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Abstract: In this paper, we consider the problem of controlling a swarm of mobile robots
to formulate a prescribed formation shape under cyclic topologies. By mimicking the shape
transformation of elastic strings, we design a distributed control strategy using local sensing
quantities. To implement this control algorithm, only a small number of robots need to be
regulated to achieve the desired formation shape. It is shown that the desired polygon formation
can be globally asymptotically stabilized under the proposed control strategy. Furthermore, in
order to adapt to the situations where external influence is not exerted on the “right” robots,
we propose a new self-organized control strategy that is capable of transferring the external
influence through interacting with their nearest neighboring robots. Simulations are carried out
to demonstrate the effectiveness of the proposed control strategies.
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1. INTRODUCTION

In recent years, cooperative control of multi-robot systems
has attracted considerable attention due to its broad
applications. In many applications, an essential task is
controlling a group of robots to form the desired geometric
shape, which is common in surveillance and reconnaissance
(Saska et al. (2014)), cooperative transportation (Chen
and Kai (2018)), and mapping and monitoring (Carrillo
et al. (2015)).

The distributed control method relies on local informa-
tion, which is efficient when a large number of robots are
involved. In behavior-based control method, a set of prede-
fined basic behaviors are utilized to form the collective be-
havior of the swarm robots (Xu et al. (2014)). However, it
is difficult to analyze the convergence of the system mathe-
matically. In Wiech et al. (2018), the robots are connected
to their nearest neighbors via virtual spring dampers to
achieve self-organizing swarm collective behavior. Besides,
motived by the collective behavior of animals in nature,
researchers investigate the rules to form a specific shape.
In Turing reaction-diffusion model, robots exchange two
morphogen-like signals through a set of reaction-diffusion
differential equations. In Ikemoto et al. (2005), robots
decide their own movements according to the signal value,
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and finally form a specific polygon formation. Gene reg-
ulatory network (GRN) technique is used in Meng et al.
(2013), where each agent has two genes, and the expression
of genes is controlled by a function encoding the desired
shape information. Genes can produce proteins to control
the movement of the agent. However, most previous works
require all robots knowing the information of the desired
shape.

In Lin et al. (2014), a formation control method using
the complex Laplacian matrix is proposed, in which the
formation size can be controlled. This method allows two
leaders knowing the desired distance between them and the
rest are driven to appropriate positions via inner couplings
imposed by the complex Laplacian matrix. Stress-matrix-
based formation control has gained increasing attention
due to its superiority in changing formation shapes. In
Zhao (2018), to achieve the affine transformation (defined
as a linear transformation plus a translation) of the for-
mation, it requires three robots to be informed of the
desired formation information. Yang et al. (2019) realizes
the formation scaling control in the circumstance that only
one robot knows the desired scaling size. These methods
can realize formation stabilization/transformation under
the constraints that only a few robots know the desired
formation information, but the target formations are re-
stricted to only affine transformations of the nominal con-
figuration. In addition, when the number of robots is large,
the calculation of the stress matrix will become extremely
complicated.

The goal of this paper is to design a distributed control
strategy for swarm robots to form an arbitrary polygon
formation with few external inputs. In our strategy, it is
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assumed that the sensing topology of the robots is cyclic,
which implies that each robot i has only two neighbors
i − 1 and i + 1(Fathian et al. (2019)). In this paper, we
first design a distributed control strategy under the condi-
tion that the external influence is applied to appropriate
robots. These robots are selected in accordance with the
desired formation shape. In this strategy, all robots only
need to measure the relative positions with respect to their
nearest neighbors in local coordinate systems. Then, to
remove the tedious calculation on the “chosen robots”, a
self-organized control strategy is designed by developing
an adaptive influence-transition mechanism, within which
the external influence can be applied to arbitrary robots.

2. PRELIMINARIES

2.1 Notations

Let 0n be the n-dimensional column vector with all zeros.
The cardinality of a set X is denoted by |X|. We use
||x|| and xT to represent the 2-norm and transpose of
a vector x, respectively. The symbol mod denotes the
modulo operator. Let sgn : R→ R be the signum function.
We use Nn to denote the set of nonnegative integers that
are less than n, written as {0, 1, · · · , n− 1}.

