
Piecewise Affine Feedback Control for
Approximate Solution of the Target

Control Problem ⋆

Pavel A. Tochilin ∗

∗ Moscow State (Lomonosov) University, Faculty of Computational
Mathematics and Cybernetics (VMK);GSP-2, Moscow, 119991, Russia

(e-mail: tochilin@cs.msu.ru)

Abstract: This paper presents an approach for approximate solution of the target control
problem for a class of nonlinear systems on a finite time interval. The main idea is to use
a comparison principle from dynamic programming theory together with a special class of
piecewise affine value functions for the piecewise linearized form of the original system of
ODEs. Two cases are considered: with continuous value function and with discontinuous one.
The resulting feedback control functions are also piecewise affine, continuous or discontinuous
respectively. For both cases the theorems on sufficient conditions for solving the feedback control
problem are formulated and proved. The appropriate computational procedures complement
theoretical results.
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1. INTRODUCTION

This work is devoted to the development of methods of
approximate construction of feedback control for a system
of nonlinear differential equations on a finite time interval.
The main idea is to combine the approach of dynamic
programming theory (and in particular comparison princi-
ple (Kurzhanski (2006), Kurzhanski and Varaiya (2014)))
with the techniques of piecewise affine value and control
functions defined on a set of simplices in the state space
(Habets et al. (2006), Girard and Martin (2012)).

The problem of control synthesis can be solved using the
Hamilton-Jacobi-Bellman equation (HJB) for the auxiliary
value function (Kurzhanski and Varaiya (2014), Kurzhan-
ski and Varaiya (2007)), with given boundary conditions.
In general one should obtain some generalized solution of
this equation (Subbotin (1995), Fleming and Soner (2006),
Kruzhkov (1966)). The zero level set of the constructed
function coincides with the solvability set of the considered
control system. It contains all the starting positions from
which it is possible to solve the target control problem.
The construction of such set, as well as the corresponding
set-valued mapping – solvability tube, is a difficult, urgent
mathematical problem. This tube or its internal approxi-
mations can be used to find the feedback control through
the ’aiming’ rule (Krasovski and Krasovski (1995)). In this
paper the value function is approximated from above using
piecewise affine functions of a special kind. This allows to
get internal estimates of the desired solvability tube and
also piecewise affine feedback control.

⋆ This work is supported by Russian Foundation for Basic Research
(grants 19-01-00613-a and 16-29-04191-ofi m).

In Girard and Martin (2012), an attempt was made to use
piecewise affine control functions to solve the problem of
transferring an autonomous system from a given initial set
to a target set, on an infinite time interval. However, the
proposed algorithm did not guarantee the existence of a
solution even if it exists, and did not allow to solve the
problem for a given finite time interval. In this paper an
alternative approach is developed. It focuses on solving the
problem in a finite, given time. In addition, the method
obtained here allows to transfer the system’s trajectory
inside a small neighborhood of the target set, even if it is
impossible to bring it directly into this set.

The approach proposed in this paper involves the con-
struction of a piecewise affine approximation of the original
nonlinear system of differential equations on a given par-
tition of the state space domain into a tuple of simplices.
This approach is usually called “hybridization” (Asarin
et al. (2007)). Next, using the comparison principle a
piecewise affine value function for the resulting switched
system (Tochilin (2015)) can be constructed. The main
difficulty here is to choose an adequate scheme for cal-
culation of the values of this function at the vertices of
simplices. Simultaneously an admissible feedback control
should be presented. The latter means that the control
strategy should generate some well-defined trajectories of
the original nonlinear system. These problems are solved in
two different ways. First, an algorithm for constructing a
continuous piecewise affine value function and correspond-
ing continuous piecewise affine control is described. The
results are then generalized to the case when the value
and control functions can have finite discontinuities at the
boundaries of simplices.
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The work of the algorithms based on the proposed schemes
is demonstrated by the example of controlling a system
used in mathematical modeling of a population of microor-
ganisms.

2. SYSTEM’S MODEL

Consider a system of nonlinear ordinary differential equa-
tions

ẋ = f(t, x) + g(t, x)u, t ∈ [t0, t1], x ∈ Ω. (1)

Here Ω – is a compact set in the space Rnx . Let f(t, x)
be a twice continuously differentiable vector-function,
g(t, x) – continuously differentiable matrix-function of x.
Both functions depend continuously on t ∈ [t0, t1]. The
starting and final time instants t0, t1 are fixed. The feed-
back control function u(·) satisfies the following pointwise
restrictions: u = u(t, x) ∈ P, where P ⊂ Rnu is some
convex and compact set.

