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Abstract: Many systems of interest to control engineering can be modeled by linear comple-
mentarity problems. We introduce a new notion of equivalence between linear complementarity
problems that sets the basis to translate the powerful tools of smooth bifurcation theory to
this class of models. Leveraging this notion of equivalence, we introduce new tools to analyze,
classify, and design nonsmooth bifurcations in linear complementarity problems and their
interconnection.
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1. INTRODUCTION

Bifurcation theory is one of the most successful tools for
the analysis of nonlinear dynamical systems that depend
on a control parameter. The theory is firmly grounded on
the classical implicit function theorem (Golubitsky and
Schaeffer, 1985) and, therefore, it requires smoothness of
the maps under study. However, from a practical view-
point, it is common to approximate complicated nonlinear
maps by simpler models. In such situations, the resulting
approximation may be nonsmooth.

Linear complementarity problems are nonsmooth (but
continuous) models that arise in fields of science such
as economics (Nagurney, 1999), electronics (Acary et al.,
2011), mechanics (Brogliato, 1999), mathematical pro-
gramming (Murty, 1988), general systems theory (van der
Schaft and Schumacher, 1998), etc. They serve as a de-
parting point in the analysis of systems with unilateral
constraints, and also arise as piecewise linear approxima-
tions of nonlinear models (Leenaerts and Bokhoven, 1998).

Recently, there have been some attempts to extend bi-
furcation theory towards the nonsmooth setting, see e.g.
Di Bernardo et al. (2008); Leine and Nijmeijer (2004).
However, the emphasis has been directed towards anal-
ysis of discontinuous systems, and very little is known on
bifurcations in complementarity systems.

? This work was funded by UNAM-DGAPA-PAPIIT, grant
IA105518, and by CONACyT, grant A1-S-10610.

The purpose of this paper is to provide a methodology for
the realization of equilibrium bifurcations in linear com-
plementarity problems. The proposed framework mimics,
up to certain extent, the smooth program proposed by
Arnold et al. (1985) and relies on tools from nonsmooth
analysis and linear algebra. To achieve this, the concept
of topological equivalence in complementarity systems is
introduced. We focus on static models that arise as the
steady-state equations of continuous piecewise linear dy-
namical systems. Thanks to the piecewise linear structure,
the introduced equivalence is global, which constitutes a
major difference with respect to smooth bifurcation theo-
ries. This fundamental concept allows us to provide a com-
plete classification of planar complementarity problems.

The paper is organized as follows. Section 2 describes
the linear complementarity problem and related concepts.
Section 3 constitutes the main body of the paper and
addresses the problem of topological equivalence between
LCPs. Afterwards, an interconnection approach for the
realization of bifurcations is presented, together with an
example applied to the nonsmooth pleat and the pitch-
fork singularity. Because of space constraints, proofs are
omitted but can be found in (Castaños et al., 2019).

2. PRELIMINARIES

2.1 Linear Complementarity Problems

The linear complementarity problem (LCP) is defined as
follows.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 5509



Definition 1. Given a vector q ∈ Rn and a matrix M ∈
Rn×n, the LCP (M, q) consists in finding vectors z, w ∈ Rn
such that

w = Mz + q , Rn+ 3 w ⊥ z ∈ Rn+ , (1)

where the second relation, called the complementary con-
dition, is the short form of the following three conditions:
w ∈ Rn+, z ∈ Rn+, and w>z = 0.

In what follows, we introduce some concepts that will
be useful for studying the geometric structure of LCPs.
Given M and an index set α ⊆ {1, . . . , n}, we define the
complementary matrix CM (α) as

CM (α)·j =

{
−M·j if j ∈ α
I·j if j 6∈ α ,

where the subscript ·j denotes the j-th column. Now define
the continuous piecewise-linear function

fM (x) = C−M (α)x , x ∈ posCI(α) , (2)

where posCI(α) is the cone generated by the columns of
CI(α). Note that the cones posCI(α) are simply the 2n

orthants in Rn indexed by α ⊆ {1, . . . , n}, and that

fM (posCI(α)) = posCM (α) .

Proposition 2. (Cottle et al. (2009)). Let ProjS(x) be the
projection of x onto the set S and let z ∈ Rn be a solution
of the LCP (M, q). Then, x = w − z ∈ Rn is a solution of

fM (x) = q . (3)

Conversely, let x ∈ Rn be a solution of (3), then z =
ProjRn

+
(−x) ∈ Rn+ is a solution of the LCP (M, q).

