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Abstract: To improve computational efficiency, a fast iterative solution method is proposed to
solve optimization problems of nonlinear systems in this paper. The main idea is to extract the
main linear part from the nonlinear system, and then regard the remaining nonlinear part as
disturbance, so that the converted system can be solved by combining the optimal solution of the
linear system with the fast iterative solution proposed. After the fast iterative solution method
is introduced, its effectiveness is validated through a numerical example and an application
which is engine energy-saving control while taking vehicle speed tracking into consideration. All
of the simulation results show that the proposed iterative algorithm has the advantages of fast
convergence speed and high accuracy.
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1. INTRODUCTION

Optimal control has an important impact on control
engineering, and has a wide range of applications in
spacecraft, missiles, satellites and industrial production.
Optimal control is to study and solve the problem of
finding the optimal control scheme from all possible control
schemes.

As we know, time-varying disturbance is very common
in control systems, such as parameter perturbations and
dynamic variations which may severely deteriorate control
performance. In many cases, disturbance is first estimated
because of their immeasurability so the controller can be
designed according to the estimated disturbance. In the
research and development of disturbance restraint, people
have made a lot of contributions. In the 1990′s, Jingqing
Han proposed a control framework considers the extended
state observer as the fundamental part to estimate distur-
bances, see Gao et al. (2001), Han (2009). People have a
good comprehension of stability analysis and implemen-
tation of active disturbance rejection controller, such as
Zhao and Guo (2017) investigate a nonlinear extended
state observer constructed from piece-wise smooth func-
tions consisted of linear and fractional power functions,
and Ahi and Nobakhti (2017) design an ADRC by utilizing
an extended state observer for observing and suppressing
the effects of external disturbances and internal parameter
uncertainties, and Yang et al. (2017) investigate the atti-
tude control for a quadrotor under gust wind via a dual
closed-loop control framework. Furthermore, Liu and Svo-
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boda (2005) introduced a nonlinear disturbance observer
with a feedback-error-learning to control a class of time-
varying nonlinear systems with unknown disturbances and
improve the tracking performance. Moreover, parameter
variation and disturbances, adaptive feedforward compen-
sation (Bao et al. (2017)) and predictor-based disturbance
rejection control (Liu et al. (2017)) are also used. We can
get an overview of all the strategies through Chen et al.
(2015).

In the paper Gao et al. (2019), an optimal control scheme
for time-varying disturbances is proposed, which does not
require specific forms of disturbance. To derive the control
law, a novel form of multiplier function is introduced,
where the objective function is adapted by multiplying the
attenuation factor, guaranteeing the integrability of it. As
a result, the control law deduced has the linear feedback
form of system state, disturbance and its derivatives. It can
guarantee the control performance under uncertainties and
disturbances, and maintain the stability of the system.

Inspired by this algorithm, this paper transforms the non-
linear system into the linear part and the non-linear part,
and regards the non-linear part as a disturbance of the
system. Then we propose a new iterative optimal solution
method according to the paper Gao et al. (2019). Like the
method proposed by paper Tamimi and Li (2010), this
method has the advantages of easy interpretation and high
accuracy, and can solve the nonlinear system in a quick
way.

The main contribution of this paper is to propose a fast
iterative solution which has a good effect on improving
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efficiency for optimization problems of nonlinear systems.
In the application of algorithm, as energy management is
always the most important part of the control field shown
in paper Zhang et al. (2019) and Sampathnarayanan et al.
(2014), the fuel consumption control of automobiles is
particularly important. Many strategies have been studied
to improve fuel economy, such as designing dynamic pro-
gramming algorithm (Hellström et al. (2009)) and using
MPC (Kamal et al. (2012)). In this paper, the algorithm is
applied to the optimal control of engine fuel consumption
while taking vehicle speed tracking into consideration, and
good results are obtained.

This paper is organized as follows. In Section 2 the
proposed approach algorithms and numerical examples
will be presented and analyzed. Section 3 introduces an
implementation to show the efficiency of the algorithm and
in Section 4 the work is concluded.