An admissible feedback control u(·) is defined as a set-
valued function, which satisfies the mentioned pointwise
restrictions and guarantees the existence of solutions to the
differential inclusions obtained from (1) for any x0 ∈ Ω. A
set of all such feedback control strategies is denoted as Uf .

3. FEEDBACK CONTROL PROBLEM

Consider some compact set X1 ⊂ Ω that can be presented
in the following form: X1 = {x ∈ Ω : φ(x) ≤ 0}. Here φ(x)
is some twice continuously differentiable function.

The main problem is to obtain feedback control strategy
u(·) ∈ Uf that transfers the trajectory of (1) from a given
initial position (τ, x(τ)), τ ∈ [t0, t1] into the target set X1.
If it’s not possible to get inside X1, then it’s necessary to
get into it’s neighborhood with minimal size.

The solvability set W(t) = W(t, t1,X1) for a fixed t ∈
[t0, t1] contains all values x ∈ Ω for each of which a control
strategy u(·) ∈ Uf exists that guarantees for any trajectory
x(τ) = x(τ, t, x)|u, τ ∈ [t, t1], the validity of the following
inclusion: x(t1) ∈ X1.

Consider a value function

V (t, x) = min
u(·)∈Uf

max
x(·)

{
φ(x(t1))

∣∣∣x(t) = x
}
, (2)

where x(·) is a component of system’s trajectory that
starts from position {t, x} with control function u(·) fixed.
The value function is related to the solvability set through
the following formula:

W(t, t1,X1) = {x ∈ Ω : V (t, x) ≤ 0} . (3)

We will also consider the µ-neighborhood of the solvability
set

Wµ(t, t1,X1) = {x ∈ Ω : V (t, x) ≤ µ} , µ ≥ 0. (4)

If the value function V (t, x) is differentiable in some point
(t, x) then it satisfies HJB equation (Fleming and Soner
(2006))

min
u∈P

V ′(t, x; (1, (f(t, x) + g(t, x)u)T )T ) = 0. (5)

Here V ′(t, x; l) is a directional derivative of V (t, x) at a
point (t, x) with direction l ∈ Rnx+1. At the final time
instant

V (t1, x) = φ(x), ∀x ∈ Ω. (6)

In general the function V (t, x) can be nondifferentiable,
and hence the solution to (5) should be considered in a
generalized sense (for example, as a viscosity solution)
(Subbotin (1995), Fleming and Soner (2006)).

One of the goals of this paper is to find an approximate
solution V (t, x) of (5) and (6), that can be obtained using
the comparison principle, in a special class of piecewise
affine functions. The problem of control synthesis will be
solved simultaneously.

4. PIECEWISE AFFINE SWITCHED SYSTEM

Consider some partitioning of the domain Ω into simplices
(Rockafellar and Wets (1998)) Ω(i), i = 1, ..., N , that
intersect with each other only on boundary points. Each
face of the simplex Ω(i) that is the convex hull of its
nx vertices is either a part of the boundary of the set
Ω itself, or is a face of an adjacent simplex Ω(k), k ̸= i.
Also, suppose that ∪N

i=1Ω
(i) = Ω. Consider g1, . . . , gS –

all vertices of simplices, S is a total number of unique
vertices. Here and further, the superscript (i) denotes
the correspondence of the considered function, vector or
matrix to the simplex Ω(i).

For any simplex Ω(i) consider g
(i)
1 , . . . , g

(i)
nx+1 – its ver-

tices 1 . Let’s make a matrix G(i) from the column vectors
g
(i)
1 , . . . , g

(i)
nx+1. For each x ∈ Ω(i) there is a unique vector

α(i)(x) = (α
(i)
1 , . . . , α

(i)
nx+1)

T of barycentric coordinates

such that
∑nx+1

k=1 α
(i)
k = 1, α

(i)
k ⩾ 0,∀k, G(i)α(i)(x) = x.

Let’s extend the vector x to x̃ =

(
x
1

)
, and consider

G̃(i) =

(
g
(i)
1 . . . g

(i)
nx+1

1 . . . 1

)
∈ R(nx+1)×(nx+1),(G̃(i))−1 =(

H(i) h(i)
)
. Then α(i)(x) = H(i)x+ h(i).

Define c(i) as a center of a ball with minimal radius r(i),
that includes Ω(i): ∥x− c(i)∥ ≤ r(i), ∀x ∈ Ω(i).

