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Abstract: This paper deals with the identification of FIR models corrupted by white input noise and
colored output noise. An identification algorithm that exploits the properties of both the dynamic Frisch
scheme and the high-order Yule-Walker (HOYW) equations is proposed. It is shown how the HOYW
equations allow to define a selection criterion for identifying the input noise variance (and then the FIR
coefficients) within the Frisch locus of solutions. The proposed approach does not require any a priori
knowledge about the input and output noise variances. The algorithm performance is assessed by means
of Monte Carlo simulations.
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1. INTRODUCTION

The identification of finite impulse response (FIR) models plays
an important role in many signal processing and control appli-
cations (Haykin, 1991; Goodwin and Sin, 1984; Schafer and
Oppenheim, 1989; Kalouptsidis, 1997; Davila, 1994; Xu et al.,
1995; Diversi et al., 2005; Cerone et al., 2013; Aljanaideh and
Bernstein, 2017; Aljanaideh et al., 2018). When both the input
and output of the FIR model are corrupted by noise, classical
identification algorithms like least squares and prediction error
methods lead to biased estimates (Söderström, 2018).

Noisy input-output models can be consistently identified by
means of the instrumental variable (IV) method (Söderström,
2018). In this case, the vector of instruments is based on
delayed input and output samples leading to a set of high-order
Yule-Walker (HOYW) equations. Despite its computational
efficiency, this approach may lead to a low estimation accuracy
because of the poor estimates of the high-lag autocorrelations
involved in the HOYW equations (Söderström, 2018). The total
least squares (TLS) scheme can also be used but the ratio of the
input noise variance to the output noise variance is assumed as a
priori known (Davila, 1994; Feng et al., 1998; Feng and Zheng,
2006).

An effective way to counteract the noise-induced bias in the
Least Squares estimate consists in using the bias compensation
principle (Stoica and Söderström, 1982; Söderström, 2018).
Starting from this principle, various bias-compensated least
squares (BCLS) algorithms have been proposed to identify
noisy FIR models (Zheng, 2003; Feng and Zheng, 2007; Di-
versi et al., 2008; Diversi, 2008, 2009; Kang and Park, 2013;
Arablouei et al., 2014; Jung and Park, 2017). Many BCLS
methods assumes that both the input and the output noise are
white processes. In (Bertrand et al., 2011; Arablouei et al.,
2014), the input noise is a colored process and is correlated with
the white output noise. However, the input noise covariance
matrix and the cross-covariance between the input and output
noise are assumed a priori known or already estimated.

This paper deals with the identification of FIR models corrupted
by white input noise and colored output noise. The estimation
of the FIR coefficients is performed relying on the properties
of the dynamic Frisch scheme (Guidorzi et al., 2008). The idea
underlying the Frisch scheme consists in finding the estimation
of the input-output noise variances within a locus of solutions
compatible with the covariance matrix of the noisy data. The
search for a single solution inside the locus requires the defi-
nition of a suitable selection criterion. For single-input single-
output infinite impulse response (IIR) models, the Frisch locus
is described by a curve in the first quadrant of R2. Nevertheless,
for the FIR case, such locus can be described by a segment of
R+, as shown in (Diversi et al., 2008).

The use of the Frisch scheme in FIR identification was already
proposed in (Diversi et al., 2008) but the criterion employed
to select a single solution inside the Frisch locus allows to
consider only the case of white input-output noise. In order to
deal with colored output noise, the selection criterion proposed
in this paper exploits the properties of the HOYW equations.
In particular, the HOYW equations allow to define a selection
criterion for identifying the input noise variance (and then
the FIR coefficients) within the Frisch locus of solution. It is
worth noting that the proposed approach does not require any a
priori knowledge about the input and output noise variances.
The effectiveness of the identification algorithm is tested by
means of Monte Carlo simulations, where a comparison with
the approach in (Diversi et al., 2008) and the TLS method is
also considered.