Henceforth, we treat the LCP (M, q) and (3) as equivalent
problems, in the sense that we only need to know the
solution of one of them in order to know the solution of
the other.

The solutions of the LCP (M, q) depend on the geometry
of the complementary cones posCM (α). More precisely,
there exists at least one solution x of (3) for every α
such that q ∈ posCM (α). If CM (α) is nonsingular, the
solution is unique, whereas there exists a continuum of
solutions if CM (α) is singular. Thus, for a given q, there
can be no solutions, there can be one solution, multiple
isolated solutions, or a continuum of solutions, depending
on how many complementary cones q belongs to and which
properties these cones have.

2.2 Bifurcations in LCPs

In practical applications, the vector q depends on a control
or bifurcation parameter λ ∈ R. The bifurcation parameter
can be an applied voltage or current in electrical circuits,
a force or a torque in a mechanical system, or the amount
of capital injection in an economic system. The goal of
bifurcation theory is to understand how the number of
solutions changes as the bifurcation parameter is varied.
In LCPs we let q = q̄(λ), where q̄ : R → Rn is
at least continuous, although more regularity constraints
can be imposed as needed. The mapping q̄ defines a
continuous curve, or path in Rn. As λ lets q move along this
path, the number of solutions to the LCPs might change.
Points where the number of solutions changes are called
bifurcation points.

Fig. 1. Cone configuration for matrix M in (4). The thick
black lines depict the generators of the complemen-
tary cones posCM (α), α ⊆ {1, 2}, whereas the arcs
denote the complementary cones.

Example 3. Let us illustrate this idea in the simple case
where the path is a line segment joining two distinct points
qi ∈ R2, i ∈ {0, 1}, that is, q̄(λ) = (1 − λ)q0 + λq1 with
λ ∈ [0, 1]. In addition, let us set the matrix M as

M =

[
1 2
2 1

]
(4)

and proceed to analyze the two cases shown in Fig. 1.

Case a) We take the path q̄a(λ) given by

q̄a(λ) = (1− λ)

[
−4
0

]
+ λ

[
0
−4

]
, λ ∈ [0, 1] . (5)

According to Proposition 2, solving the LCP (M, q̄a(λ)) is
equivalent to finding x ∈ R2 satisfying

C−M (α)x = q̄a(λ), x ∈ posCI(α) , (6)

for α ⊆ {1, 2}. Noting that CM (α) = C−M (α)CI(α), it
follows that the solutions to (6) are given by

⋃
α⊆{1,2}Sα,

where

Sα =
{

(x, λ) ∈ R2 × [0, 1] | ∃ pλ(α) ∈ R2
+ :

x = CI(α)pλ(α) and q̄a(λ) = CM (α)pλ(α)
}

(7)

Roughly speaking, in order to solve the parametrized LCP
(M, q̄(λ)) we need to find pλ(α) (the representation of
q̄(λ) in terms of the generators of the α-th complementary
cone). Computing these explicitly and taking α = ∅ ⊂
{1, 2} we get

pλ(∅) = CM (∅)q̄a(λ) =

[
4λ− 4
−4λ

]
,

and it follows that pλ(∅) /∈ R2
+ for any λ ∈ R. Therefore,

S∅ = ∅. Now, for α = {1} ⊂ {1, 2} we get that

pλ({1}) = CM ({1})q̄a(λ) =

[
4− 4λ
8− 12λ

]
.

It follows that pλ({1}) ∈ R2
+ for λ ∈ (−∞, 2/3]. Hence,

S{1} =

{
(x, λ) ∈ R2 × [0, 2/3] | x =

[
4λ− 4
8− 12λ

]}
Following a similar procedure for α = {2} and α = {1, 2}
one gets the bifurcation diagrams shown on the left-hand
side of Fig. 2.

Case b) We take the path

q̄b(λ) = (1− λ)

[
−1
3

]
+ λ

[
3
−1

]
. (8)

As in the previous case, we need to solve a family of
constrained linear problems. Simple computations lead us
to the diagram on the right-hand side of Fig. 2.
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Fig. 2. Solutions to problem (6) for M given by (4) and
paths q̄a as in (5) (left), and q̄b as in (8) (right), both
with λ ∈ [0, 1].

It is clear that, as long as the path q̄(λ) lies in the interior
of the same cone, or set of cones, the number of solutions
cannot change. Exiting and/or entering a cone, that is,
crossing a cone face is thus a necessary condition for
a bifurcation to occur. It is not sufficient though. For
instance, in Example 3 Case b) above, the path q̄b(λ)
crosses different cones at the points λ ∈ { 1

4 ,
3
4}. However,

there is no change in the number of solutions, see Fig. 2,
right. This last observation poses the following question:
How can we characterize the face at which bifurcations
occur?