For x ∈ Ω(i) the right-hand side of (1) can be transformed
as follows:

f(t, x) + g(t, x)u = A(i)(t)x+B(i)(t)u+ f (i)(t) +R, (7)

where F (i)(t) = (f(t, g
(i)
1 ), ..., f(t, g

(i)
nx+1)) ∈ Rnx×(nx+1),

A(i)(t) = F (i)(t)H(i) ∈ Rnx×nx , B(i)(t) = g(t, c(i)),
f (i)(t) = F (i)(t)h(i) ∈ Rnx , R = R(t, x) is an error
of local linearization. The s-th component of this error
(s = 1, ..., nx) can be estimated for any x ∈ Ω(i):

|Rs(t, x)| ⩽ R(i)
s (t) = M (i)

s (t)d(i) +N (i)
s (t)r(i), (8)

M
(i)
s (t) = max

{
ρmax

(
∂2fs(t, x)

∂x2

)
: x ∈ Ω(i)

}
,

d(i) = max

{nx+1∑
k=1

αk

∥∥∥nx+1∑
r=1

αr(g
(i)
r − g

(i)
k

)

∥∥∥2

:

αk ∈ [0, 1], ∀k,
nx+1∑
k=1

αk = 1

}
,

1 The presence of a superscript (i) suggests that local numbering for
vertices by lower indices is used, rather than global (from 1 to S).
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N
(i)
s (t) = max

u∈P

{ nu∑
k=1

|uk| ·max

{∥∥∥∂gsk(t, x)

∂x

∥∥∥ : x ∈ Ω(i)
}}

,

ρmax(R) is a maximum singular number of a matrix R.

Now letQ(i)(t) = [−R
(i)
1 (t), R

(i)
1 (t)]×...×[−R

(i)
nx(t), R

(i)
nx(t)].

5. CONTINUOUS PIECEWISE AFFINE VALUE
FUNCTION

On the set of simplices Ω(i) consider a piecewise affine
function of the following form:

V (t, x) =

nx+1∑
k=1

α
(i)
k (x)v

(i)
k (t), if x ∈ Ω(i). (9)

Here v
(i)
k (t) = V (t, g

(i)
k ) are differentiable by t ∈ [t0, t1].

For any different simplices Ω(j1),...,Ω(jr) with a common

vertex gk the corresponding values v
(j1)
k1

(t),...,v
(jr)
kr

(t) for

this vertex will coincide; let’s denote them as vk(t). Thus
the function V (t, x) is uniquely defined by a set of val-

ues v1(t), ..., vS(t). Let v(i)(t) = (v
(i)
1 (t), ..., v

(i)
nx+1(t))

T ∈
Rnx+1. Then (9) can be transformed into

V (t, x) = (v(i)(t))T (H(i)x+ h(i)), while x ∈ Ω(i). (10)

The function V (t, x) is differentiable in any direction.
However, directional derivatives can have discontinuities
at the boundaries of neighboring simplices.

Let’s fix some simplex Ω(i). Consider the expression from
(5) while substituting V (t, x) from (10) and using (7) 2 :[

(v̇(i))T (H(i)x+ h(i)) + (γ(i)(t))T (A(i)(t)x+ f (i)(t))−

ρ(−(B(i)(t))T γ(i)(t)|P)
]
+ (γ(i)(t))TR(t, x) = 0, (11)

γ(i)(t) = (H(i))T v(i)(t). The expression in square brackets
is an affine function of x. It takes extreme values at the
vertices of Ω(i). In addition, one can specify an expression
for the minimizer by u ∈ P in (5), (11):

U∗(t, x) =

{
P(l) , l = −(B(i)(t))T γ(i)(t) ̸= 0
P , l = 0

, (12)

where P(l) = Argmax{lT z|z ∈ P}.
Hereinafter piecewise affine control functions of the follow-
ing form will be used: for any x ∈ Ω(i)

u(t, x) = Y (i)(t)(H(i)x+ h(i)) =

nx+1∑
k=1

αk(x)y
(i)
k (t). (13)

Here Y (i)(t) ∈ Rnu×(nx+1) is a matrix with columns

y
(i)
1 (t), ..., y

(i)
nx+1(t) — values of control in the vertices of

Ω(i). If y
(i)
k (t) ∈ P for any k, then according to the

convexity of P u(t, x) ∈ P for any x ∈ Ω. The continuous
piecewise affine control u(t, x) is uniquely determined by
the set of vector functions y1(t), ..., yS(t) corresponding to
the vertices of simplices.