The paper is organized as follows. In Section 2 we describe
the general problem of FIR models estimation when only
corrupted measurements of its input and output are available.
Then, in Section 3, we show how to reformulate the problem
into the Frisch scheme framework highlighting the related locus
of solutions. In Section 4 we point out how to use HOYW
equations to get a unique solution within the solution set and the
related identification algorithm. In Section 5, the performance
of the proposed procedure is shown by means of numerical
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Fig. 1. Noisy input-output FIR model

simulations. Finally, some conclusions are reported in Section
6.

2. PROBLEM STATEMENT

Let us consider the linear, time-invariant FIR system depicted in
figure 1. Its input u0 and output y0 are linked by the difference
equation

y0(t) = H(z−1)u0(t), (1)
where H(z−1) is the following polynomial in the backward
shift operator z−1:

H(z−1) = h0 + h1z
−1 + . . . + hn−1z

1−n. (2)

Let us assume that the available measurements of the true input
and output are corrupted by the presence of additive noise ũ(t)
and ỹ(t), namely

u(t) = u0(t) + ũ(t) (3)
y(t) = y0(t) + ỹ(t). (4)

The following assumptions are introduced.

A1. The FIR length n is known.
A2. The noise-free input u0 is either a zero–mean ergodic pro-

cess or a quasi–stationary bounded deterministic signal,
i.e. such that the limit

lim
N→∞

1

N

N∑
t=1

u0(t)u0(t− τ) (5)

exists ∀τ (Ljung, 1999). Moreover, u0(t) is persistently
exciting of sufficiently high order.

A3. The input noise ũ(t) is a zero-mean ergodic white process
with unknown variance σ2∗

ũ .
A4. The output noise ỹ(t) is an arbitrarily autocorrelated zero–

mean ergodic process with unknown autocorrelation func-
tion. Its variance is denoted by σ2∗

ỹ .
A5. The additive noises ũ(t), ỹ(t) are mutually uncorrelated

and uncorrelated with the noise-free input u0(t).

By defining the vectors

ϕ0(t) = [−y0(t) u0(t) u0(t− 1) . . . u0(t− n+ 1)]
T
, (6)

ϕ(t) = [−y(t) u(t) u(t− 1) . . . u(t− n+ 1)]
T

=
[
−y(t) ϕTu (t)

]T
, (7)

ϕ̃(t) = [−ỹ(t) ũ(t) ũ(t− 1) . . . ũ(t− n+ 1)]
T
, (8)

and the vector of FIR coefficients

θ̄∗ = [1 h0 h1 . . . hn−1]
T

=
[
1 θ∗T

]T
(9)

it is possible to rewrite the model (1)–(4) in the following way:
ϕT0 (t)θ̄∗ = 0, (10)

ϕ(t) = ϕ0(t) + ϕ̃(t). (11)

Finally, the identification problem turns out to be the following:

Problem 1. Given a set of N measurements of the cor-
rupted input u(t) and output y(t), estimate the FIR coefficients
h0, h1, . . . , hn−1, i.e. the coefficient vector θ∗.

3. THE FRISCH LOCUS OF COMPATIBLE SOLUTIONS

The noisy input-output FIR model (1)–(4), belongs to the
family of errors-in-variables models so that it can be estimated
by exploiting the properties of the Frisch scheme, as done
in (Diversi et al., 2008). The main idea behind the Frisch
scheme consists in finding the solution of the identification
problem within a locus of solutions that are compatible with
the covariance matrix of the noisy data (Guidorzi et al., 2008).
To this end, let us consider the covariance matrix

R = E
[
ϕ(t)ϕT (t)

]
, (12)

where E[·] denotes the expectation operator, and, similarly,
the covariance matrices R0 = E

[
ϕ0(t)ϕT0 (t)

]
, R̃∗ =

E
[
ϕ̃(t)ϕ̃T (t)

]
of the noise-free data and noise respectively.