2. THE NONLINEAR OPTIMAL SOLUTION
ALGORITHM

2.1 Algorithmic Principle

The algorithm applied in this paper based on our previous
published paper Gao et al. (2019), which is classified as a
feasible method to solve nonlinear system problems. It can
be used in common practical engineering problems such as
the shortest time control problem and the minimum of fuel
control problem. In that paper, to derive the control law,
a novel form of multiplier function is introduced, while the
control law is represented as a feedback form of the system
states, the disturbances and their derivatives.

The algorithmic principle can be introduced from the real
nonlinear system, which is

ẋ = f(x(t), u(t)),
y = Cx.

(1)

We consider the non-linear part as a linear system with
time-varying disturbance. The formula is turned to a linear
system with time-varying disturbance Bdd as

ẋ = Ax+Buu+Bdd,
y = Cx,

(2)

where x ∈ Rn×1 and u ∈ Rm×1 are the state and control
variables, d ∈ Rl×1 is time-varying disturbance, y ∈ Rs×1
is output variable, A ∈ Rn×n and Bu ∈ Rn×m are the
state and control matrices, and Bd ∈ Rn×l and C ∈ Rs×n
are the disturbance and output matrices.

The control problem is to minimize the objective function
:

min
u(t)

J =
1

2

∫ ∞
t0

(yTQy + uTRu)e−βtdt, (3)

where Q ∈ Rs×s and R ∈ Rm×m are positive weighting
matrices, t0 is initial time of the receding horizon. The
Hamiltonian approach is introduced as (4) to cope with
the problem (3).

H =
1

2
(yTQy + uTRu) + λT (Ax+Buu+Bdd) (4)

where we determine λ as the multiplier function. Then the
regular equation can be derived:

ẋ =
∂H

∂λ
⇒ ẋ = Ax−BuR−1BuTλeβt +Bdd

λ̇ = −∂H
∂x
⇒ λ̇ = −CTQCxe−βt −ATλ

∂H

∂u
= 0⇒ u = −R−1BuTλeβt

(5)

To solve the above nonlinear differential equations, we
define:

x1 = xe−βt. (6)

Then we get:

ẋ1 = ẋe−βt − βxe−βt ⇒ ẋe−βt = ẋ1 + βx1. (7)

As the fact that the disturbances are time-varying, so the
traditional choice of λ=Px + hd can not be used. So we
introduce a novel form of the multiplier function λ.

λ = Px+ h0d+ h1ḋ+ ...+ hnd
(n) + ... (8)

where P and hi can be calculated in the following forms:

P (A− βI)− PBuR−1BTu P + CTQC +ATP = 0, (9)

h0 = (PBuR
−1BTu −AT )−1PBde

−βt,
hi = (PBuR

−1BTu −AT )−1hi−1,
i = 1, 2, . . .

(10)

We define:

h0
′ = (PBuR

−1BTu −AT )−1PBd,
hi
′ = (PBuR

−1BTu −AT )−1hi−1
′,

i = 1, 2, . . .
(11)

So equation (10) can be rewritten as

h0 = h0
′e−βt,

hi = hi
′e−βt,

i = 1, 2, ...
(12)

By the utilization of the novel multiplier function (8),
substitute (8) and (12) into (5):

u = −R−1BuTλeβt
= −R−1BuTPx1eβt −R−1BuTh0deβt
−R−1BuTh1ḋeβt − ...−R−1BuThnd(n)eβt − ...
= −R−1BuTPx−R−1BuTh0′d−
R−1Bu

Th1
′ḋ− ...−R−1BuThn′d(n) − ...

(13)

The control law can be represented as a feedback form of
the system states, the disturbances and their derivatives
as

u = Kxx+Kdd+

∞∑
i=1

Kdid
(i). (14)

where
Kx = −R−1BuTP,
Kd = −R−1BuTh0′,
Kdi = −R−1BuThi′.
i = 1, 2, . . .

