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Abstract: This paper proposes a two-step interval estimation method for continuous-time
switched linear systems subject to unknown but bounded disturbance and measurement
noise. We first use an L∞ norm-based approach to attenuate the effect of uncertainties in
observer design. Then, based on the obtained observer, interval estimation can be achieved via
analyzing the bounds of estimation error. The proposed method is intuitive and independent of
cooperativity constraint, which is main restriction of interval observer theory. The performance
of the proposed method is demonstrated through a numerical simulation.
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1. INTRODUCTION

As an effective way to deal with uncertainties (e.g. dis-
turbance and measurement noise), interval observer has
received increasing attention in recent years, see Efimov
and Räıssi (2016); Tang et al. (2019b); Efimov et al. (2016);
Chebotarev et al. (2015); Mazenc and Dinh (2014) for ex-
ample. Under a general assumption that the uncertainties
are unknown but bounded, interval observer can obtain an
envelope that includes all possible trajectories of states.
Some applications of interval observer can be found in the
literature, e.g. Gouzé et al. (2000); Heeks et al. (2002);
Moisan et al. (2009), just name a few.

The concept of interval observer is first proposed by Gouzé
et al. (2000). The basic idea is to design two sub-observers
such that the error dynamic systems are stable and co-
operative, please see Efimov and Räıssi (2016) for more
details. Note that classical observers only require that
the error dynamic systems are stable. Compared with the
design conditions of classical observers, extra cooperative
constraint makes the design of interval observer more
difficult. To cope with this limitation, coordinate transfor-
mation is presented to acquire relaxed design conditions,
see e.g. Räıssi et al. (2012); Mazenc and Bernard (2011).
However, as pointed out in Chambon et al. (2016), the
observer gain matrix and the coordinate transformation
matrix cannot be simultaneously synthesized to satisfy the
disturbance attenuation and the cooperativity properties.
Moreover, the interval will be enlarged during the process
of inverse coordinate transformation. To overcome this
⋆ This work was partially supported by the National Natural Science
Foundation of China (61773145, 61973098) and the Funds from
the National Defense Key Discipline of Space Exploration, Landing
and Reentry in Harbin Institute of Technology, China under grant
HIT.KLOF.2018.073.

limitation, Wang et al. (2018) proposes a novel interval
observer structure, which can provide more design degrees
of freedom. This method is further extended to discrete-
time Takagi-Sugeno fuzzy systems in Li et al. (2019a) and
continuous linear parameter-varying systems in Li et al.
(2019b). However, the method in Wang et al. (2018) still
suffers from the cooperativity constraint, which may lead
to some conservatism.

On the other hand, as an important class of hybrid sys-
tems, switched systems attract much attention in control
society, see, e.g. Fei et al. (2017, 2018); Shi et al. (2018b,a).
Interval observer design for switched systems can be found
in a few literatures, see e.g. Marouani et al. (2018); Guo
and Zhu (2017); Ethabet et al. (2017, 2018); He and Xie
(2015); Ifqir et al. (2018); He and Xie (2016). Marouani
et al. (2018) and Guo and Zhu (2017) consider the case
of discrete-time switched linear systems based on a time-
varying coordinate transformation. Ethabet et al. (2017)
and Ethabet et al. (2018) consider the case of continuous-
time case based on a switching coordinate transformation.
He and Xie (2015) studies the nonlinear switched systems
under dwell-time constraints and further extends the de-
sign method to control field by He and Xie (2016). Ifqir
et al. (2018) applies the interval observer design method
to the estimation of vehicle dynamics. However, all these
methods are considered based on cooperativity constraint
or coordinate transformation.

To overcome the aformentioned drawbacks, we pro-
pose a two-step method to design interval observers for
continuous-time switched linear systems. This idea is mo-
tivated by the fact that interval estimation can be achieved
by integrating observer design and error analysis, see Tang
et al. (2019a) and Tang et al. (2019b) for more details.
The main contributions of this paper are two folds. First,
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a two-step method is presented to circumvent the design
rectriction caused by cooperativity constraint and provide
an alternative solution to interval observer design. Second,
we implement this method to addresss the interval estima-
tion problem for switched linear systems, and further apply
an L∞ norm-based approach to enhance the estimation
performance.