From (10), (11) and Assumptions A2–A5 we get
R0θ̄

∗ = 0, (13)

R = R0 + R̃∗. (14)
From (13) and (14) we finally obtain:(

R− R̃∗
)
θ̄∗ = 0, (15)

where the noise covariance matrix is

R̃∗ =

[
σ2∗
ỹ 0

0 σ2∗
ũ In

]
. (16)

and In denotes the n× n identity matrix. Consider now the set
of couples

(
σ2
ũ, σ

2
ỹ

)
belonging to the first quadrant of R2 and

satisfying (
R− R̃

)
≥ 0 and det

(
R− R̃

)
= 0, (17)

where

R̃ =

[
σ2
ỹ 0

0 σ2
ũIn

]
. (18)

Because of (17), any couple of the set can be associated with a
parameter vector θ̄

(
σ2
ũ, σ

2
ỹ

)
satisfying(

R− R̃
)
θ̄(σ2

ũ, σ
2
ỹ) = 0. (19)

Note that θ̄
(
σ2
ũ, σ

2
ỹ

)
can be computed from any basis of the null

space of R− R̃ by normalizing the first element to 1, see (9).

At this point, it is possible to further develop the set of equations
(19) in order to restrict the locus of solutions, by exploiting the
peculiarities of FIR models. First, the matrix R is partitioned
into the following blocks

R =

[
σ2
y rTyu

ryu Ru

]
(20)

where
σ2
y = E

[
y2(t)

]
(21)

ryu = −E [ϕu(t)y(t)] (22)

Ru = E
[
ϕu(t)ϕTu (t)

]
(23)

Then, (19) may be rewritten as[
σ2
y − σ2

ỹ rTyu
ryu Ru − σ2

ũIn

] [
1
θ

]
= 0 (24)

from which we obtain the following two sets of equations
σ2
y − σ2

ỹ + rTyuθ = 0, (25)

ryu +
(
Ru − σ2

ũIn
)
θ = 0. (26)
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Finally, by solving (25) and (26) accounting for conditions (17),
we state the following theorem.

Theorem 1 (Diversi et al. (2008)). The set of all diagonal
matrices R̃ satisfying (17) is defined by the couples

(
σ2
ũ, σ

2
ỹ

)
belonging to the first quadrant of R2 such that

σ2
ũ ∈

[
0, σ2

ũmax

]
, (27)

σ2
ỹ = σ2

y + rTyuθ, (28)
with

θ = −
(
Ru − σ2

ũIn
)−1

ryu, (29)

σ2
ũmax

= λmin

(
Ru −

ryur
T
yu

σ2
y

)
. (30)

Corollary 1 (Diversi et al. (2008)). The locus of solutions
described by Theorem 1 contains the couple (σ2∗

ũ , σ
2∗
ỹ ) that can

be associated with the true coefficients of the FIR model θ∗ by
means of (29).

It is important to note that this formulation of the solution set
of Problem 1 leads to a locus of solutions which is a function
of σ2

ũ only, with σ2
ỹ and θ depending on it, namely

θ(σ2
ũ) = −

(
Ru − σ2

ũIn
)−1

ryu, (31)

σ2
ỹ(σ2

ũ) = σ2
y + rTyuθ(σ

2
ũ). (32)

with σ2
ỹ(σ2∗

ũ ) = σ2∗
ỹ and θ(σ2∗

ũ ) = θ∗ corresponding to the true
solution. In the asymptotic case, the identification problem may
thus be solved by looking for σ2∗

ũ within the interval
[
0, σ2

ũmax

]
.

To this end it is necessary to introduce a suitable selection
criterion. The criterion proposed in (Diversi et al., 2008), which
exploits the statistical properties of the residuals of the EIV
FIR model, can be applied only when both the input and output
noise are white processes. The next section describes a criterion
based on the properties of the high-order Yule-Walker equations
that allows dealing with colored output noise.

4. COMBINING THE FRISCH SCHEME AND
HIGH-ORDER YULE-WALKER EQUATIONS

The search for the true input noise variance σ2∗
ũ within the

Frisch locus can be performed by relying on the high-order
Yule-Walker (HOYW) equations, as shown in the following.

