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Abstract: A new method for identification of ill-conditioned systems is suggested. Our aim is
to provide a solution that is practical and functional in the sense that no initial knowledge about
process is needed, light-weight tools can be used for identification (e.g. simple ARX models with
standard least-squares regression), and model structures with minimal number of parameters
and states are used. The main idea is to employ principal component analysis (PCA) to rotate
the outputs before identifying the process in directions important for control.
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1. INTRODUCTION

Many industrial multi-variable controllers (e.g. Model-
Predictive Control, MPC) are model-based, i.e. some kind
of model of the controlled process is utilized by the con-
troller. The usage of model-based controllers have in-
creased during the last decades because there is a con-
tinuous need for faster, more accurate, and more robust
controllers, as new standards are continuously set for flex-
ibility of operation and economic efficiency. An important,
but costly step in model-based control is process identifi-
cation which must be done regularly to keep the model up
to date and control performance at an acceptable level.

A multi-variable process may be ill-conditioned, which is
seen as a high condition number of the steady-state gain
matrix. Ill-conditioned processes are not rare in the process
industry. For example, high-purity distillation columns are
practically always ill-conditioned. Ill-conditioned processes
are characterized by directionality, i.e. some input direc-
tions are highly amplified, and some are not. In addition,
process dynamics usually go hand in hand with the gain
directions. For distillation models (Skogestad and Morari
(1988)) it is known that the high gain direction is con-
siderable slower than the low gain direction. According
to Häggblom (2014), this observation holds generally, and
high gain directions are slower than low gain directions.
Standard identification experiments that neglect direction-
ality generate trends with fast dynamics hidden in the
responses. As a result, the model fit looks good, and poor
models are not revealed before they are validated in the
low-gain direction.

There are some practical problems associated with identi-
fication of ill-conditioned systems. According to Jacobsen
and Skogestad (1994), we should identify some two-pole-
one-zero transfer function elements to capture both the
fast and slow dynamics of a 2×2 system. From a practical
point of view the high number of parameters are difficult
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to identify when there are noise and disturbances present
during identification.

Improved identification of ill-conditioned systems can also
be achieved by properly designing input excitation of the
identification experiment (Häggblom, 2019a), (Häggblom,
2019b). This improves the identification results in all gain
directions, which is crucial when the model is utilized for
control and controller design.

An identification method applied on industrial processes
must be practical and simple. The method used for iden-
tification should be able to evaluate the results of an iden-
tification experiment in an easy and understandable way,
and preferably guide user in decision making. A simple
parameter estimation method is preferred, as it may be
implemented in the automation system instead of collect-
ing data from the process and running the identification
procedure on an office PC. Further, the method should be
resistant to noise and disturbances that are always present
during identification. For ill-conditioned processes it is
important to ensure that we identify all gain directions,
and capture the dynamics in all gain direction and that
we can measure the quality of the identification in the
low-gain direction.

It has been estimated that distillation stands for 10-
15% of total energy consumption in the world, so tight
distillation control can bring huge energy savings. Many
distillation columns are controlled with advanced model-
based controllers, like MPC. However, MPC can deliver
improved control performance only when the models are
up to date. Therefore, there is a need for an easy-to-
implement, practical solution, which makes it easy to
keep the MPC models up to date. We believe that the
method presented in this paper will improve, speed up,
and simplify identification of ill-conditioned processes and
enable tight control of high-purity distillation.
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2. SUGGESTED METHOD

In this section we introduce a new method for identifica-
tion of ill-conditioned processes, based on output rotation.
We discuss some model structures suitable for the method.
For simplicity, we assume that process is of size 2×2 but all
concepts discussed here may be extended to larger systems
as well.

We focus on practical solutions, so only simple models
are used. With simple models, we mean that minimal
number of states and parameters are used. Also, we assume
that only linear least-squares parameter estimation of
ARX models is used and that multi-variable models are
identified one output at time. These restrictions ensure
that the method is easy to implement in practice.

2.1 Modeling Directionality

Traditionally, high-purity distillation models have been
obtained by fitting individual transfer function elements,
typically first-ordered-plus-dead-time transfer functions
for each input-output pair (Wood and Berry, 1973)(Waller
et al., 1988)

G(s) =

k11exp(−L11s)

T11s+ 1

k12exp(−L12s)

T12s+ 1
k21exp(−L21s)

T21s+ 1

k22exp(−L22s)

T22s+ 1

 (1)

Jacobsen and Skogestad (1994) argue that such models
are seemingly well fitted by open-loop data, but they ex-
hibit inconsistent behavior when used for feedback control.
The main problem is that the dynamics of the faster low
gain dynamics is missing from the model. To capture the
dynamics of a 2× 2 system governed by directionality, Ja-
cobsen and Skogestad (1994) suggest the model structure

G106(s) =

(
k11(z11s+ 1) k12(z12s+ 1)
k21(z21s+ 1) k22(z22s+ 1)

)
(T1s+ 1)(T2s+ 1)

(2)

This model can capture both the slow responses in the
high gain direction and the fast responses in the low
gain direction. The model (2) is labeled G106 as it has
10 parameters and 6 states in the general case. The
high number of parameters makes it difficult to identify
when there are noise and disturbances present during
identification.