The remainder of this paper is structured as follows: In
Section 2, we present the problem statement and some
preliminary results. In Section 3, main results on the
computation of state estimation and interval estimation
for switched linear systems are presented. In Section 4,
numerical examples are provided to illustrate the proposed
methods. In Section 5, some conclusions are drawn.

2. PROBLEM FORMULATION

Notation: Rn and Rn×m denote the n–dimensional Eu-
clidean space and the set of n × m real matrices, respec-
tively. R+ = {τ ∈ R : τ ≥ 0}. 0 and I denote the zero and
identity matrices with compatible dimensions, respective-
ly. The absolute value operator |·| and the symbols ≥, >,≤
and < should be understood elementwise. For a matrix
A, AT stands for its transposition and He(A) is used to
denote He(A) := A+AT . P ≻ 0 and P ≺ 0 indicate that
matrix P is positive definite and negative definite, respec-
tively. An asterisk ⋆ is used to represent a term induced by

symmetry. ξs(i) = (0, · · · , 0,
ith︷︸︸︷
1 , 0, · · · , 0︸ ︷︷ ︸

s components

)T ∈ Rs, s ≥ 1. e

is the exponential constant.

For a measurable and locally essentially bounded signal
u : R+ → Rp, its L∞ norm is defined as the supremum
over all time, i.e.

||u||∞ = sup{||u(t)||, t ∈ R+},
where || · || denotes the Euclidean norm.

Consider the following switched linear system{
ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) + w(t)
y(t) = Cσ(t)x(t) + v(t)

, t ∈ R+, (1)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the
input vector, y(t) ∈ Rny is the output vector, w(t) ∈
Rnx denotes the process disturbance and v(t) ∈ Rny

denotes the measurement noise. σ(t) is a known piecewise
constant function which denotes the switching signal.{(

Aσ(t), Bσ(t), Cσ(t)

)
: σ(t) ∈ Q

}
are a family of matrices

parameterized by an index set Q = {1, 2, · · · , s}, where s
is the number of linear subsystems. Let q = σ(t) be the
index of the active subsystem, Aq ∈ Rnx×nx , Bq ∈ Rnx×nu

and Cq ∈ Rny×nx are known constant matrices.

We consider the following assumptions.

Assumption 1. ||w(t)|| ≤ ||w||∞ ≤ w and ||v(t)|| ≤
||v||∞ ≤ v, where w and v are known constants.

Assumption 2. The pair (Aq, Cq), q ∈ Q is observable.

Design objective. This manuscript aims to generate two
consecutive signals x(t) and x(t) such that the condition
x(t) ≤ x(t) ≤ x(t), t ≥ 0 always holds. One step further,
we hope that the interval x(t) − x(t) is tight enough so
that the obtained state estimation is accurate.

3. MAIN RESULTS

In this section, we propose a two-step interval estimation
method for system (1). First, a robust observer is designed
to obtain state estimation. Second, peak-to-peak analysis
is used to analyze the bounds of error and to get the
interval estimation.

3.1 State estimation

For system (1), we consider the following observer

˙̂x(t) = Aqx̂(t) +Bqu(t) + Lq(y(t)− Cqx̂(t)), (2)

where x̂(t) ∈ Rnx is the state estimation vector and
Lq ∈ Rnx×ny , q ∈ Q, is the observer gain matrix to be
designed. Define the estimation error as

e(t) = x(t)− x̂(t),

it follows that

x(t) = x̂(t) + e(t). (3)

Then, if we can estimate the bounds eb(t) of e(t) such that

|e(t)| ≤ eb(t), t ∈ R+,

then from (3), the interval estimation of state can be
obtained by

x(t) = x̂(t) + eb(t),
x(t) = x̂(t)− eb(t).