The nonsmooth Implicit Function Theorem (see Corollary
at page 256 of Clarke (1990)) provides an answer to the
last question. Let Ωf be the set of measure zero where
the Jacobian Df(x) of a Lipschitz continuous function
f : Rn → Rn does not exist.

Definition 4. (Clarke generalized Jacobian). The general-
ized Jacobian of f at x is the set

∂f(x) = co
{

lim
i→∞

Df(xi) | xi → x, xi 6∈ S, xi 6∈ Ωf

}
,

where S is any set of measure zero and co denotes convex
closure.

Definition 5. ∂f(x) is said to be of maximal rank if every
M in ∂f(x) is non-singular.

For a function F : Rn×Rm → Rn, F : (x, y)→ F (x, y), the
generalized Jacobian with respect to the first argument,
denoted by ∂xF (x, y), is the set of all n × n matrices M
such that [M N ] belongs to ∂F (x, y) for some n×mmatrix
N .

Theorem 6. Suppose that F (x0, y0) = 0 and its general-
ized Jacobian ∂xF (x0, y0) is of maximal rank. Then there
exist a neighborhood U of y0 and a Lipschitz function
x̄ : U → Rn such that F (x̄(y), y) ≡ 0 for all y ∈ U .

By specializing this theorem to (3) with F (x, q) = fM (x)−
q, it follows that a solution (x0, q0) to an LCP can be a
bifurcation point only if ∂fM (x∗) is not of maximal rank,
that is, if there exists a singular matrix M0 belonging to
the set ∂fM (x∗). This motivates the following definition.

Definition 7. A solution point (x0, q0) of (3) such that
∂fM (x0) is not maximal rank is called a nonsmooth
singularity.

Observe that ∂fM (x) = co {C−M (α) | x ∈ posCI(α)}.
Thus, ∂fM (x) is a singleton if x belongs to the interior of

an orthant or the convex closure of a (finite) set of matrices
if x belongs to the face between two or more orthants.

The following proposition helps in finding nonsmooth
singular points.

Proposition 8. Let x0 be a solution of the LCP (M, q0). If
there exists M+ ∈ ∂fM (x0) such that det(M+) > 0 and
M− ∈ ∂f(x0) such that det(M−) < 0, then ∂fM (x0) is
not maximal rank.

As an application of Proposition 8, let us consider Example
3 above. Note that ∂fM can be set-valued only for {x ∈
Rn | fM (x) ∈ bdr posCM (α), α ⊆ {1, . . . , n}}. With M as
in (4), the generalized Jacobian at the coordinate axes is
single-valued and nonsingular for all points x ∈ Rn not on
the coordinate axis. For x ∈ posCI(∅) ∩ posCI({1}) and
x ∈ posCI(∅) ∩ posCI({2}) we have

∂fM (x) =

{[
1 0

2− 2µ 1

]
, µ ∈ [0, 1]

}
and

∂fM (x) =

{[
1 2− 2µ
0 1

]
, µ ∈ [0, 1]

}
,

respectively. The generalized Jacobians are multivalued
but of maximal rank. For x ∈ posCI({1, 2})∩posCI({1})
and x ∈ posCI({1, 2}) ∩ posCI({2}), we have

∂fM (x) =

{[
1 2µ
2 1

]
, µ ∈ [0, 1]

}
and

∂fM (x) =

{[
1 2

2µ 1

]
, µ ∈ [0, 1]

}
,

which are not of maximal rank. It follows from Proposi-
tion 8 that solutions of fM (x) − q = 0 satisfying x1 = 0
or x2 = 0 are nonsmooth singular points (cf. the left-
hand side of Fig. 2). In contrast, it follows directly from
Definition 7 that all solutions of Case b) in Example 3
are regular, see the right-hand side of Fig. 2. It is worth
remarking that, in order to have a singularity it is not
necessary that det(C−M (α)) = 0 for some α.

When det(C−M (α)) = 0 for some α such that q0 ∈
posC−M (α), another source of singularities appears. In
this case, the cone posC−M (α) is degenerate, in the sense
that its n-dimensional interior is empty (Danao, 1994).
We expect the crossing of degenerate cones to induce
nonsmooth bifurcations because, at the crossing of degen-
erate cones, there is necessarily a continuum of solutions.
Indeed, if det(C−M (α)) = 0, the full orthant posCI(α) is
mapped by fM onto the lower-dimensional degenerate cone
posC−M (α). Thus, given q ∈ posC−M (α), there must
exist a (locally linear) subset of posCI(α) that is mapped
by fM to q (Danao, 1994).