2.2 Graph theory

In this paper, an undirected graph G = (V, E ,A) is used to
represent the interactions among the networked n robots,
where V = {0, 1, . . . , n − 1} is the node set, E ∈ V ×
V is the edge set, and the weighted adjacency matrix
A = [aij ] ∈ Rn×n is defined by aij = 0 if (j, i) /∈ E ,
and aij = 1, otherwise. (j, i) ∈ E indicates that robot i
and j can sense each other, namely, the relative position
between them can be acquired. The set of robots that
are adjacent to robot i is denoted by the neighbor set
Ni = {j|(i, j) ∈ E}. A topology is said to be cyclic if
neighbors of robot i ∈ V are robots i − 1 and i + 1(mod
n)(Fathian et al. (2019)).

A configuration q ∈ Rn×2 is a finite collection of n

labeled robots qi ∈ R2, denoted by q = [q0, q1, . . . , qn−1]
T

.
A framework (G, q) can be obtained by assigning an
undirected graph G to a set of agents with a feasible
configuration q (Yang et al. (2019)).

2.3 Polygon

In a framework (G, q), a robot is called a vertex robot
if it’s not collinear with its neighbors. We use V =
{v0, v1, .., vn−1} ⊆ V to represent the set of vertex robots
with n being the number of vertex robots. Note that
vi is the index associated with some vertex robot and
the set V may change as robots move. The vector b =
[b0, b1, · · · , bn−1]T is used to represent the number of edges
between vertex robots in the graph G and bi is defined as
bi = (vi+1−vi) mod n. Define q = [q0, q1, · · · , qn−1]T with
qi = qvi − qv(i+1)

. From definition of b, we can easily get
that ∑

i∈Nn

bi = n. (1)

In this paper, we use (b, q) to denote the polygon forma-
tion. Define an implicit function F : Rn×2 → Rn̄ × Rn̄×2

(a) A configuration with a
cyclic topology and the vertex
robot set V = {0, 3, 5}.

(b) The polygon formation
(b, q) obtained from the config-
uration with b0 = 3, b1 = 2,
and b2 = 3.

Fig. 1. An example of forming (b, q)

to represent the polygon formation abstracted from the
configuration.

2.4 Problem Statement

We focus on a swarm of n robots with single-integrator
dynamics, i.e.

q̇i = ui, (2)

where xi ∈ R2 is the position of robot i and ui ∈ R2 is
the control input. We aim to solve the following problem.
Given a desired polygon formation (b∗, q∗) subject to the
following constraints

• Each robot i has only two neighbors i− 1 and i+ 1,
• Robots can only sense the relative position with their

neighbors,
• Only a small number of robots can receive the exter-

nal information of the desired formation.

The objective is to design distributed control laws for each
robot i, such that

F( lim
t−>∞

q) = (b∗, q̄∗). (3)

3. SWARM CONTROL STRATEGY

In this section, we first introduce a distributed control
strategy that enables robots over cyclic topologies to form
an arbitrary polygon formation. Note that the external
control inputs are injected to only a few robots during the
whole evolution. Then, we will analyze the stability and
convergence properties of the closed-loop system.

3.1 Controller design

Let uij ∈ R2 denote the influence over robot i exerted by
robot j, which is modeled as

uij = k(qj − qi) +
(i− j)ε

2
g(qj − qi), (4)

where k and ε are positive constants, and the function
g : R2 → R2 is defined by

g(x) ,
x

||x||
. (5)

The first term of (4) represents the inner coupling generat-
ed by the virtual spring. The second one can be viewed as
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an offset, whose direction always starts from robot j to i,
j > i, and magnitude is determined by ε. Then the control
input for each robot i is designed as

ui =
∑
j∈Ni

uij + uei , (6)

where uei ∈ R2 denotes the external control input that
robot i receives. uei = 0 if robot i is independent of
any external signal. In this case, robot i will stop at
somewhere along the line in parallel with its neighbors.
The robots who receive external control inputs are served
as the vertex robots, and thus the geometric shape of the
overall formation is determined. However, to implement
such a control strategy, one problem needs to be addressed:
the explicit expression of the external input.