(4)

From (1) and (2), the dynamic error system is governed
by

ė(t) = (Aq − LqCq)e(t) + w(t)− Lqv(t), (5)

To attenuate the effect of disturbance and measurement
noise, in this paper, we apply an L∞ norm-based approach,
see in Han et al. (2018), which results in the following
theorem.

Theorem 1. Given a scalar η > 0, if there exist scalars
γ > 0, µ > 0 and matrices P = PT ≻ 0 ∈ Rnx×nx and
Wq ∈ Rnx×ny for ∀q ∈ Q such thatHe(PAq −WqCq) + ηP ⋆ ⋆

PT −µI ⋆
−WT

q 0 −µI

 ≺ 0, (6)

[
ηP 0 I
0 (γ − µ)I 0
I 0 γI

]
≻ 0, (7)

then observer (2) is a robust observer for system (1) and
satisfies the following performance

||e(t)||2 ≤ γηe−ηtV (0) + γ2||d||2∞, (8)

where

V (0) = eT (0)Pe(0), ||d||∞ =
√

||w||2∞ + ||v||2∞.

An optimal solution can be found by solving

min
s.t.

γ
(6)−(7)

, (9)

and the gain matrix Lq is obtained from

Lq = P−1Wq.

Proof. Consider the following common quadratic Lya-
punov function

V (t) = eT (t)Pe(t).
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By pre-multiplying and post-multiplying inequality (6)
with [

eT (t) dT (t)
]

and its transpose, we have

V̇ (t) + ηV (t) ≤ µdT (t)d(t) (10)

where d(t) =
[
wT (t) vT (t)

]T
.

Note that if the uncertainty d(t) is zero, we have

V̇ (t) ≤ −ηV (t) ≤ 0.

Thus, the error system (5) is asymptotically stable.

By iterating, inequality (10) follows that

V (t) ≤ e−ηtV (0) + µ

∫ t

0

e−η(t−τ)dT (τ)d(τ)dτ

≤ e−ηtV (0) +
µ

η
(1− e−ηt)dT (t)d(t)

≤ e−ηtV (0) +
µ

η
(1− e−ηt)||d||2∞

≤ e−ηtV (0) +
µ

η
||d||2∞. (11)

Additionally, using Schur complement Boyd et al. (1994),
inequality (7) is equivalent to[

ηP − 1

γ
I 0

0 (γ − µ)I

]
≻ 0 (12)

By pre- and post-multiplying inequality (12) with[
eT (t) dT (t)

]
c and its transpose, we have

|||e(t)||2 ≤ γ(ηV (t) + (γ − µ)dT (t)d(t))

≤ γηV (t) + γ(γ − µ)||d||2∞ (13)

Combining (11) and (13), we have (8). �
Note that inequality (8) indicates that for ∀t ∈ R+, the

amplitude of e(t) is bounded by
√

γηe−ηtV (0) + γ2||d||2∞.
Thus, by calculating the design parameter γ, the interval
estimation of state can be achieved through (4). However,
the obtained estimation results may be too conservative
since for all entries of e(t) and d(t), a common disturbance
attenuation coefficient γ is applied. Facing this reality, we
attempt to use different coefficients to characterize the
disturbance attenuation level of different entries of d(t)
to different entries of e(t).

3.2 Interval estimation

After getting observer gain matrices Lq, q ∈ Q by solving
the optimization problem (9), state estimation x̂(t) can
be synthesized through (2). To obtain a tight envelope
of state, we rewrite the dynamic error system in (5) as
follows.

ė(t) = Ãqe(t) +

nd∑
i=1

B̃qξnd
(i)di(t) (14)

where di(t) is the ith entry of d(t) and

Ãq = Aq − LqCq, B̃q = [I −Lq] , nd = nx + ny

Note that the jth entry of error e(t) can be expressed as

ej(t) = ξTnx
(j)e(t), (15)

then for the jth entry ej(t), j ∈ {1, 2, · · · , nx} of error, the
following state-space system can be obtained: ė(t) = Ãqe(t) +

nd∑
i=1

B̃qξnd
(i)di(t),

ej(t) = ξTnx
(j)e(t),

(16)

Remark 1. The reason for deriving error subsystem (16)
from system (5) is simple. In this way, it is convenient to
analyze the effect of the ith entry di(t) of disturbance on
the jth entry ej(t) of error.