Example 9. Let us consider the degenerate matrix

M =

[
1 1
1 1

]
and the path q̄a as in (5). For α = {1, 2}, solutions of (6)
are characterized by the expression[

4λ− 4
−4λ

]
=

[
1 1
1 1

] [
x1

x2

]
, x ∈ posCI({1, 2})

Note that the above equation has a nonempty solution set
S{1,2} if and only if 4λ − 4 = −4λ, that is, if and only if

λ = 1
2 . Hence, for λ = 1

2 the solution set is given by
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S{1,2} =
{

(x, λ) ∈ R2 ×
{1

2

}
|

x =

[
µ

−2− µ

]
, µ ∈ [−2, 0]

}
,

Therefore, the solution set S{1,2} has an infinite number of
solutions for a single value of λ, which corresponds to the
situation in which the path q̄a intersects the degenerate
cone CM (α).

We summarize the results of this section as follows.

• Nonsmooth bifurcations can happen when the path
defined by q = q̄(λ) crosses a face of non-degenerate
cones, or at the crossing of degenerate cones.
• Crossing a degenerate cone always leads to bifurca-

tions.
• The presence and nature of a bifurcation when cross-

ing a face of a non-degenerate cone depends on the
nature and disposition of the other cones that share
that face.

It follows that nonsmooth bifurcations in LCPs are essen-
tially determined by: i) the complementary cone configu-
ration; ii) how the path moves across them.

3. MAIN RESULTS

Similarly to smooth bifurcation theory, it is possible to
use equivalence relations to provide an exhaustive list of
the possible bifurcation phenomena. We start here this
program by deriving a notion of equivalence between LCPs,
which will provide equivalence classes of cone configura-
tions. The relevance of this notion in classifying nonsmooth
bifurcation problems will be then illustrated.

3.1 Equivalence between cone configurations

Our notion of equivalence between LCPs (M, q) and (N, r)
has topological and algebraic components. The algebraic
component captures the relations among the complemen-
tary cones that M and N generate. The relevant algebraic
structure is that of a Boolean algebra, a subject that we
now briefly recall (see Sikorski (1969) for more details).

Let X be a set and P(X) the power set on X. A field
of sets is a pair (X,F) where F ⊂ P(X) is closed under
intersections of pairs of sets and complements of individual
sets (this implies closure under union of pairs of sets).

Let G be a subset of P(X). The field of sets generated by
G is the intersection of all the fields of sets that contain G.

A field of sets is a concrete example of a Boolean algebra
and, as such, the usual algebraic concepts apply to them.

Definition 10. A Boolean homomorphism from the field
(X,F) onto the field (X ′,F ′) is a mapping h : F → F ′
such that h(P1∩P2) = h(P1)∩h(P2) and h(−P1) = −h(P1)
for all P1, P2 ∈ F . Here, −P1 denotes the complement
of P1. A one-to-one Boolean homomorphism h is called a
Boolean isomorphism. An isomorphism of a field onto itself
is called a Boolean automorphism.

Definition 11. A Boolean mapping h : F → F ′ is said to
be induced by a mapping ϕ : X ′ → X if h(P ) = ϕ−1(P )
for every set P ∈ F .

Corollary 12. (Sikorski (1969)). Let F be a field generated
by G. If a bijection g : G → G′ is induced by a bijection
ϕ : X ′ → X, then g can be extended to a Boolean
isomorphism h : F → F ′.

Now, consider the collection GM = {posCM (α)}α, and let
(Rn,FM ) be the field of sets generated by GM . We are now
ready to state our main definition.

Definition 13. Two matrices M,N ∈ Rn×n are said to
be LCP equivalent, M ∼ N , if there exists topological
isomorphisms (i.e., homeomorphisms) φ, ψ : Rn → Rn
such that fM = ϕ ◦ fN ◦ ψ, where ψ induces a Boolean
automorphism on FI .

The commutative diagram fM = ϕ ◦ fN ◦ψ is standard in
the literature of singularity theory and ensures that we can
continuously map solutions of the problem fM (x) = q into
solutions of the problem fN (x′) = ϕ−1(q). The require-
ment on ψ being a Boolean automorphism implies that ψ
maps orthants into orthants, intersections of orthants into
intersections of orthants, and so forth.