Firstly, we define the q × 1 vector of delayed input samples

ϕq(t) = [u(t− n) u(t− n− 1) . . . u(t− n− q + 1)]
T
,

(33)
with q ≥ 1. Because of (3), ϕq(t) can be decomposed as

ϕq(t) = ϕq0(t) + ϕ̃q(t), (34)
where the elements of ϕq0(t) and ϕ̃q(t) are vectors of delayed
samples of u0(t) and ũ(t) respectively. Define the following
q × (n+ 1) matrix

Rq = E
[
ϕq(t)ϕT (t)

]
. (35)

From (34), (11) and Assumptions A3, A5 we get

Rq = E
[
(ϕq0(t) + ϕ̃q(t)) (ϕ0(t) + ϕ̃(t))

T
]

= E
[
ϕq0(t)ϕT0 (t)

]
= Rq0. (36)

From (10) and (36) we can finally derive the following set of q
HOYW equation:

Rq θ̄∗ = 0 (37)
Note that (37) does not involve the output noise variance σ2∗

ỹ .
In this context, it is possible to search for σ2∗

ũ within its range

of possible values
[
0, σ2

ũmax

]
by means of an optimization

problem. For this purpose, let us define the cost function J(σ2
ũ)

as
J(σ2

ũ) =
∣∣∣∣Rq θ̄(σ2

ũ)
∣∣∣∣2
2
, σ2

ũ ∈
[
0, σ2

ũmax

]
(38)

where θ̄(σ2
ũ) = [ 1 θ(σ2

ũ) ]T and θ(σ2
ũ) is given by (31). This

function has the following properties:
J(σ2

ũ) ≥ 0

J(σ2∗
ũ ) = 0. (39)

Then, σ2∗
ũ and consequently θ(σ2∗

ũ ) = θ∗ can be obtained by
solving

arg min
σ2
ũ
∈[0,σ2

ũmax
]
J(σ2

ũ). (40)

Remark 1. Relation (37) represents a set of high order Yule–
Walker equations that could be directly used to obtain the
parameter vector θ∗ provided that q ≥ n. This approach can
also be viewed as an instrumental variable method that uses
delayed inputs as instruments (Söderström, 2018). However,
the accuracy of IV methods is often poor since they require the
estimation of high–lag autocorrelations (Söderström, 2018).

In practice, the number of data available from the system is
finite. This means we may only rely upon an estimate of the
matrices R and Rq based on the N measurements of u(t) and
y(t) at our disposal:

R̂ =
1

N

N∑
t=1

ϕ(t)ϕT (t) =

[
σ̂2
y r̂Tyu

r̂yu R̂u

]
(41)

R̂q =
1

N

N∑
t=q+n+1

ϕq(t)ϕT (t). (42)

In this case, an estimate σ̂2
ũ of σ2∗

ũ is found by minimizing the
loss function

J(σ2
ũ) =

∣∣∣∣∣∣R̂q θ̄(σ2
ũ)
∣∣∣∣∣∣2
2
, σ2

ũ ∈
[
0, σ̂2

ũmax

]
(43)

where

σ̂2
ũmax

= λmin

(
R̂u −

r̂yur̂
T
yu

σ̂2
y

)
, (44)

The solution of Problem 1 is thus given by

θ̂ = −
(
R̂u − σ̂2

ũIn

)−1
r̂yu, (45)

with
σ̂2
ũ = arg min

σ2
ũ
∈[0,σ̂2

ũmax
]
J(σ2

ũ). (46)

Remark 2. Due to the ergodicity assumption (see A2-A4) it
follows that

lim
N→∞

R̂ = R, lim
N→∞

R̂q = Rq, w.p. 1 (47)

so that
arg min

σ2
ũ
∈[0,σ̂2

ũmax
]
J(σ2

ũ) −→
N→∞

arg min
σ2
ũ
∈[0,σ2

ũmax
]
J(σ2

ũ) w.p. 1

(48)

The whole identification procedure is summarized by the fol-
lowing algorithm.