For calculating the envelopes of ej(t) in error system (16),
we propose the following theorem.

Theorem 2. For jth entry error ej(t), j = {1, 2, · · · , nx},
given a scalar λ > 0, if there exist scalars γij > 0, µij > 0
and matrices Pj = PT

j ≻ 0 ∈ Rnx×nx for ∀q ∈ Q, i ∈
{1, 2, · · · , nd} such that

He(PjÃq) + λPj ⋆ ⋆ · · · ⋆

(PjB̃qξnd
(1))T −µ1jI ⋆ · · · ⋆

(PjB̃qξnd
(2))T 0 −µ2jI · · · ⋆

...
...

...
. . .

...

(PjB̃qξnd
(nd))

T 0 0 · · · −µ(nd)jI

 ≺ 0,

(17)
λPj ⋆ · · · ⋆ ⋆
0 (γ1j − µ1j)I · · · ⋆ ⋆
...

...
. . .

...
...

0 0 · · · (γndj − µndj)I 0
ξTnx

(j) 0 · · · 0 γ0jI

 ≻ 0.

(18)

Then, the jth entry error ej(t) in (16) satisfies

||ej(t)||2 ≤ γ0j(λe
−λtVj(0) +

nd∑
i=1

γij ||di||2∞), (19)

where ||di||∞ is the upper bound of the ith entry of d(t)
and Vj(0) = eT (0)Pje(0).

A satisfactory envelope of ej(t) can be obtained by solving

min
s.t.

γ0j + γ1j + · · ·+ γndj
(17)−(18)

. (20)

Proof. Define a Lyapunov function for each component ej

Vj(t) = eT (t)Pje(t).

By pre-multiplying and post-multiplying (17) with[
eT (t) dT1 (t) · · · dTnd

(t)
]

and its transpose, we have

V̇j(t) + λVj(t) ≤
nd∑
i=1

µijd
T
i (t)di(t) (21)

By iterating, inequality (21) follows that
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Vj(t) ≤ e−λtVj(0) +

nd∑
i=1

µij

∫ t

0

e−λ(t−τ)dTi (τ)di(τ)dτ

≤ e−λtVj(0) +

nd∑
i=1

µij

λ
(1− e−λt)dTi (t)di(t)

≤ e−λtVj(0) +

nd∑
i=1

µij

λ
(1− e−λt)||di||2∞

≤ e−λtVj(0) +

nd∑
i=1

µij

λ
||di||2∞. (22)

Additionally, using Schur complement Boyd et al. (1994),
inequality (18) is equivalent to

Γ ⋆ · · · ⋆
0 (γ1j − µ1j)I · · · ⋆
...

...
. . .

...
0 0 · · · (γndj − µndj)I

 ≻ 0, (23)

where Γ = λPj − 1
γ0j

ξnx(j)ξ
T
nx
(j).

By pre- and post-multiplying inequality (23) with[
eT (t) dT1 (t) · · · dTnd

(t)
]

and its transpose, we have

||ej(t)||2 = ||ξTnx
(j)e(t)||2

≤ γ0j(λVj(t) +

nd∑
i=1

(γij − µij)d
T
i (t)di(t))

≤ γ0j(λVj(t) +

nd∑
i=1

(γij − µij)||di||2∞) (24)

Substituting (22) into (24), we have (19). �
Remark 2. From (19), we know that when t → ∞, the
effect of the ith entry di(t) of disturbance on the jth entry
ej(t) of error is characterized as the multiplication of γ0j
and γij . Intuitively, to obtain a tight envelop of ej(t), the
multiplication of γ0j and γij should be as small as possible.
Obviously, the minimization of γ0jγij subject to linear
matrix inequalities (17)-(18) is not a convex optimization
problem. For sake of solvability, we choose to solve (20) to
obtain a suboptimal solution.