Theorem 14. The matricesM,N ∈ Rn are LCP equivalent
if, and only if, there exists a bijection g : GM → GN
induced by a homeomorphism ϕ : Rn → Rn.

Remark 15. It follows from Corollary 12 that a necessary
condition for M ∼ N is the existence of a bijection g :
GM → GN that extends to an isomorphism h : FM → FN .

Example 16. Consider the matrices

M =

[
−1 1
0.9 −1

]
, N =

[
−1 1
1.1 −1

]
and O =

[
0.5 1
1 0.5

]
.

Their cone configurations are shown in Fig. 3. By Re-
mark 15, M and N are not equivalent. This is intuitively
clear since, depending on the location of q, there can be
none, two, or four solutions to the LCP (M, q); whereas,
depending on the location of r there can be either one or
three solutions to the LCP (N, r).

Although N and O are fairly ‘distant’ from each other,
they are LCP equivalent, as they satisfy the conditions of
Theorem 14 (see Fig. 3).

In the example, M and N are not equivalent, even though
they are ‘close’ to each other. This issue takes us to the
following concept.

Definition 17. A matrix M ∈ Rn×n is said to be LCP
stable if it is LCP equivalent to every matrix that is
sufficiently close to it.

3.2 Classification of LCPs on the plane

The following results will provide a characterization of
equivalence classes of stable matrices in R2×2.

Lemma 18. Let M ∈ R2×2. If M12,M21 6= 0 and
det(Mαα) 6= 0, for all α ⊆ {1, 2}, then M is stable.

Theorem 19. Two matrices M,N ∈ R2×2 are equivalent if
M12 ·N12 > 0, M21 ·N21 > 0 and det(Mαα) ·det(Nαα) > 0
for α ⊆ {1, 2}.
Corollary 20. Let M ∈ R2×2 with det(Mαα) = 0 for some
α ⊆ {1, 2}, then M is not stable.

The results of this section provides a list of “normal forms”
to explore equivalence classes of stable matrices in R2×2.
The matrices
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Fig. 3. Complementary cones of the matrices M , N and O in Example 16, depicted by black arcs. The cones generated
by CN̄ (α) and CŌ(α) are depicted by red arcs. The matrices M and N are not equivalent, but N and O are, as
their complementary cones have the same Boolean structure.

Fig. 4. Complementary cones of the matrices K (left) and
L (right) defined in (9), depicted by black arcs.

Mδ =

[
δ1 δ3

−δ3(2δ0 − δ1δ2) δ2

]
and

Nδ =

[
δ1 δ3

−δ3(0.5δ0 − δ1δ2) δ2 ,

]
with δi ∈ {−1, 1}, i = 0, . . . , 3 span all possible sign
combinations in the statement of Theorem 19. Thus, any
stable matrix satisfying the condition of the theorem is
equivalent to Mδ, for some combination of δi ∈ {−1, 1},
i = 0, . . . , 4. By varying the parameters of Mδ, we can
construct an explicit list of equivalence classes of stable
bidimensional matrices. The constructed list might not be
exhaustive, but by Corollary 20 what is left out from this
classification is the zero-measure set of matrices satisfying
det(Mαα) 6= 0, for all α ⊆ {1, 2}, but M12M21 = 0.
Stability and equivalence class of matrices in this zero-
measure set are assessed a posteriori on a case-by-case
basis in the normal form matrix

Oδ =

[
δ1 δ3
δ4 δ2

]
with δ1, δ2 ∈ {−1, 1} and δ3, δ4 ∈ {−1, 0, 1}, δ3δ4 = 0.

After studying the cone structure of each of these matrices,
we conclude that there are only four classes of LCP stable
matrices in R2×2. Representative members of two different
classes are the matrices M and N , defined in Example 16.
Two more representative matrices are

K =

[
1 1
−1 1

]
and L =

[
−0.5 −1
−1 0.5

]
. (9)

Since GK partitions R2 (see Fig. 4), the LCP (K, q) has a
unique solution for every q. A matrix with this property is
called a P -matrix (Cottle et al., 2009). The complementary
cones of L are also shown in Fig. 4. Depending on q, the
LCP (L, q) may either have two or no solutions.