(15)

At this moment, we can obtain the optimal solution of the
objective function by establishing an iteration model in
the optimization process. In addition, from Hong (2019) we
konw the convergence rate of output under the control law
u = Kxx+Kdd+Kd1ḋ is faster than it under the control
law u = Kxx + Kdd, and the output under the control
law u = Kxx + Kdd + Kd1ḋ and control law u = Kxx +
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Table 1. Algorithm 1

Algorithm 1
Main Steps:
1: In the first iteration, we shall remove the distur-
bance, then the nonlinear system (17) can be turned
into linear system ẋ1 = Ax1 + Buu1. According
to Gao et al. (2019), we chose the control law as
u1 = Kxx1, so we can obtain the the optimal solution
of the control variable u1 and sate variable x1;
2: In the second iteration, by substituting the control
law u1 and x1 into the original system (16), the
disturbance of the first iteration can be obtained as
Bdd1 = f(x1, u1) − Ax1 − Buu1, and then the non-
linear system is turned into ẋ2 = Ax2+Buu2+Bdd1;
3: Combine the updated system with the control law
u2 = Kxx2 +Kdd1 +Kd1ḋ1, the optimal control law
u2 and x2 of the second iteration can be accessed;
4: By constantly updating the system, we can get
the results of several iterations and finally obtain the
optimal control laws of iterations and find the rules.

Kdd+Kd1ḋ+Kd2d̈ are almost overlap. On the one hand,
derivative information of the disturbance are of great help
for the disturbance rejection performance improvement, on
the other hand also shows that the disturbance derivative
of higher order term is becoming more and more limited to
the promotion of disturbance rejection performance. Hence
we chose u = Kxx + Kdd + Kd1ḋ as the control law we
use in simulations. The process that we build the iterative
solution is as follows.

For a real non-linear system:

ẋ = f(x(t), u(t)),
y = Cx,

(16)

transform it to a linear system with time-varing distur-
bance as

ẋ = Ax+Buu+Bdd,
y = Cx.

(17)

The minimum of the objective function J is given in

min
u(t)

J =
1

2

∫ ∞
t0

(yTQy + uTRu)e−βtdt. (18)

Then main steps of the proposed approach are shown in
Table 1.

2.2 Numerical Example

In this work, we consider following example to demonstrate
the performance of the proposed algorithm.

Example 1.

The nonlinear system is

ẋ1 = x1 + x2 + u− 0.1x1
2,

ẋ2 = 2x1 + x2 + 0.1 sinx2,
y = x,

(19)

and the objective function is

min
u(t)

J =
1

2

∫ tf

0

(y2 + u2)e−0.4tdt. (20)
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Fig. 1. The results of the first to fifth iterations of the
changes of actual system disturbances d1 and d2 as

well as iterative model disturbances d̂1 and d̂2
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Fig. 2. The results of the first to fifth iterations of the
changes of iterative model control inputs u

We discretize the time horizon tf = 1.15s into 50 subinter-
vals, by using Table 1, we can achieve the desired results.
In each iteration simulation, the changes of actual system
disturbances and iterative model disturbances over time
can be represented by the Fig. 1, and the changes of
iterative model control inputs over time can be represented
by the Fig. 2.

Although we only list one example here due to page
constraints, we actually did a lot of examples. According
to the numerical examples, we can draw the conclusion
till now: within a certain period of time, the results of
the iterative model can gradually keep up with the results
of the real model. With the increase of the number of
iterations, the results obtained are closer to those obtained
by the real model and tend to be stable.

3. ALGORITHMIC APPLICATION

The fuel consumption rate of a car has always been the
most important issue in optimization problems Schmied
et al. (2015), and people have been trying to solve this
problem in various ways, such as Guo et al. (2019) pro-
posed a method considering the influence of gearshift
control and combines the velocity optimization and the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7133



Table 2. Vehicle Parameters

Symbol Description Value [Unit]

Cd Coefficient of air resistance 0.373

Af Face area 2.58 [m2]

ρ Air density 1.29

M Vehicle mass 1658 [kg]

ηt Drive train total efficiency 1

g Gravity acceleration 9.8 [m/s2]

f Coefficient of rolling resistance 0.02

ig Drive speed ratio multiply the gear ratio 4

rw Dynamic tire radius 0.3 [m]

Table 3. Values of Coefficients

Coefficient Value

h20 6.7 × 10−8

h11 5.25 × 10−6

h02 2.635 × 10−5

h10 0.00019

h01 −0.0024

powertrain control to improve fuel economy. In this sec-
tion, we apply the previous algorithm to optimize the fuel
consumption efficiency of the car. And the accuracy and
the computation speed of this approach will be shown
in comparison with that from the optimization software
GPOPS.

