Gs with
unbalanced structure and the corresponding digraph
G̃s.

digraph G̃s contains two strong connected compo-
nents G̃s1 and G̃s2 with no common nodes. Without
loss of generality, if we let Vs1 = {rs−1+1, . . . , rs−1+ls}
and Vs2 = {rs−1+ls+1, . . . , rs}, where ls ≤ rs− rs−1,

then the digraphs G̃s1 and G̃s2 are related to node sets
Ṽs1 = {rs−1+1, . . . , rs−1+ls, (rs−1+ls+1)′, . . . , r′s} and

Ṽs2 = {(rs−1+1)′, . . . , (rs−1+ls)
′, rs−1+ls+1, . . . , rs},

respectively.
B2) If the closed strong connected component Gs is struc-

turally unbalanced, then the digraph G̃s is strongly
connected.

In Fig. 1 and Fig. 2, we show two examples for the closed
strong connected component Gs and the corresponding
digraph G̃s.

Remark 1. Through this method, we only need to analyze
the dynamics of MASs on corresponding auxiliary digraphs
with only cooperative relationships, which can indirectly
obtain the dynamics of MASs on signed networks. This
method is suitable for the dynamic behavior of arbitrary
signed networks.

5. DYNAMICS ANALYSIS

Based on the method of constructing cooperative
auxiliary digraph, the properties of row-stochastic matrix
and sub-stochastic matrix are exploited to analyze the
dynamic behavior of the agents.

The feedback system (1) is first written in a matrix-
vector form:

x[k + 1] =(In ⊗A−L ⊗BK
)
x[k], (3)

where x[k] =
[
xT1 [k], · · · , xTq [k], xTn [k]

]T
. Based on the

construction of digraph G , we define the following model
transformation vectors
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Y1[k] =
[
xT1 [k],−xT1 [k], · · · , xTr1 [k],−xTr1 [k]

]T
,

...

Yq[k] =
[
xTrq−1+1[k],−xTrq−1+1[k], · · · , xTrq [k],−xTrq [k]

]T
,

Yq+1[k] =
[
xTrq+1[k],−xTrq+1[k], · · · , xTn [k],−xTn [k]

]T
,

Y [k] =
[
Y T
1 [k], · · · , Y T

q [k], Y T
q+1[k]

]T
.

Then system (3) can be converted equivalently to

Y [k + 1] =(I2n ⊗A− L̃ ⊗BK
)
Y [k]. (4)

In this paper, we assume that the input matrix B is
of full row rank. When we choose the feedback matrix
K = γBT (BBT )−1A, system (4) can be expressed as

Y [k + 1] =
[(
I2n − γL̃

)
⊗A

]
Y [k], (5)

where

I2n−γL̃

=


I2r1−γL̃1 · · · 0 0

...
. . .

...
...

0 · · · I2(rq−rq−1)−γL̃q 0

−γR̃1 · · · −γR̃q I2(n−rq)−γR̃q+1

 .
Below we first analyze the dynamics of each closed

strong connected component.

Theorem 1. Suppose that the input matrix B is of ful-
l row rank and the feedback matrix satisfies K =
γBT (BBT )−1A with

γ ≤ 1

max{
∑

j∈Ni
|aij | | i = 1, . . . , n}

. (6)

For each closed strong connected component Gs, where
s ∈ {1, 2, . . . , q}, the following results hold.

1) If Gs is structurally balanced, then bipartite consen-
sus can be realized. In particular, limk→∞ xi[k]=xj [k]
if i, j belong to the same subset, and limk→∞ xi[k]=
−xj [k] if i, j belong to different subsets.

2) If Gs is structurally unbalanced, then the consensus
with state 0 can be realized, namely, limk→∞ xi[k] =
0 for any i ∈ Vs.

Proof: According to system (5), the dynamics of the
agents associated with each closed strong connected com-
ponent Gs can be written as

Ys[k + 1] =
[(
I2(rs−rs−1) − γL̃s

)
⊗A

]
Ys[k], (7)

where Irs−rs−1
− γL̃s is a row-stochastic matrix under

condition (6). Below we consider two different situations.

1) If the digraph Gs is structurally balanced, then
according to the result in B1), we know that the digraph

G̃s1 associated with the node set Ṽs1 = {rs−1+1, . . . , rs−1+
ls, (rs−1+ls+1)′, . . . , r′s} is a fully cooperative network and
strong connected. According to a known result in Olfati-
Saber et al. (2007) that the consensus can be realized if
the fully cooperative network is strongly connected, we
can obtain that the agents associated with the digraph
G̃s1 achieve the consensus, that is,

lim
k→∞

Y ∗s [k] =
(
1rs−rs−1ξ

T
1 ⊗Ak

)
Y ∗s [0],

where ξ1 ∈ Rrs−rs−1 is a constant column vector, and

Y ∗
s [k]=

[
xT
rs−1+1

[k],· · ·, xT
rs−1+ls

[k],−xT
rs−1+ls+1

[k],. . .,−xT
rs
[k]
]T

.