Also consider a set-valued piecewise affine control func-
tions obtained similarly to (13):

U(t, x) =
nx+1∑
k=1

αk(x)Y(i)
k (t), if x ∈ Ω(i), (14)

2 Hereinafter ρ(l | P) is the value of the support function for a closed
convex set P in direction l.

where each Y(i)
k (t) ⊆ P is a set-valued mapping with

convex and compact values. U(t, x) is continuous with

respect to x if Y(i)
k (t) = Y(j)

k (t), ∀i, j: g(i)k = g
(j)
k .

6. INTERNAL APPROXIMATIONS OF
SOLVABILITY SET

Let i(x) be any number of simplex such that x ∈ Ω(i(x)).
Consider η1, ..., ηS — such values that ∀x ∈ Ω(i(x))

φ(x) ≤ (η(i(x)))T (H(i(x))x+ h(i(x))) =

nx+1∑
k=1

αk(x)η
(i(x))
k

, (15)

where η(i(x)) = (η
(i(x))
j1

, ..., η
(i(x))
jnx+1

)T , g
(i(x))
j1

, ..., g
(i(x))
jnx+1

– the

vertices of Ω(i(x)).

For some fixed i = 1, ..., N consider the Taylor series for
φ(x) centered at x ∈ Ω(i):

φ(g
(i)
k

) = φ(x)+

(
∂φ

∂x
(x)

)T

(g
(i)
k

−x)+(g
(i)
k

−x)T
∂2φ

∂x2
(ξk)(g

(i)
k

−x),

ξk = ξk(x, g
(i)
k ) ∈ Ω(i). Let’s combine the obtained

formulas for different values of k = 1, ..., nx+1, multiplying
them by the corresponding functions αk(x):
nx+1∑
k=1

αk(x)φ(g
(i)
k

) = φ(x)+

nx+1∑
k=1

αk(x)(g
(i)
k

−x)T
∂2φ

∂x2
(ξk)(g

(i)
k

−x).

Besides, ∀x ∈ Ω(i)∣∣∣∣(g(i)k
− x)T

∂2φ

∂x2
(ξk)(g

(i)
k

− x)

∣∣∣∣ ≤ K
(i)
k

= max
ξ∈Ω(i)

ρmax

(
∂2φ

∂x2
(ξ)

)
· max
j=1,...,nx+1

∥g(i)
k

− g
(i)
j ∥2. (16)

Hence if for any k = 1, ..., S ηk = φ(gk) + maxi,s{K(i)
s :

g
(i)
s = gk}, then the relation (15) is valid, and the function∑nx+1
k=1 αk(x)η

(i(x))
k is continuous for x ∈ Ω.

Theorem 1. Consider any piecewise continuous set-valued
mappings Yk(t) ⊆ P, t ∈ [t0, t1], k = 1, ..., S. Let

ζk(t) = max
i

{
(γ(i)(t))T (A(i)(t)gk + f (i)(t)) + ρ

(
γ(i)(t)|Q(i)(t)

)
+ ρ

(
(B(i)(t))T γ(i)(t)|Yk(t)

)∣∣∣i ∈ {1, ..., N} : gk ∈ Ω(i)
}
,

γ(i)(t) = (H(i))T v(i)(t). For some continuous functions
δk(t) let vk(t), k = 1, ..., S, be solutions of{

v̇k(t) = −ζk(t) + δk(t) , t ∈ [t0, t1]
vk(t1) = ηk

, (17)

while V (t, x) is defined according to (9). Then the set

Wint
µ (t0) =

{
x ∈ Ω

∣∣∣V (t0, x) ≤ µ−
∫ t1

t0

max
k

{δk(τ)}dτ
}

is an internal approximation of the µ-neighborhood of the
solvability set:

Wint
µ (t0) ⊆ Wµ(t0, t1,X1).

Proof. Assume that the set Wint
µ (t0) is not empty. For

any t ∈ [t0, t1], x ∈ Ω consider piecewise affine, continuous
over x and piecewise continuous over t control function

U∗(t, x) =

nx+1∑
k=1

αk(x)Y(i)
k (t), x ∈ Ω(i), i = 1, ..., N. (18)
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For any x0 ∈ Wint
µ (t0) define some solution x(t) =

x(t, t0, x0)|U∗(·), t ∈ [t0, t1], of (1). Let u∗(t, x) =∑nx+1
k=1 αk(x)y

(i)
k (t) = (Y (i)(t))T (H(i)x+h(i)) ∈ U∗(t, x) is

a continuous selection of this mapping that corresponds to
the obtained trajectory. Here matrix Y (i)(t) ∈ R(nx+1)×nu

is combined from the rows (y
(i)
k (t))T : y

(i)
k (t) ∈ Y(i)

k (t). Let’s
estimate from above the derivative of V (t, x) along the
constructed trajectory 3 :