Consider the desired polygon formation (b∗, q∗) with |b∗| =
m. Let S = {s0, s1, · · · , sm−1} satisfying

(si+1 − si) mod n = b∗i , i ∈ Nm (7)

be the set of robots that need to be regulated by the
external control input. The purpose of (7) is to ensure that
the number of edges between vertex robots is consistent
with b∗ when the system is stablilized. Let fei ∈ R2, i ∈ Nm
represents the external control inputs, given by

fei = fei+ + fei−, (8)

where

fei+ =
kq∗i
b∗i
− εb∗i g(q∗i )

2
,

fei− = −
kq∗i−1

b∗i−1

−
εb∗i−1g(q∗i−1)

2
.

(9)

With these auxiliary variables, the control input (6) can
be explicitly written as

ui =


∑
j∈Ni

uij + feT (i), if i ∈ S,∑
j∈Ni

uij , otherwise,
(10)

where T : S → Nm is a mapping operator satisfying
T (si) = i.

3.2 Stability analysis

We present the first main result as follows.

Theorem 1. For the swarm robots (2), under the control
law (10), there exists an equilibrium point rendering b = b∗

and q = q∗, if ε <
2k||q∗i ||
b∗
i
(b∗

i
−1) , ∀i ∈ Nm.

Proof. We first consider those robots who receive external
control inputs. Combining (4), (8), and (10), one has

usi =− k(qsi − qsi+1) +
ε

2
g(qsi − qsi+1)

+ k(qsi−1 − qsi) +
ε

2
g(qsi−1 − qsi)

+
kq∗i
b∗i
− εb∗i g(q∗i )

2
−
kq∗i−1

b∗i−1

−
εb∗i−1g(q∗i−1)

2

=− k
(
zsi − d∗sig(q∗i )

)
+
ε

2

(
g(zsi)− g(q∗i )

)
+ k
(
zsi−1 − d∗si−1g(q∗i−1)

)
+
ε

2

(
g(zsi−1)− g(q∗i−1)

)
,

where zi , qi − qi+1 ∈ R2 denotes the relative position
and d∗si ∈ R and d∗si−1 ∈ R are defined by

d∗si ,
||q∗i ||
b∗i
− (b∗i − 1)ε

2k

d∗si−1 ,
||q∗i−1||
b∗i−1

+
(b∗i−1 − 1)ε

2k
.

(11)

Let z∗si = d∗sig(q∗i ), z
∗
si−1 = d∗si−1g(q∗i−1). It can be eas-

ily checked that d∗si−1 is a positive constant. If ε <
2k||q∗i ||
b∗
i
(b∗

i
−1) ,∀i ∈ Nm, d∗si is also a positive constant. There-

fore, we have

g(z∗si) = g(q∗i ), g(z∗si−1) = g(q∗i−1). (12)

Then, the control input usi can be written in the following
form

usi =− k
(
zsi − z∗si

)
+
ε

2

(
g(zsi)− g(z∗si)

)
+ k
(
zsi−1 − z∗si−1

)
+
ε

2

(
g(zsi−1)− g(z∗si−1)

)
.

(13)

Next, we consider the robots who are free of external
control inputs. It is assumed that robot j lies between
robot si and si+1, i.e.,

0 < (j − si) mod n < b∗i .