This, in turn, means that bipartite consensus is realized.

2) If the digraph Gs is structurally unbalanced, then

according to the result in B2), we know that G̃s is a
fully cooperative network and strongly connected. Thus,
we have

lim
k→∞

Ys[k] = lim
k→∞

(
12(rs−rs−1)ξ

T
2 ⊗A

)
Ys[0],

where ξ2 ∈ R2(rs−rs−1 is a constant column vector. From
the construction of Ys[k], we can see that limk→∞ xi[k] =
−xi[k] for any i ∈ Vs. This implies that limk→∞ xi[k] = 0.
Therefore, the consensus with state 0 is realized. �

Now we show the dynamics of the agents outside the
closed strong connected components.

Theorem 2. Consider system (1) with protocol (2) on a
signed network G . Suppose that the input matrix B is
of full row rank, then there exists a feedback matrix
K = γBT (BBT )−1A with the parameter γ satisfying (6)
such that the agents outside the closed strong connected
components gradually enter the convex hull formed by the
agents in the closed strong connected components, where
the system matrix A is allowed to be strictly unstable and
its spectral radius ρ satisfies:

ρ <
1

P
√

1− (1− δ)αP−1
, (8)

in which

δ = max
{

Λi

[
I2n−γL̃

]
| Λi

[
I2n−γL̃

]
<1, i=1, . . . , 2n

}
,

P = max
{
di→j | i ∈ V1 ∪ V2 ∪ · · · ∪ Vq, j ∈ Vq+1

}
,

α = min
{
γ|aij | | aij 6= 0, i, j = 1, 2, . . . , n

}
.

Proof: Under condition (6), I2n−γL̃ is a row-stochastic
matrix. Without loss of generality, it is assumed that the
first w closed strong connected components G1,G2, . . . ,Gw

are structurally balanced and the remaining closed strong
connected components Gw+1,Gw+2, . . . ,Gq are structurally
unbalanced, where w ≤ q. According to the result of
Theorem 1, we have

lim
k→∞

Ys[k] = (Zsξ
T
s ⊗Ak)Ys[0], s = 1, 2, . . . , w,

lim
k→∞

Ys[k] = 0, s = w + 1, . . . , q,
(9)

where Zs ∈ R2(rs−rs−1) is a column in which all elements
are equal to 1 or −1, ξ ∈ R2(rs−rs−1) is a constant column
vector. Consequently, system (5) can be written as

lim
k→∞

Y [k] = lim
k→∞

[(
In − γL̃

)k ⊗Ak
]
Y [0], (10)

where
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lim
k→∞

(In−γL̃ )k =



Z1ξ
T
1 · · · 0 0 · · · 0 0

...
. . .

...
...

. . .
...

...
0 · · · Zwξ

T
w 0 · · · 0 0

0 · · · 0 0 · · · 0 0
...

. . .
...

...
. . .

...
...

0 · · · 0 0 · · · 0 0
∆1 · · · ∆w ∆w+1 · · · ∆q H

k


in which H= I2(n−rq)−γR̃q+1 is a sub-stochastic matrix,
∆s, s=1, 2, . . . , q are some nonnegative matrices that are
subsequently given.

In order to get this result, we proceed to prove the
following equality firstly:

lim
k→∞

Hk ⊗Ak = 0. (11)

Let Vl = V1 ∪ V2 ∪ · · ·Vq. Then there is a directed path
Wi0→iz = i0 → i1 → · · · → iz in the signed network G for
each node iz, where i0 ∈ Vl and i1, . . . , iz ∈ Vq+1. Since
(i0, i1) ∈ E , then we have ai1i0 6= 0. According to the

structure of digraph G̃ , we have∑
j=1

[H]s,j = 1− γ|ai1i0 | ≤ δ < 1, s = 2i1 − 1, 2i1. (12)

Below we consider the edge (i1, i2) in two cases. If the
weight of (i1, i2) is positive, namely, ai2i1 > 0, then we
have [H]2i2−1,2i1−1 =[H]2i2,2i1 =γai2i1≥α. It follows that∑

j=1

[H2]s,j =
∑
j1 6=v

[H]v,j1
∑
j

[H]j1,j + [H]s,v
∑
j

[H]v,j

≤ 1− (1− δ)α < 1

for s = 2i2 − 1, v = 2i1 − 1 and s = 2i2, v = 2i1. And if
the weight of (i1, i2) is negative, namely, ai2i1 < 0, then
we have [H]2i2−1,2i1 = [H]2i2,2i1−1 = −γai2i1 ≥ α. It thus
follows that∑

j=1

[H2]s,j =
∑
j1 6=v

[H]s,j1
∑
j

[H]j1,j + [H]s,v
∑
j

[H]v,j

≤ 1− (1− δ)α < 1

for s = 2i2−1, v = 2i1 and s = 2i2, v = 2i1−1. Therefore,
whether the weight of edge (i2, i1) is positive or negative,
we can always get∑

j=1

[H2]s,j ≤ 1− (1− δ)α < 1, s = 2i2 − 1, 2i2. (13)