V ′(t, x; (1, A(i)(t)x+B(i)(t)u∗(t, x) + f (i)(t) +R(t, x))T )

≤ (v̇(i))T (H(i)x+ h(i)) + (γ(i)(t))T (A(i)(t)x+B(i)(t)(Y (i)(t))T ·

(H(i)x+ h(i)) + f (i)(t)) + ρ
(
γ(i)(t)|Q(i)(t)

)
≤ max

k

{
v̇k(t) + (γ(i)(t))T (A(i)(t)gk +B(i)(t)yk(t) + f (i)(t)) :

gk ∈ Ω(i)
}

+ ρ
(
γ(i)(t)|Q(i)(t)

)
≤ max

k

{
v̇k(t) + ζk(t) : gk ∈ Ω(i)

}
≤ max

k
{δk(t)}. (19)

Integrating V (t, x) along the constructed trajectory we
obtain:

φ(x(t1)) ≤ (η(i(x(t1))))T (H(i(x(t1)))x+ h(i(x(t1))))

= V (t1, x(t1)) ≤ V (t0, x0) +

∫ t1

t0

max
k

{δk(τ)}dτ ≤ µ,

and thus x0 ∈ Wµ(t0, t1,X1).

The theorem 1 is formulated for a fixed initial time t0.
However, it is easy to see that a similar statement holds
for any t ∈ [t0, t1].

Let W (t, x) = V (t, x)+
∫ t1
t0

maxk{δk(τ)}dτ . It follows from
the proof of the theorem that if the inequality W (t, x) ≤ µ
holds, then piecewise affine control (18) solves the problem
of transferring the trajectory of the system from a given
position (t, x) to a µ-neighborhood of the target set X1.

7. ALGORITHM FOR PIECEWISE AFFINE
FEEDBACK CONTROL

For some fixed vertex gk consider i1, ..., im – the numbers
of all simplices that include this vertex. Let

∆k(v1, ..., vS) =

m∑
j=1

m∑
l=j+1

∥γ(ij) − γ(il)∥2.

If m = 1, then ∆k = 0. It’s possible to simplify the
expression for ∆k(v1, ..., vS). For that purpose consider the
set of all vertices gj1 , ..., gjr of simplices Ω(i1), ...,Ω(im).
Suppose that j1 < ... < jr, and js = k for some

s ∈ {1, ..., r}. Let ṽk = (vj1 , ..., vjr )
T , v(i) = S

(i)
k · ṽk,

∀i = i1, ..., im, where S
(i)
k ∈ R(nx+1)×r. Then

∆k(v1, ..., vS) = (ṽk)
TPkṽk, (20)

where Pk =
∑m

j=1

∑m

l=j+1
((H(ij))TS

(ij)

k
− (H(il))TS

(il)
k

)T ·

((H(ij))TS
(ij)

k
−(H(il))TS

(il)
k

). Let sk(t) = sign
{
2(es)

TPkṽk
}
,

where all the elements of es ∈ Rr are zeros, except 1
standing at the s-th position. Finally, consider

δk(t) = εsk(t)∆k(t). (21)

Here ε > 0 – some fixed value. The use of (21) in
(17) allows to avoid divergence of the values of γ(ij) in

3 For brevity of notation the functions’ arguments are omitted here:
i = i(t), x = x(t).

the neighboring simplices as t decreases from t1 to t0.
This term corresponds to the “small viscosity” used in
the numerical method of solving first order PDEs (see
Kruzhkov (1966)).

The theorem 1 also allows to construct a piecewise affine,
continuous feedback control that leads the trajectory of the
system to a priori known small neighborhood of the target
set. When constructing a piecewise affine value function
for each t ∈ [t0, t1] , the set Yk(t), k = 1, ..., S, can be
defined as

Yk(t) =
1

m

m∑
j=1

U∗,(ij)(t, gk), (22)

where U∗,(ij)(t, gk) is obtained from (12) for the simplex
Ω(ij). Here i1, ..., im – are the numbers of all simplices
that include gk. The choice of control in the form (22)
is due to the fact that it is close to the “optimal” control
U∗,(ij)(t, gk) for each of the simplices Ω(ij).