3.3 Bifurcation realization via LCP interconnection

The strong link between piecewise linear functions and
LCPs, pointed out in Proposition 2, motivates us to re-
strict ourselves to piecewise linear paths through cone con-
figurations. In this setting, the path itself can be generated
from the solution set of another LCP (Garcia et al., 1983).
This approach naturally leads us towards an interconnec-
tion framework reminiscent of circuit theory, in the sense
that an intricate high-dimensional LCP is treated as the
result of the interconnection of simpler LCPs. Proceeding
in this way we prove that, by selecting appropriate inputs
and outputs, the feedback interconnection of LCPs is again
an LCP. Afterwards, we use this decomposition approach
to obtain the unfoldings of the pitchfork singularity.

We start by considering two linear complementarity prob-
lems in their z-coordinates, that is,

wk = Mkzk + q̄k, Rnk
+ 3 wk ⊥ zk ∈ Rnk

+ .

where Mk ∈ Rnk×nk and q̄k ∈ Rnk , for k ∈ {a, b}.
Let zk ∈ Rnk be the output of the k-th LCP and let
q̄k ∈ Rnk take the role of input. Additionally, consider
the interconnection rule

q̄a = Hazb + θ̄a , q̄b = Hbza + θ̄b , (10)

where Ha ∈ Rna×nb , Hb ∈ Rnb×na and θ̄k ∈ Rnk are
additional inputs available for further interconnection.
With this convention we have the following result.

Proposition 21. The interconnection of linear complemen-
tarity problems under the pattern (10) is again a linear
complementarity problem.

3.4 Realization of some nonsmooth bifurcations and their
unfolding: A nonsmooth pleat

Let us consider the class of LCPs represented by the matrix
O in Fig. 3. This class gives rise to the nonsmooth pleat
shown in Fig. 5. The pleat is given by{

[y1 y2 x1]
> ∈ R3 | ∃ x2 ∈ R such that fO(x) = y

}
,

where fO : R2 → R2 is the piecewise linear map defined in
Proposition 2. It is worth to remark that the nonsmooth
pleat is stable in the sense that the matrix O is LCP-stable.

In complete analogy with the smooth case, see e.g. (Gol-
ubitsky and Schaeffer, 1985, Chapter III.12), one can
recover a large family of bifurcations from the pleat by
selecting appropriate paths through it. We illustrate this
with the pitchfork singularity and its unfoldings, but it
is also possible to obtain the hysteresis and the cusp
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Fig. 5. Nonsmooth pleat, pitchfork path, and their projec-
tion to the plane (y1, y2). The black lines on the plane
are generators of complementary cones.
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Fig. 6. The pitchfork singularity and its unfoldings.

singularities and their unfoldings by changing the path in
a suitable way.

Let us consider the LCP (Mb, q̄b) associated to the nons-
mooth pleat shown in Fig. 5 with matrix Mb = 2O and O
as in Example 16. We consider the auxiliary LCP (Ma, q̄a)
with Ma = 1 and path q̄a(λ) = 2λ− 1. The LCP (Ma, q̄a)
has a unique solution for every λ ∈ R which is computed
easily as za(λ) = 0 for λ < 1

2 and 2λ − 1 for 1
2 ≤ λ. We

thus set the path q̄b(λ) as

q̄b(λ) = Rs

[
za(λ)
λ

]
+

[
µ1

µ2

]
,

where Rs is a rotation matrix, s is the angle of rotation
and the parameters µ1, µ2 are extra degrees of freedom
that will allow us to change the path q̄b(λ) on the pleat.
Equivalently, the resulting LCP can be seen as the inter-
connection between LCP (Ma, q̄a) and LCP (Mb, q̄b) under
the interconnection rule (10) with

Ha = 0 , Hb = [cos s sin s]
>
,

θ̄a = µ1 − λ sin s , θ̄b = µ2 + λ cos s .

Let us fix s = 10
9 π. By varying the parameters µ1 and µ2

we are able to displace the path q̄b(λ) on the pleat. The
associated bifurcation diagrams are shown in Fig. 6. Note
that the central bifurcation diagram corresponds to the
pitchfork organizing center, whereas perturbations of this
path lead to any of the left or right-hand side diagrams.

4. DISCUSSION AND FURTHER DEVELOPMENTS

We have presented a notion of global equivalence between
LCPs that allows us to make a classification of this prob-
lems in the planar case. In addition, an interconnection
approach for the realization of nonsmooth bifurcations was
presented. These tools are thought to be handful for many

applications as, for instance, the analysis and design of
neuromorphic circuits (Castaños and Franci, 2017), the
study of economic equilibria in competitive markets, and
the analysis of elastic-plastic structures in engineering, just
to name a few. This work also opens the path towards the
analysis of behaviors in dynamical linear complementarity
systems.
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