Algorithm 1. Starting from the noisy observations u(1), . . . ,
u(N) and y(1), . . . , y(N):

(1) Compute the estimate R̂ as in (41), and extract the high-
lighted blocks. Compute also the estimate σ̂2

ũmax
as in

(44).
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(2) Choose the number q of HOYW equations (see (33)) and
compute the estimates R̂q as in (42)

(3) Initialize to a generic value of σ2
ũ ∈

[
0, σ̂2

ũmax

]
.

(4) Compute the relative expression for the parameter vector
θ(σ2

ũ) as in (31) and form θ̄ = [ 1 θ(σ2
ũ)T ]T .

(5) Compute the cost function J(σ2
ũ) (43).

(6) Update σ2
ũ to a new value ∈

[
0, σ̂2

ũmax

]
corresponding to

a decrease in J(σ2
ũ).

(7) Repeat the steps 4-6 until the value σ̂2
ũ corresponding to

the minimum of J(σ2
ũ) is found. The obtained estimation

θ̂ of the FIR coefficients is then given by θ̂ = θ(σ̂2
ũ).

Remark 3. Steps 4-6, corresponding to the search for the
solution of the optimization problem (46), may be performed
by means of any numerical search procedure. In particular, we
deployed the Newton-Raphson method with parameter projec-
tion, as described in Appendix A.
Remark 4. Once that the estimates σ̂2

ũ, θ̂ of the input noise
variance and the FIR coefficients have been obtained, an esti-
mate of the output noise variance can be computed by means of
(32):

σ̂2
ỹ = σ̂2

y + r̂Tyuθ̂. (49)
From σ̂2

ũ and σ̂2
ỹ it is possible to evaluate the signal to noise

ratio on both the input and the output.

5. NUMERICAL RESULTS

Algorithm 1 is tested by means of Monte Carlo simulations.
Two different experiments have been considered. The first
refers to a synthetic FIR whereas the second one concerns a
FIR model representing the truncated impulse response of an
asymptotically stable IIR system. A comparison with the Frisch
scheme-based algorithm (Diversi et al., 2008) and the total least
squares (TLS) method (Davila, 1994) is also considered.

5.1 Experiment 1

Firstly, to test Algorithm 1, we select a synthetic FIR model of
length n = 5 already used in (Davila, 1994; Feng et al., 1998;
Feng and Zheng, 2006; Zheng, 2003; Feng and Zheng, 2007;
Diversi et al., 2008; Diversi, 2008, 2009) with the following
coefficients:

θ∗ = [−0.3 − 0.9 0.8 − 0.7 0.6 ]
T
. (50)

The input u0(t) is an ARMA process defined by

u0(t) =
1− 0.3z−1

1− 0.9z−1
e(t), (51)

where e(t) is a unit variance white noise. A first Monte Carlo
simulation of 1000 runs has been carried out by considering
additive white noise on both the input and the output. The noise
variances σ2∗

ũ , σ
2∗
ỹ have been selected in order to set the signal

to noise ratio (SNR) to 5 dB on both the input and the output.
A second Monte Carlo simulation of 1000 runs has then been
performed by considering additive white noise ũ(t) on the input
and additive colored noise ỹ(t) on the output. In particular, the
output noise is the following autoregressive process:

ỹ(t) =
1

1− 0.8z−1
w(t). (52)

The variance of ũ(t) and of the driving white process w(t) have
been set to get an input and output SNR of 5 dB. In both Monte
Carlo simulations the number of HOYW equations is set to
q = 2 and the number of samples used is N = 10000.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
·10−2

σ2
ũ

J(σ2
ũ)

Fig. 2. Values of the cost function J(σ2
ũ) cost function over the

interval
[
0, σ̂2

ũmax

]
in one of the Monte Carlo runs. The

red circle corresponds to the minimum value.