Now the basic algorithm for solving the feedback control
problem can be formulated:

(1) Using the constructions of the theorem 1 and also
formulas (20) – (22) it’s necessary to calculate a
continuous piecewise affine function V (t, x), and
also an adjusted function W (t, x) = V (t, x) +∫ t1
t

maxk{δk(τ)}dτ , t ∈ [t0, t1], x ∈ Ω.
(2) For any state (t, x) the value W (t, x) specifies the

size of the neighborhood of X1 that is guaranteed to
be reachable. In particular, if W (t, x) = 0, then an
admissible control exists that transfers the trajectory
into a target set.

(3) Feedback control that solves the main problem is
given by the following formula:

U(t, x) =
nx+1∑
k=1

αk(x)Yk(t), (23)

where Yk(t) are defined from (22), U∗,(ij)(t, gk) – from
(12). Here for any i γ(i)(t) = ∂W

∂x (t, ξ), ∀ξ ∈ intΩ(i).

8. DISCONTINUOUS VALUE AND CONTROL
FUNCTIONS

The results of the previous sections can be generalized
to the case of value and control functions that can have
discontinuities on the boundaries of simplices. In this
section, we assume that the system (1) is stationary.

Denote σ(i, k) as the index in the local numbering for
the simplex Ω(i) corresponding to the vertex gk, that

is g
(i)
σ(i,k) = gk. Suppose that for each simplex Ω(i) the

values v
(i)
σ(i,k)(t) and Y(i)

σ(i,k), corresponding to a fixed vertex

gk, can differ for different values of i. Let i1, ..., im be
the numbers of all simplices including vertex gk. The
discontinuous piecewise affine value function V (t, x) can
still be defined from (9).

For any two adjacent simplices Ω(i∗) and Ω(i∗∗) having
a common face Hi∗,i∗∗ , which is an (nx − 1)-dimensional

simplex, we’ll say that Ω(i∗) is unreachable from Ω(i∗∗) if
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min
s

{
(ni∗,i∗∗ )

T (A(i∗∗)gs + f (i∗∗))− ρ(−(B(i∗∗))Tni∗,i∗∗ |P)

− ρ(−ni∗,i∗∗ |Q(i∗∗)) : gs – is a vertex of Hi∗,i∗∗

}
> 0. (24)

Here ni∗,i∗∗ is a normal to Hi∗,i∗∗ that points to the half-

space that contains Ω(i∗∗). If the condition (24) is not
satisfied, then Ω(i∗) is reachable from Ω(i∗∗).

For each vertex gk, each pair of simplices Ω(i∗) and Ω(i∗∗)

containing this vertex, i1 ≤ i∗ < i∗∗ ≤ im, simplex Ω(i∗)

is reachable from Ω(i∗∗) if there are such different values
ij1 , ..., ijs , s ∈ {2, ...,m}, that ij1 = i∗, ijs = i∗∗ and

Ω(ijl ) is reachable from Ω(ijl+1
) for any l = 1, ..., s −

1. Otherwise, Ω(i∗) is unreachable from Ω(i∗∗). For any
i ∈ {i1, ..., im} let I(i, k) = {j ∈ {i1, ..., im}, j ̸=
i, Ω(j) is reachable from Ω(i)} ∪ {i}.
Theorem 2. Consider a set of piecewise continuous set-

valued mappings Y(i)
σ(i,k)(t) ⊆ P, t ∈ [t0, t1], k = 1, ..., S,

i = 1, ..., N . Let for any k, i∗, i∗∗ such that gk ∈ Ω(i∗) ∩
Ω(i∗∗) the following condition be valid:

Y(i∗)
σ(i∗,k)(t) = Y(i∗∗)

σ(i∗∗,k)(t), if i∗ ∈ I(i∗∗, k), i∗∗ ∈ I(i∗, k). (25)

For any k = 1, ..., S, i = 1, ..., N let

ζ
(i)

σ(i,k)
(t) = max

s

{
(γ(s)(t))T (A(s)gk + f (s)) + ρ

(
γ(s)(t)|Q(s)

)
+ ρ

(
(B(s))T γ(s)(t)|Y(s)

σ(s,k)
(t)

)∣∣∣i ∈ {1, ..., N} : gk ∈ Ω(s),

s ∈ I(i, k) and v
(s)

σ(s,k)
≥ v

(i)

σ(i,k)

}
, γ(i)(t) = (H(i))T v(i)(t), (26){

v̇
(i)

σ(i,k)
(t) = −ζ

(i)

σ(i,k)
(t) + δ

(i)

σ(i,k)
(t), t ∈ [t0, t1]

v
(i)

σ(i,k)
(t1) = φ(gk) + max

j,s
{K(j)

s : g
(j)
s = gk, j ∈ I(i, k)} . (27)