Remark 3. From (19), it seems that design parameter µij ,
∀i ∈ {1, 2, · · · , nd}, j ∈ {1, 2, · · · , nx} possesses none effect
on the upper bound of ej(t). In fact, µij is an intermediate
variable. It plays the role of a bridge between (21) and (24).

By repeating to solve (20) for j = {1, 2, · · · , nx}, we can
obtain the upper bound of each entry of estimation error
e(t). If we define the jth entry of the upper bound of e(t)
as ebj(t), j = {1, 2, · · · , nx}, then

||ebj ||2(t) = γ0j(λe
−λteT (0)Pje(0) +

nd∑
i=1

γij ||di||2∞).

Note that Pj is positive and symmetric, thus, we can
always find a matrix T such that{

T−1PjT = diag(pj1, · · · , pjnx)
TT−1 = I

(25)

where pji, i = 1, · · ·nx denote the eigenvalues of matrix
Pj .

Using (25), we have

eT (0)Pje(0) = eT (0)TT−1PjTT
−1e(0)

= eT (0)Tdiag(pj1, · · · , pjnx)T
−1e(0)

≤ eT (0)Tdiag(pmj , · · · , pmj)T
−1e(0)

= pmj ||e(0)||2

≤ pmje
T
b (0)eb(0)

where pmj is the maximum eigenvalue of Pj and eb(0)
denotes the bound of e(0) satisfying ||e(0)|| ≤ eb(0). One
step further, the envelopes of states can be obtained by

||ebj ||2(t) ≤ γ0j(λe
−λtpmje

T
b (0)eb(0) +

nd∑
i=1

γij ||di||2∞).

For clarity, we summarize the presented interval estima-
tion method as Algorithm 1.

Algorithm 1 A two-step interval estimation method

Input: System matrices Aq, Bq, Cq, q ∈ Q and switching
signal σ(t).
Output: Envelopes of states x(t) and x(t).

1: initialization: j = 1, η > 0, λ > 0 and the bound
eb(0) of e(0).

2: Solve (9) to obtain gain matrix Lq, q ∈ Q.
3: Generate state point estimation x̂(t) using observer

(2).
4: while j ≤ nx do
5: Solve (20) to obtain design parameters

γ0j , γ1j , · · · , γndj and Pj .
6: Calculate the maximum eigenvalue pmj of Pj .
7: Calculate the jth entry ebj(t) of the bound of ej(t)

ebj(t) ≤

√√√√γ0j(λe−λtpmjeTb (0)eb(0) +

nd∑
i=1

γij ||di||2∞).

8: j = j + 1.
9: end while

10: Construct the bound of error by concatenating the
entries ebj(t), j = {1, 2, · · · , nx}

eb(t) = [eb1(t) eb2(t) · · · ebnx(t)]
T
.

11: return: Generate x(t) and x(t) based on (4).

Remark 4. Note that (19) can only be used in theoretical
analysis, for practical implementation, the upper bound
eb(0) of error e(0) should be used because e(0) may not be
available.

4. SIMULATIONS

In this section, a benchmark from Ethabet et al. (2017) is
adopted to demonstrate the effectiveness of the proposed
method. The system is described as (1) with

A1 =

[
−1.5 0.262
0 −1

]
, A2 =

[
−0.5 2
0 −1

]
,

A3 =

[
−0.6 1.5
0 −1

]
, B1 =

[
0
1

]
, B2 =

[
1
0

]
, B3 =

[
1
1

]
,

C1 = [1 0] , C2 = [1 1] , C3 = [1 1.5] ,[
−0.03
−0.03

]
≤ w(t) ≤

[
0.03
0.03

]
,−0.3 ≤ v(t) ≤ 0.3.

Then we have ||d1(t)||∞ = 0.03, ||d2(t)||∞ = 0.03 and
||d3(t)||∞ = 0.3. Note that for this system, we cannot
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Table 1. Design parameters obtained by solv-
ing Theorem 2.