The performance of Algorithm 1 has been compared to that of
the Frisch scheme-based algorithm introduced in (Diversi et al.,
2008) and of the TLS method. The results of both the Monte
Carlo simulations are summarized in Table I that reports the
true values of FIR coefficients and noise variances, the mean
of their estimates, and the corresponding standard deviations.
As expected, when the input and output noise are white, all the
algorithms lead to unbiased estimates. In this case, the approach
in (Diversi et al., 2008) has a slightly better performance
because of the smaller standard deviations of the estimated
parameters. The TLS approach outperforms the other methods
but requires the a priori knowledge of the noise variance ratio
σ2∗
ỹ /σ

2∗
ũ . When the output noise is colored, Algorithm 1 still

gives good results whereas the algorithm in (Diversi et al.,
2008) clearly leads to biased estimates. Again, the TLS method
leads to better results but is based on information that are
seldom available in practice.

In order to show the effectiveness of the cost function J(σ2
ũ),

Fig. 2 reports its values over the interval
[
0, σ̂2

ũmax

]
in a run

of the second Monte Carlo simulation (colored noise). It is
worth noting that the minimum of J(σ2

ũ) occurs at a value of
σ2
ũ very close to the true one. All other runs of the Monte Carlo

simulations exhibit a similar behavior.

5.2 Experiment 2

The aim of the second experiment is to identify a FIR model
representing the truncated impulse response of an asymptot-
ically stable IIR system corrupted by white input noise and
colored output noise. We consider the following IIR model

y0(t) =
(z + 0.6)(z + 0.5)

(z − 0.5)(z2 + 0.6z + 0.58)
u0(t), (53)

where the input u0(t) is the ARMA process (51), the additive
input noise ũ(t) is a white process and the additive output noise
ỹ(t) is the colored process (52). Starting from N = 10000
samples of the noisy input and output, u(t) and y(t), the
truncated impulse response of the system (a FIR model with
length n = 24) has been identified by means of Algorithm 1
and the algorithm in (Diversi et al., 2008). The hyperparameter
q has been set to 24. Two different values of the input and output
noise variances have been considered to get SNR= 10 dB and
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Table 1. True and estimated values of the FIR coefficients and of the input and output noise variances.
Monte Carlo simulation of 1000 runs performed with N = 10000. Synthetic FIR.

h0 h1 h2 h3 h4 σ2∗
ũ σ2∗

ỹ

True −0.3 −0.9 0.8 −0.7 0.6 0.96 0.67

ũ(t) white, ỹ(t) white

Algorithm 1 −0.302±0.026 −0.892±0.085 0.794± 0.115 −0.694±0.095 0.594± 0.054 0.949± 0.065 0.678± 0.142

Algorithm
(Diversi et al.,

2008)

−0.303±0.024 −0.895±0.033 0.797± 0.043 −0.696±0.034 0.597± 0.024 0.956± 0.031 0.674± 0.043

TLS −0.301±0.026 −0.898±0.030 0.799± 0.029 −0.699±0.033 0.599± 0.022 0.959± 0.013 0.669± 0.009

ũ(t) white, ỹ(t) colored

Algorithm 1 −0.302±0.025 −0.891±0.089 0.792± 0.121 −0.693±0.099 0.594± 0.061 0.947± 0.069 0.681± 0.153

Algorithm
(Diversi et al.,

2008)

−0.309±0.015 −0.666±0.020 0.492± 0.019 −0.446±0.019 0.435± 0.017 0.713± 0.026 1.077± 0.024

TLS −0.301±0.025 −0.899±0.027 0.800± 0.027 −0.700±0.031 0.599± 0.020 0.959± 0.012 0.669± 0.008
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Fig. 3. True truncated impulse response of the IIR system (53)
(dashed black), mean of its estimate obtained with Algo-
rithm 1 in red and with Algorithm (Diversi et al., 2008)
in blue and associated standard deviations in transparency.
Monte Carlo simulation of 1000 runs performed withN =
10000 and SNR= 10dB.