Combining (4) and (8), one has

uj =− k(qj − qj+1) +
ε

2
g(qj − qj+1)

+ k(qj−1 − qj) +
ε

2
g(qj−1 − qj)

=− k
(
zj − d∗jg(q∗i )

)
+
ε

2

(
g(zj)− g(q∗i )

)
+ k
(
zj−1 − d∗j−1g(q∗i )

)
+
ε

2

(
g(zj−1)− g(q∗i )

)
,

where d∗j ∈ R is given by

d∗j ,
||q∗i ||
b∗i
− (b∗i − 1− 2l)ε

2k
(14)

with l = (j − si) mod n and 0 ≤ l < b∗i . An auxiliary
variable z∗j is introduced

z∗j , d
∗
jg(q∗i ). (15)

In view of (11) and (14), there holds d∗j > d∗(j−1) ≥ d
∗
si > 0.

Then, one has

g(z∗j ) = g(z∗j−1) = g(q∗i ). (16)

Similarly, the control input uj can be written as

uj =− k(zj − z∗j ) +
ε

2

(
g(zj)− g(z∗j )

)
+ k(zj−1 − z∗j−1) +

ε

2

(
g(zj−1)− g(z∗j−1)

)
, j ∈ V − S.

(17)
Hence, one can conclude that

zi = z∗i , ∀i ∈ V (18)

is an equilibrium point of the closed-loop system (2) and
(10). By considering (14), (15), and (18), one has

qi =qsi+1
− qsi

=

si+1−1∑
i=si

z∗i

=

b∗i−1∑
l=0

(
||q∗i ||
b∗i
− (b∗i − 1− 2l)ε

2k
)g(q∗i )

=||q∗i ||g(q∗i )

=q∗i .

(19)
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From (7), one has

bi =(si+1 − si) mod n = b∗i . (20)

This completes the proof.
�

To facilitate the following analysis, we introduce a function
h : R2 × R2 × R2 → R as follows:

h(ei, ej , z
∗
j ) = eTi

(
g(ej + z∗j )− g(z∗j )

)
. (21)

The upper bound of the function h(ei, ej , z
∗
j ) is given in

the following lemma.

Lemma 2. The function h(ei, ej , z
∗
j ) defined in (21) satis-

fies

|h(ei, ej , z
∗
j )| ≤ π ||ei|| · ||ej ||

||z∗j ||
, ∀ei ∈ R2, ej ∈ R2, z∗j ∈ R2.

Proof. Let θ1 ∈ [0, π] and θ2 ∈ [0, π] be, respectively, the
angle between ei and z∗j , and the angle between ej + z∗j
and z∗j . Then, the angle between ei and ej + z∗j is θ1 + θ2

or |θ1 − θ2|. Consequently, one has

h(ei, ej , z
∗
j ) = ||ei||(cos(θ1 ± θ2)− cos θ2)

= ∓2||ei|| sin
2θ1 ± θ2

2
sin

θ2

2
.

(22)

Therefore, we have

|h(ei, ej , z
∗
j )| ≤ 2||ei|| sin

θ2

2
≤ ||ei||θ2. (23)

When ||ej || > ||z∗j ||, we know θ2 ∈ [0, π]. By combining
(23), it yields

|h(ei, ej , z
∗
j )| ≤ ||ei||π ≤ π

||ei|| · ||ej ||
||z∗j ||

. (24)

When ||ej || ≤ ||z∗j ||,we know θ2 ∈ [0, arcsin
||ej ||
||z∗

j
|| ]. This

leads to

|h(ei, ej , z
∗
j )| ≤ ||ei|| arcsin

||ej ||
||z∗j ||

≤ π ||ei|| · ||ej ||
||z∗j ||

. (25)

In light of (24) and (25), we can conclude that

|h(ei, ej , z
∗
j )| ≤ π ||ei|| · ||ej ||

||z∗j ||
.

Theorem 3. The swarm robots can be globally asymptot-

ically stabilized at the equilibria (18), if ε <
4k||z∗i ||
πn2 , ∀i ∈

Nn.

Proof. In view of (13) and (17), the control input (10)
can be rewritten as

ui =− k(zi − z∗i ) +
ε

2

(
g(zi)− g(z∗i )

)
+ k(zi−1 − z∗i−1) +

ε

2

(
g(zi−1)− g(z∗i−1)

)
, i ∈ V.