Here δ
(i)
σ(i,k)(t) are some piecewise continuous functions

such that for any i∗, i∗∗, gk ∈ Ω(i∗) ∩ Ω(i∗∗), if i∗∗ ∈
I(i∗, k), v(i

∗∗)
σ(i∗∗,k) ≥ v

(i∗)
σ(i∗,k) then

δ
(i∗)
σ(i∗,k)(t) = δ

(i∗∗)
σ(i∗∗,k)(t). (28)

Define V (t, x) according to (9). Then the set

Wint
µ (t0) =

{
x ∈ Ω

∣∣∣V (t0, x) ≤ µ

−
∫ t1

t0

max
k,i

{
δ
(i)

σ(i,k)
(τ) : gk ∈ Ω(i)

}
dτ

}
(29)

is an internal approximation of the µ-neighborhood of the
solvability set:

Wint
µ (t0) ⊆ Wµ(t0, t1,X1).

Proof. First let’s prove that for any vertex gk, any two
numbers i∗, i∗∗ such that gk ∈ Ω(i∗) ∩ Ω(i∗∗), if i∗∗ ∈
I(i∗, k), then v

(i∗)
σ(i∗,k)(t) ≥ v

(i∗∗)
σ(i∗∗,k)(t), ∀t ∈ [t0, t1]. Both

functions are continuously differentiable, and v
(i∗)
σ(i∗,k)(t1) ≥

v
(i∗∗)
σ(i∗∗,k)(t1) according to (27). Suppose that ∃t ∈ [t0, t1)

for which v
(i∗)
σ(i∗,k)(t) < v

(i∗∗)
σ(i∗∗,k)(t), and let θ = inf{τ ∈

[t, t1] : v
(i∗)
σ(i∗,k)(τ) ≥ v

(i∗∗)
σ(i∗∗,k)(τ)}. Then θ > t, v

(i∗)
σ(i∗,k)(θ) =

v
(i∗∗)
σ(i∗∗,k)(θ). Therefore ∃τ∗ ∈ [t, θ]:{

v̇
(i∗)
σ(i∗,k)(τ

∗) > v̇
(i∗∗)
σ(i∗∗,k)(τ

∗)

v
(i∗)
σ(i∗,k)(τ

∗) < v
(i∗∗)
σ(i∗∗,k)(τ

∗)
.

From (28) it follows that δ
(i∗)
σ(i∗,k)(τ

∗) = δ
(i∗∗)
σ(i∗∗,k)(τ

∗). Ac-

cording to (26) ζ
(i∗)
σ(i∗,k)(τ

∗) ≥ ζ
(i∗∗)
σ(i∗∗,k)(τ

∗). Hence using

(27) we obtain v̇
(i∗)
σ(i∗,k)(τ

∗) ≤ v̇
(i∗∗)
σ(i∗∗,k)(τ

∗), and that con-

tradicts to the inequality obtained before.

Consider a piecewise affine control function

U∗(t, x) =

nx+1∑
k=1

αk(x)Y(i)
k (t), x ∈ Ω(i), i = 1, ..., N. (30)

The set-valued mapping U∗(t, x) is continuous by x in
each of the simplices, but can have discontinuities at
their boundaries. However, such discontinuous control is
admissible, as it generates trajectories of (1), since (25)
is satisfied. It follows from this condition that the control
function’s gap at the boundary of some simplices Ω(i∗)

and Ω(i∗∗) is possible only in cases where the trajectory
of the system can get from the first simplex to the
second, or back, but not there and back at the same time.
For any trajectory there will be no more than a finite
number of points of discontinuity of the control function
while t ∈ [t0, t1]. For any x0 ∈ Wint

µ (t0) consider some
solution x(t) = x(t, t0, x0)|U∗(·), t ∈ [t0, t1]. Let u

∗(t, x) =∑nx+1
k=1 αk(x)y

(i)
k (t) = (Y (i)(t))T (H(i)x+h(i)) ∈ U∗(t, x) –

the corresponding single-valued selection of the set-valued
mapping. Here Y (i)(t) ∈ R(nx+1)×nu is combined from the

rows (y
(i)
k (t))T : y

(i)
k (t) ∈ Y(i)

k (t). There exist t0 = τ1 <
τ2 < ... < τK−1 = τK = t1 such that for any interval
[τj , τj+1], j = 1, ...,K − 1, the trajectory lies inside single

simplex Ω(i), or it moves along the boundary of several
simplices Ω(i1), ...,Ω(im). For t ∈ (τj , τj+1) it’s possible to
estimate the total derivative of the value function along
the trajectory similarly to (19):