3.1 Fitting the Form of Objective Function With the
Original Data

The research object parameters of this engine fuel con-
sumption problem are in the Table 2. As for the estab-
lishment of engine fuel consumption model, engine fuel
consumption is mainly related to engine speed and torque,
so the engine fuel consumption can be described by (21),
which includes the second and first terms of speed and
torque:

min
u(t)

J = h20ne
2 + h11neTe+

h02Te
2 + h10ne + h01Te,

(21)

where ne is engine speed [r/min], Te is engine torque [Nm].

The experimental data were fitted by 1stOpt software.
As shown in the Fig. 3, the fitting effect is pretty good,
which means that the formula we set is close to the real
system, while the values of coefficients in the equation can
be obtained in Table 3.

3.2 Minimizing Engine Energy Consumption While Taking
Vehicle Speed Tracking Into Consideration

For convenience, the rotational speed is converted into
speed, meanwhile in order to continue to improve the ob-
jective function, we add velocity tracking to the objective
function and introduce an ideal velocity as a part of the
objective function, wr is the velocity tracking coefficient,
vr is the expected velocity. So as to obtain new formula
(22), and coefficients are in Table 4.

min
u(t)

J = p20v
2 + p11vTe + p02Te

2+

p10v + p01Te + wrvr
2,

(22)
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Fig. 3. Comparison of engine fuel consumption rate fitting

Table 4. Values of Coefficients

Coefficient Value

k 1/2pai× 60 × ig/rw
p20 6.7 × 10−8 × k2 × 1000

3600
+ wr

p11 5.25 × 10−6 × k × 1000
3600

p02 2.635 × 10−5 × 1000
3600

p10 0.00019 × k × 1000
3600

− 2 × wr × vr
p01 − 2

3
× 10−3

where v is vehicle speed [m/s], Te is engine torque [Nm].

In order to facilitate the deformation and representation
later, we choose the matrix forms. We set

x =

[
v
Te

]
, Q =

 p20
1

2
p11

1

2
p11 p02

 , c =

[
p10
p01

]
. (23)

Then (24) can be easily obtained:

min
u(t)

J = xTQx+ cTx+ wrvr
2. (24)

3.3 Vehicle Dynamics Modeling

On the base of vehicle dynamics models, we know that

v̇ =
ηtig
Mrw

∗ Te −
CdAfρ

2M
∗ v2 − gf, (25)

we set

a = −CdAfρ
2M

, b =
ηtig
Mrw

, c = −gf, (26)

then we have

ẋ =

[
ẋ1
ẋ2

]
=

[
v̇

Ṫe

]
=

[
ax1

2 + bx2 + c
u

]
. (27)

In order to ensure that the objective function remains
positive definite, we introduce a constant matrix ∆x
through the transformation of matrix operation.

x̄ =

[
x̄1
x̄2

]
=

[
x1 + ∆x1
x2 + ∆x2

]
=

[
v + ∆x1
Te + ∆x2

]
(28)

min
u(t)

J = xTQx+ cTx+ δ = x̄TQx̄ (29)

Ultimately, we can describe the problem in the following
way:
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equation of system state is

ẋ = Ax+Buu+Bdd,
y = Cx.

(30)

objective function is

min
u(t)

J =
1

2

∫ ∞
t0

(yTQy + uTRu)e−βtdt, (31)

each of them are as follows:
u = Ṫe;

x =

[
x1
x2

]
=

[
v + ∆x1
Te + ∆x2

]
;

∆x =

[
∆x1
∆x2

]
= ( 1

2c
TQ−1)T ;

A =

[
aa bb
0 0

]
; Bu =

[
0
1

]
;

Bd =

[
1
0

]
; C = [ 1 0 ];

Q =

[
q1 q12
q12 q2

]
; wr = 0.1;

q1 = p20; q12 = 1
2p11;

q2 = p02; c10 = p10;
c01 = p01; R = 0.01;
β = 0.01; d = ax1

2 + cc;
aa = −2a∆x1; bb = b;
cc = a∆x1

2 − b∆x2 + c,

we assume the initial values as x0 =

[
0 + ∆x1

150 + ∆x2

]
, the

expected velocity vr = 4m/s, and we discretize tf = 180s
into 1800 subintervals.