(26)
ei ∈ R2 is used to denote the error of the relative position
associated with ith edge in G, defined as

ei , zi − z∗i . (27)

Substituting (27) into (26), we get

ui =− kei +
ε

2

(
g(ei + z∗i )− g(z∗i )

)
+ kei−1 +

ε

2

(
g(ei−1 + z∗i−1)− g(z∗i−1)

)
.

(28)

The Lyapunov function candidate is chosen as

V =
1

2

∑
i∈V
||ei||2.

Note that V is globally positive definite and radially
unbounded with respect to ei. In addition, V = 0 implies
zi = z∗i ,∀i ∈ V. The derivative of V satisfies

V̇ =
∑
i∈V

eTi ėi

=− k
∑
i∈V
||ei+1 − ei||2

+
ε

2

∑
i∈V

eTi
(
g(ei−1 + z∗i−1)− g(z∗i−1)

)
− ε

2

∑
i∈V

eTi
(
g(ei+1 + z∗i+1)− g(z∗i+1)

)
=− k

∑
i∈V
||ei+1 − ei||2

+
ε

2

∑
i∈V

h(ei, ei−1, z
∗
i−1)− h(ei, ei+1, z

∗
i+1).

From Lemma 2, one has

V̇ ≤− k
∑
i∈V
||ei+1 − ei||2

+
επ

2

∑
i∈V

(
||ei|| · ||ei−1||
||z∗i−1||

+
||ei|| · ||ei+1||
||z∗i+1||

).
(29)

Let ||emax|| = max{||e0||, ||e1||, · · · , ||en−1||}. Without lose
of generality, it is assumed that emax = e0. Combining (19)
and (27), one has

eT0

n−1∑
i=0

ei =eT0

n−1∑
i=0

(zi − z∗i )

=eT0 (

n−1∑
i=0

(qi − qi+1)−
m−1∑
i=0

(q∗i ))

=eT0 0

=0.

Therefore, there exists es, s ∈ V, satisfying

eT0 es ≤ 0.

Consequently, there holds
n−1∑
i=0

||ei+1 − ei||2 =(||e1 − e0||2 + ...+ ||es − es−1||2)

+ (||es+1 − es||2 + ...+ ||e0 − en−1||2)

≥||e0 − es||2

s
+
||e0 − es||2

n− s

≥4||e0 − es||2

n

=
4(||e0||2 + ||es||2 − 2eT0 es)

n

≥4||e0||2

n
.

(30)
Let ||z∗min|| = min{z∗0 , z∗1 , · · · , z∗n−1}. From (30), we get

V̇ ≤(
−4k

n
+

επn

||z∗min||
)||e0||2.

It can be seen that V̇ ≤ 0, if ε satisfies

ε <
4k||z∗min||
πn2

.

And V̇ = 0 only when ei = 0, ∀i ∈ V. Then
one can conclude from the LaSalle Invariance Princi-
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ple (LaSalle (1960)), that the equilibrium point (18) is
globally asymptotically stable. This completes the proof.

�
Remark 4. In fact, in the situation where ε = 0, the
proof of Theorem 1 and 3 will be much easier and the
control strategy is still valid. However, ε > 0 is a necessary
condition for the self-organized control strategy to be
presented in the next section.

4. SELF-ORGANIZED CONTROL STRATEGY

In Section 3, although the desired formation can be
achieved through a few external regulation, the vertex
robots should be carefully chosen to satisfy condition (7).
In this section, we will propose a self-organized control
strategy which is free of the choice of vertex robots. By
communicating with neighbors, the external influence can
be smoothly transferred and finally stabilized at “right
position”. In the process of influence transition, there may
be two adjacent robots affected by the external regulation.
In this paper, every single robot is only allowed to be
influenced by one external input at a time.

Let Γ = [γij ] ∈ Rn×m be the influence incidence matrix
with 0 ≤ γij ≤ 1 and

∑
i∈V γij = 1. γij indicates the

coupling strength between robot i and the jth external
control input. The larger γij is, the more influence is
exerted to robot i from the jth external input. γij = 0
means that the motion of agnet i is independent of fej .