V ′(t, x(t); (1, A(i(t))x(t) +B(i(t))u∗(t, x(t)) + f (i(t)) +R(x(t)))T )

≤ max
k

{
v̇
(i(t))

σ(i(t),k)
(t) + ζ

(i(t))

σ(i(t),k)
(t) : gk ∈ Ω(i(t))

}
≤ max

k,i

{
δ
(i)

σ(i,k)
(t) : gk ∈ Ω(i)

}
. (31)

For t = τj , j = 1, ...,K, the function V (t, x(t)) can have

a gap. Let x(τj) ∈ Ω(i∗) ∩ Ω(i∗∗), and the trajectory

x(t) transfers from Ω(i∗) to Ω(i∗∗) at time instant τj .

Hence Ω(i∗∗) is reachable from Ω(i∗). It was proved that

v
(i∗)
σ(i∗,k)(τj) ≥ v

(i∗∗)
σ(i∗∗,k)(τj), for any vertex gk of the facet

H = Ω(i∗) ∩ Ω(i∗∗). The values V (τj − 0, x(τj − 0))

and V (τj + 0, x(τj + 0)) are convex hulls of v
(i∗)
σ(i∗,k)(τj)

and v
(i∗∗)
σ(i∗∗,k)(τj) for various values of k respectively, with

similar coefficients. Then it follows that V (τj − 0, x(τj −
0)) ≥ V (τj+0, x(τj+0)), and any gap of the value function
is accompanied by it’s decrease.

Taking into account the described constraints on disconti-
nuities and integrating V (t, x(t)) along the constructed
trajectory on each of the segments [τj , τj+1], we obtain

φ(x(t1)) ≤ V (t0, x0) +

∫ t1

t0

max
k,i

{
δ
(i)

σ(i,k)
(τ) : gk ∈ Ω(i)

}
dτ ≤ µ,

and hence x0 ∈ Wµ(t0, t1,X1).

As in the case of the continuous value function, it makes

sense to define the values of δ
(i)
σ(i,k)(t) in such a way as
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to minimize the discrepancies of the values of γ(i)(t) for
any neighboring simplices, that is similar to (20) – (21).
However, it is necessary to take into account (28) and (25).

9. EXAMPLE

Consider a system of differential equations used for mod-
eling bioprocesses in bioreactors (Alt and Markov (2012)): ẋ1 = −αµ∗ x1x2

K + x1
− u(x1 − S)

ẋ2 = µ∗ x1x2

K + x1
− ux2

. (32)

Here x1, x2 are the concentrations of the substrate and
the biomass of bacteria, S is a constant concentration of
fresh nutrient, u ∈ [umin, umax] – the inflow, that can be
controlled. The value α > 0 is a constant that defines the
growth yield, while µ∗ > 0 represents the specific growth
rate of the biomass. K > 0 defines a certain pattern of the
biomass growth for a specific type of microorganisms.

The following system parameters were used in the sim-
ulation: P = [umin, umax], umin = 0.3, umax = 0.4,
K = 7.1, µ∗ = 1.2, S = 5.7, α = 10.5. The target
set X1 = {(x1, x2)

T : (x1 − 1.2)2 + (x2 − 0.9)2 ≤ 0.01},
t ∈ [0, 1.5].

Fig. 1. The case of continuous value function.

Fig. 2. The case of discontinuous value function.

Fig. 1, 2 demonstrate the internal estimates of the solvabil-
ity tube, obtained respectively using the continuous and
discontinuous value functions. Also the components of the
trial trajectories of the system (32) with the continuous
and discontinuous piecewise affine feedback control (18)
and (30) correspondingly are shown. Here x0 = (1; 1)T .

For the first case V (0, x0) = 0.1317, while V (1.5, x(t1)) =
0.0135 (the decreasing distance is due to the “nonopti-
mality” of the uncertainty). For the second, discontinuous
case V (0, x0) = 0.1301, V (1.5, x(t1)) = 0.0129 – that’s the
effect of the ability to use discontinuous control strategy.

10. CONCLUSION

This paper presents a solution scheme for the target con-
trol problem in the class of piecewise affine functions for a
rather broad class of nonlinear systems. Two approaches
using continuous or discontinuous value functions are pre-
sented. The first one is easier to implement, but the second,
discontinuous case is less conservative. The proposed ap-
proach can be effectively used to solve control problems for
nonlinear systems with small dimension of the state space.
For example, such problems arise in mathematical biology.
The problem of convergence of the proposed approximate
solutions to the real value function when the size of sim-
plices tends to zero remains open. It will be considered in
the future papers.
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