Parameters Values Parameters Values
γ01 1.6495 γ02 1.4715
γ11 0.5144 γ12 0.2855
γ21 0.3645 γ22 0.9097
γ31 0.7745 γ32 0.2807
µ11 0.5141 µ12 0.2853
µ21 0.3642 µ22 0.9094
µ31 0.7742 µ32 0.2804
pm1 0.4091 pm2 0.4544

find a matrix P such that P (Aq − LqCq)P
−1 is Metzler,

thus the method in Efimov and Räıssi (2016); Mazenc
and Dinh (2014); Räıssi et al. (2012) fails to be applied.
Ethabet et al. (2017) and Ethabet et al. (2018) overcome
this deficiency using the switching matrices Pq, q ∈ Q,
which are also based on the coordinate of transformation
and need to satisfy the cooperativity constraint. However,
as pointed out in Chambon et al. (2016), the method of
coordinate of transformation will enlarge the estimated
intervals and thus lead to inevitable conservatism. To avoid
such conservatism, in this paper, we estimate the envelopes
of system states using the proposed two-step method,
which is independent of coordinate transformation.

Following Algorithm 1, we first solve (9) in Theorem 1.
Choose η = 1, we have γ = 1.1045 and

P =

[
0.9247 −0.0623
−0.0623 1.1072

]
, L1 =

[
1.1983
0.0674

]
,

L2 =

[
1.2659
1.0683

]
, L3 =

[
1.2995
1.5687

]
.

Next, setting λ = 1.5 and solving (20) in Theorem 2, we
have the design parameters in Table 1 and

P1 =

[
0.4070 −0.0221
−0.0221 0.1793

]
, P2 =

[
0.2009 −0.0121
−0.0121 0.4539

]
.

Thus, the maximum eigenvalues of each entry should be

pm1 = 0.4091, pm2 = 0.4544.

In the simulation, the switching between the three subsys-
tems is governed by the signal depicted in Figure 1. The
input signal u(k) is set as a constant value 0.5, the initial

state is x(0) = [0 0]
T
, the initial state estimation is x̂(0) =

[1 1]
T
, then the error of estimation is e(0) = [1 1]

T
. For

simplicity, in this simulation, we set that eb(0) = [1 1]
T
.

The simulation results acquired by the presented method
and that by the method in Ethabet et al. (2017) are
depicted in Figure 2 and Figure 3. In the simulation, the
solid black lines are the components of system state x(t),
the dash-dotted red lines represent the interval estimations
obtained by the method in Ethabet et al. (2017), the
dashed green lines denote the interval estimations obtained
by the proposed Algorithm 1 and the solid blue lines
depict the center of the intervals obtained by Algorithm 1.
From Figure 2 and Figure 3, it can be seen that under
the same simulation conditions, the interval estimation
of the presented method is more accurate than that in
Ethabet et al. (2017). The reason is that the proposed
method is independent of coordinate transformation and
the effect of uncertainties are attenuated using an L∞
norm-based approach. The results of simulation exhibit

0 5 10 15 20 25 30 35 40
Time (s)
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3.5

Switching signal

Fig. 1. Switching signal

the effectiveness and superiority of the proposed two-step
method.
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Fig. 2. State x1(t) by different methods

5. CONCLUSIONS

This manuscript studies the interval estimation for switched
linear systems. The main contribution of this work consists
in the derivation of a two-step interval estimation method.
We use an L∞ norm-based approach to vanish the effect of
disturbance and obtain the state point estimation, followed
by analyzing the estimation error dynamic systems to
capture the bounds of each entry of error signals. Finally,
the state interval estimation is synthesized by combining
the state point estimation and the error entries bounds.
Consequently, the cooperativity constraint in the interval
observer theory is perfectly circumvented. Simulation re-
sults illustrate the viability and validity of the proposed
method. In this work, the stability analysis is achieved
based on a common Lyapunov function, which may re-
sult in some conservatism. In the future, more advanced
approaches (e.g. approaches based on average dwell time,
see in Fei et al. (2017)) may be exploited to reduce such
conservatism.
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