Then the control input for robot i is designed as

ui =
∑
j∈Ni

uij +
∑
j∈Nm

γijf
e
j . (31)

Recall that robots in the S = {s0, s1, · · · , sm−1} are those
who are exerted by external inputs. The set S is organized
such that

(si − s0) mod n > (si−1 − s0) mod n, i ∈ Nm − {0}.
At the initial stage, without loss of generality, we assume
the external control input fei is applied to robot si, i.e.,
γsii = 1, i ∈ Nm. As the swarm formation evolves, the
external control input moves along the virtual “elastic
string”, and hence γij changes continuously. Let variables
γj denote the positions of external control inputs, written
as

γj =

{
i, if γij = 1,
i+ γ(i+1)j , if γij > 0 and γ(i+1)j > 0.

(32)

To derive the dynamics of γj , we introduce an auxiliary
variable δj ∈ R, j ∈ Nm.

1) If γij = 1, δj is defined as

δj , (||ui(i−1)|| − ||fej−||)− (||ui(i+1)|| − ||fej+||).
(33)

2) If γij > 0 and γ(i+1)j > 0, δj is defined as

δj ,(||ui(i+1) + γijf
e
j || − ||fej−||)

− (||u(i+1)i + γ(i+1)jf
e
j || − ||fej+||) + ε.

(34)

Then the updating law of γj is given by

γ̇j = α
(
δj + βγijγ(i+1)jsgn(δj)

)
, (35)

where α and β are two positive constants.

In this proposed control method, not only the sensing is
carried out in a local manner, but also the interaction

(a) t = 0s (b) t = 7s

(c) t = 45s (d) t = 80s

(e) t = 200s

Fig. 2. Formation evolution of 48 robots using controller
(31)

between neighbors and external control inputs is imple-
mented locally. In addition, consider that the external reg-
ulation is transferred automatically based on the dynamics
of γj . Therefore, the control strategy is self-organized and
distributed. Due to the complexity of the control strategy,
we do not have rigorous proof for global convergence to
the desired equilibrium. But convergence to the desired
polygon formation can be validated through the following
simulation results.

5. SIMULATIONS

This section presents simulation results to verify the ef-
fectiveness of the proposed self-organized control strate-
gy. Consider a swarm of 48 robots with random initial
positions. The desired polygon formation (b∗, q∗) is a do-
decagon. The vector b∗ is set as b∗ = [4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4]T . The nominal configuration q∗ is given by

q∗ =

[
−5 −2.5 −2.5 −5 2.5 −2.5 5 2.5 2.5 5 −2.5 2.5
0 4 −4 0 −4.5 −4.5 0 −4 4 0 4.5 4.5

]
.

The set of robots who are influenced by external inputs
is set as S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. The control
variables are choosed as k = 8, ε = 2, α = 0.4, and β = 4.
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Fig. 3. Position changes of external control inputs

Fig. 2 shows the formation shape of the swarm robots
at t = {0, 7, 45, 80, 200}s. It can be seen that the robots
from random initial positions finally converge to the de-
sired polygon formation using the self-organized control
strategy. The position transfers of external control inputs
are shown in Fig. 3, which implies that the external control
inputs will eventually stop at the “right” robots.

6. CONCLUSION AND FUTURE WORK

In this paper, we study the formation control problem
of swarm robots under cyclic topologies. First, inspired
by elastic strings, we have proposed a distributed con-
trol strategy to achieve polygon formation shape with a
small number of external control inputs. Then to relax
the constraint that the external influences need to be ap-
plied to appropriate robots, we have designed an adaptive
influence-transition mechanism to allow the external influ-
ence to transfer between neighboring robots. By utilizing
this mechanism, we have proposed a self-organized control
strategy, within which the external regulation can be ini-
tially exerted to arbitrary robots. Future work includes
extending the current control strategy to more general
topologies rather than only cyclic topologies.
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