3.4 Simulation Results

According to the control algorithm in Section 2, with the
standard state equation and objective function, the opti-
mal solution of the objective function can be obtained step
by step. We can use MATLAB to establish the iteration
model we want. The number of iterations is chosen based
on a criterion, we assume when the misalignment of the
Nth iteration system disturbances curve with the N-1th
iteration system disturbances curve is less than e-8, then
we satisfy the stopping criterium. At this point, we use
residual sum of squares to describe the misalignment of
the disturbances curve, we found that residual sum of
squares of the 1st iterative disturbances curve with the
2nd iteration is 0.1391, while the residual sum of squares of
the 2nd iterative disturbances curve with the 3rd iteration
disturbances curve is 7.7109e-09, so we iterate 3 times.
And draw the state and input variables as Fig. 4.

From the Fig. 4 we can make it clear that as time goes
by, the vehicle speed increases gradually to the maxi-
mum, then decreases gradually to the expected speed and
maintains stability. The engine torque decreases gradually
at first, then rises slightly and remains unchanged. The
change rate of engine torque increases gradually to zero at
the highest point and maintains ability. It can be seen that
after three iterations, the results are basically unchanged,
while results of the real model coincide with the iterative
models, and variables also maintain the results of the last
iteration and can maintain stability after a period of time,
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Fig. 4. The results of the first to third iterations

0 20 40 60 80 100 120 140 160 180
0

5

10
gpops
3rd iteration

0 20 40 60 80 100 120 140 160 180
-50

0

50

100

150
gpops
3rd iteration

0 20 40 60 80 100 120 140 160 180
Time[sec]

-60

-40

-20

0
gpops
3rd iteration

Fig. 5. Comparisons between GPOPS results and iteration
results

which shows that the approximate optimal solution can
be obtained by iterating several times to find the desired
results.

After solving the practical problem by algorithm, we solve
the same problem using GPOPS, a MATLAB software
for solving complex optimal control problems to find out
the differences. In this section, we use GPOPS to verify
the correctness of the previous results and describe the
accuracy and limitations of the iterative algorithm in
application by observing the consistency of the results
achieved by the two methods. GPOPS is organized as
follows and we write MATLAB functions that define the
following functions of the problem:

consider the optimal control problem, minimize the cost
functional

J =

∫ tf

t0

(q1x1
2 + q12x1x2 + q2x2

2 +Ru2)e−βtdt, (32)

subject to the dynamic constraint

ẋ1 = a(x1 −∆x1)2 + b(x2 −∆x2) + c,
ẋ2 = u,

(33)

and the boundary conditions subject to the dynamic
constraint
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x1(0) = 0 + ∆x1
x2(0) = 150 + ∆x2
x1(tf ) = 4 + ∆x1

(34)

with tf= 180.

Each of them are as follows:
x1 = v + ∆x1; x2 = Te + ∆x2; u = Ṫe; q1 = p20;
q12 = 1

2p11; q2 = p02; R = 0.01; β = 0.01.

We compare the results with those obtained by the iter-
ation model as Fig. 5. At the same time, with the CPU
of AMD Ryzen 5 3550H with Radeon Vega Mobile Gfx
and the main frequency 2.10Ghz, time to get the result by
the fast iterative algorithm is 0.064895s, while when using
GPOPS it takes 2.406618s. Based on the observation of
the comparative results, we can draw the conclusion that
comparing the result of gpops module with the simulation
result of iteration, it is found that the accuracy of the
proposed optimal iterative algorithm is high enough while
computation time is reduced significantly.

4. CONCLUSION

This paper solves the optimal solution of the nonlinear
equation based on the iteration model, and applies it to
the problem of engine fuel consumption. Good results
have been obtained and compared with the results from
optimization software. In addition, the numerical example
is taken as case study to indicate the algorithm. The
simulation and experimental results demonstrate that the
algorithm is robust enough and has strong ability in
rejecting time-varying disturbances. From all the work
we can tell that this method is reasonable, feasible and
efficient when a nonlinear system’s optimal control is to
be solved. The implementation of parallel computing and
stability analysis of this algorithm will be considered in
our future work.
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