Using the above analysis method for edge (i2, i1) to ana-
lyze the remaining edges of Wi0→iz , we can deduce that∑

j=1

[Hz]s,j≤1−(1−δ)αz−1 < 1, s = 2iz − 1, 2iz, (14)

where z is the length ofWi0→iz . According to the definition
of P , we have z ≤ P . Then, it can be obtained that∑

j=1

[HP ]s,j≤1−(1−δ)αP−1 < 1, s = 2iz − 1, 2iz. (15)

This means that

Fig. 3. A signed network G , in which the modulus of
all weights are equal to 1, “+” and “–” represent
cooperation and competition, respectively.

‖Hp‖∞ ≤1−(1−δ)αP−1 < 1. (16)

It follows that

lim
k→∞

∥∥Hk
∥∥
∞= lim

c→∞

∥∥HP
∥∥c
∞≤ lim

c→∞

[
1−(1−δ)αP−1]c.(17)

By Lemma 1, one knows that there exists β > 0 such that
‖Ak‖∞ ≤ βkp−1ρk. Thus,

lim
k→∞

∥∥Ak
∥∥
∞ = lim

c→∞
β(Pc)p−1ρcP . (18)

To prove (11), it suffices to prove that

lim
c→∞

β(Pc)p−1
[(

1− (1− δ)αP−1)ρP ]c = 0. (19)

By (8), we can obtain that 0 <
(
1− (1− δ)αP−1)ρP < 1.

According to the fact that the exponential decay domi-
nates the polynomial increase, the expression (11) holds.

Based on the result (11), the matrix limk→∞(In−γL̃ )k

can be further expressed as

lim
k→∞

(In−γL̃ )k =



Z1ξ
T
1 · · · 0 0 · · · 0 0

...
. . .

...
...

. . .
...

...
0 · · · Zwξ

T
w 0 · · · 0 0

0 · · · 0 0 · · · 0 0
...

. . .
...

...
. . .

...
...

0 · · · 0 0 · · · 0 0
∆1 · · · ∆w ∆w+1 · · · ∆q 0


,

where ∆s = −R̃−1q+1R̃sZsξ
T
s , s = 1, 2, . . . , w and ∆s =

−R̃−1q+1R̃s0 = 0, s = w+ 1, w+ 2, . . . , q. This implies that

lim
k→∞

Yq+1(k) = −
w∑

s=1

R̃−1q+1R̃sZsξ
T
s Ys[0]−

q∑
s=w+1

R̃−1q+1R̃s0

= − lim
k→∞

q∑
s=1

R̃−1q+1R̃sYs[k].

According to a known fact that the product of row-
stochastic matrices is a row-stochastic matrix, we can get
that −

∑q
s=1 R̃−1q+1R̃s is a row-stochastic matrix. This also

means that the agents outside the closed strong connected
components gradually enter the convex hull formed by the
agents in the closed strong connected components. �

6. SIMULATION RESULT

Consider a third-order multi-agent system with 11
agents. The interaction details among the agents are
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Fig. 4. State trajectories of the agents.

described by a signed network G , which is shown in Fig. 3.
Obviously, the weakly connected digraph G1 has two closed
and strongly connected components G1 with the node set
V1 = {1, 2, 3, 4} and G2 with the node set V2 = {5, 6, 7}.
In addition, it can be seen that P = 2. Let γ = 1

3 that

satisfies condition (6), then we have δ = 2
3 and α = 1

3 .
The input matrixB and the system matrix A are expressed
respectively by

B=

(
1 0 0 1
0 1 0 0
0 0 1 0

)
, A=

(
0.8816 0 −0.2204
−0.2204 0.8816 0

0 −0.2204 0.8816

)
.

We can observe that B is of full row rank, and A is
strictly unstable with the ρ = 1.02 that satisfies condition
(8). Finally, the agents’ state trajectories are exhibited in
Fig. 4, from which we can observe that the agents in V1

realize bipartite consensus and the agents in V2 achieve a
consensus state 0, besides, the remaining agents gradually
enter the convex hull constructed by the agents in V1∪V2.

7. CONCLUSION

The dynamics of general linear MASs over signed
networks without structural constraints has been stud-
ied in this paper. By adding virtual nodes, a method
of constructing cooperative auxiliary digraphs has been
developed. In that way, the dynamic behavior analysis
of MASs on signed networks is equivalent to that on
cooperative auxiliary digraphs. Based on the properties
of row-stochastic matrix and sub-stochastic matrix, the
dynamics of MASs on cooperative auxiliary digraphs have
been analyzed. Finally, a computer simulation has been

performed to illustrate the discovered dynamic phenome-
na.
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