SNR= 5 dB respectively. For each value of the SNR a Monte
Carlo simulation of 1000 runs has been performed. The results
are shown in Figs. 3 and 4, reporting the first 24 coefficients
of the impulse response, the mean of the obtained estimates,
and the associated standard deviations. These figures confirm
the good performance of the proposed approach. Again, the
estimates obtained by using the approach in (Diversi et al.,
2008) are clearly biased.

Notice that in both experiments the number of HOYW equa-
tions q used to achieve consistent estimation is very small. This,
together with the use of the Newton-Raphson method, leads to
a relatively low computational load of the proposed approach.
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Fig. 4. True truncated impulse response of the IIR system (53)
(dashed black), mean of its estimate obtained with Algo-
rithm 1 in red and with Algorithm (Diversi et al., 2008)
in blue and associated standard deviations in transparency.
Monte Carlo simulation of 1000 runs performed withN =
10000 and SNR= 5dB.

6. CONCLUSIONS

An algorithm for the estimation of FIR models in presence of
corrupting white input noise and colored output noise has been
presented. The method takes advantage of the properties of both
the dynamic Frisch scheme and the high-order Yule-Walker
equations. The proposed identification algorithm is shown to
achieve consistency in the presence of colored output noise
both when identifying a synthetic FIR, and when estimating
the actual impulse response of an asymptotically stable IIR
system. Moreover, the estimator requires a small number of
HOYW equations to attain consistency, that combined with the
use of Newton-Raphson, results in a low computational load.
Future work may exploit the iterative nature of the optimization
method involved in the identification procedure to derive a
recursive formulation of Algorithm 1.
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Appendix A. NEWTON-RAPHSON ALGORITHM

The Newton-Raphson method with parameter projection has
been used to solve the optimization problem defined in (46).
Namely, starting from Step 2 in Algorithm 1, iteratively com-
pute

σ2
ũ(k + 1) = Π

[
σ2
ũ(k)− α J

′(σ̂2
ũ)

J ′′(σ̂2
ũ)

]
(A.1)

until
|σ2
ũ(k + 1)− σ2

ũ(k)| ≤ ε with ε > 0. (A.2)
For the sake of clarity in the following discussion we drop the ·̂
symbol and θ dependency on σ2

ũ is hidden when not necessary.
Equation (A.1) is obtained starting from (43) in which, by
developing the 2−norm, we obtain

J(σ2
ũ) = θ̄T R̂q

T

R̂q θ̄ = θ̄T ˆ̄Σq θ̄ = θ̄T
[
σ̂ ρ̂T

ρ̂ Σ̂

]
θ̄. (A.3)

where ˆ̄Σq = R̂q
T

R̂q is a positive definite symmetric matrix and
is divided in the above mentioned blocks. Then, by inserting (9)
we get

J(σ2
ũ) = θT Σ̂θ + 2ρ̂T θ + σ̂. (A.4)

In this form it is easier to compute its derivatives, that are:
∂J(σ2

ũ)

∂σ2
ũ

= 2
(
θT Σ̂T + ρ̂T

)(
R̂u − σ2

ũIn

)−1
θ, (A.5)

∂2J(σ2
ũ)

∂(σ2
ũ)2

= 2θT
(
R̂u − σ2

ũIn

)−T
Σ̂
(
R̂u − σ2

ũIn

)−1
θ

(A.6)
in which the derivative of θ is already plugged in and is the
following

∂θ(σ2
ũ)

∂σ2
ũ

=
(
R̂u − σ2

ũIn

)−1
θ. (A.7)

Finally, the projection function Π[·] is nothing but the following
case function:

Π[·] =

{
0 if σ2

ũ < 0

σ̂2
ũmax

if σ2
ũ ≥ σ̂2

ũmax

(A.8)

which keeps σ2
ũ into the solution set. The hyperparameter αwas

set to 1 during simulations.
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