Häggblom and Böling (1998) used a model similar to
Eq. 1 but they increased the model order from first to
second order dynamics, which must be done to capture the
directionality of distillation columns. They used process
knowledge to reduce the number of free parameters in the
model by adding several constraints and relations between
parameters. Such a model can not, however, be identified
using simple linear regression.

To our knowledge, process identification has traditionally
been made by identifying the model from physical inputs
to physical outputs in one step. In this paper we use output
rotation, and identify the process in parts. In the first
step we identify a matrix, which rotates the outputs, and

in the second step we identify a simplified model from
physical inputs to rotated outputs. Finally, we combine
the identified models and the rotation matrix to derive an
input-output model.

The motivation behind using output rotation is that it
simplifies the identification. We can reduce the number of
parameters that we must estimate. Moreover, the rotated
outputs are uncorrelated so we can identify the rotated
outputs one at a time. These improvements simplifies and
increases the reliability of the identification.

Output rotation is discussed below. Before that, we justify
the use of rotated outputs and suggest some simple model
structures for 2 × 2 ill-conditioned systems.

2.2 Simple Models of Ill-Conditioned Processes

As discussed above, Jacobsen and Skogestad (1994) sug-
gested the model structure (2) for ill-conditioned systems
where the ambition is to identify a model that can capture
the dynamics in all gain directions. They state that ”only
two of the zeros may be adjusted independently as we
require a model with only two states”. With this two-state
limitation we get a special case of model (2), which can be
written as

G62(s) = W

 k1
T1s+ 1

0

0
k2

T2s+ 1

VT (3)

Here the matrices W and V can, for example, be obtained
using SVD decomposition of the steady-state gain matrix

K =

(
k11 k12
k21 k22

)
= W

(
σ1 0
0 σ2

)
VT (4)

Note the matrices W and V, in Eq. (3) are not always
strict rotation matrices as in Eq. (4), but they can also be
obtained by scaling pure rotation matrices with a diagonal
scaling matrix.

In this paper we consider some special cases of model (2)
and draw attention to number of states and parameters.
The simplest (unscaled) rotation matrix is specified with
one parameter (the rotation angle), so the model G62 (Eq.
3) has two rotation angles, two time constants (T1 and
T2), two gains (k1 and k2) and we need two states for
simulation.

Usually, ill-conditioned processes are characterized by dif-
ferent dynamics in different gain directions. In cases where
T2 << T1 we may further reduce the number of parameters
and states by neglecting the dynamics of the low gain
direction. With T2 = 0, model (3) reduces to

G51(s) = W

(
k1

T1s+ 1
0

0 k2

)
VT (5)

Model G51 (Eq. 5) is very appealing from a practical point
of view as it has only 5 parameters and one state.
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2.3 Output Rotation

Next, we justify the use of output rotation. Assume that
our task is to identify G62 (model 3) and that W is known.
Then the rotated outputs can be identified one at a time
as two-input-single-output first-order systems. If both W
and V are known, then G62 can be identified from rotated
inputs to rotated outputs, by identifying two single-input-
single-output first-order systems.

The output rotation matrix W can be estimated in various
ways. If an estimate of the steady-state gain matrix K is
known, we can use SVD (Eq. 4) to calculate W and V. On
the other hand, if K is unknown, we can estimate W from
output data using principal component analysis. This is
discussed next.

Consider a zero mean input matrix U of size n × m,
organized such that each row is a sampling instant, and
each column is an input signal. Further consider an output
matrix Y of same size generated by a gain matrix K of
size m×m, i.e.

Y = UKT (6)

Next we introduce the dimensionless gain matrix K0 and

Y0 = U0KT
0 (7)

where the dimensionless matrices U0 and Y0 have been
obtained by scaling Y and U using the diagonal scaling
matrices Ku and Ky as

U0 = UKu (8)

Y0 = YK−1y (9)

Ku and Ky are diagonal matrices with scaling constants
on their diagonals. The purpose of scaling is to create
a dimensionless gain matrix K0, which simplifies the
analysis and better describes process directionality than
the scale-dependent K.

The dimensionless steady-state gain K0 is decomposed
using singular value decomposition

K0 = W0Σ0VT
0 (10)

Now we use PCA to rotate the outputs before identi-
fication. PCA is scaling-dependent, so we consider the
principal components of the scaled output matrix Y0

T = Y0P (11)

where P is an m × m matrix whose columns are the
eigenvectors of the covariance matrix of Y0. Assume that
the signals of U0 are uncorrelated with unity covariance
(i.e. the inputs U are uncorrelated and the scaling matrix
Ku is suitable selected). Then the covariance of Y0 is

cov(Y0) = K0cov(U0)KT
0 = K0KT

0 (12)

Now as stated above, the principal components are calcu-
lated from the eigenvectors of cov(Y0). The eigenvectors

of K0KT
0 are the columns of W0 (Wikipedia contributors,

2019), and we get
P = W0 (13)

The principal components of Y0 are

T = Y0W0 (14)

Above we assumed steady-state relations but if we assume
processes of the type (Hovd et al., 1997)

G(s) = W0Σ(s)VT
0 (15)

where W0 and V0 are independent of frequency and the
frequency-dependent matrix Σ(s) is diagonal, then Eq.
(14) also holds for non-steady-state data.

We conclude that, assuming a model with frequency-
independent directionality (Eq. 15), and an identification
experiment using uncorrelated inputs, we can employ PCA
to extract the gain directions from the outputs. In practice,
we can expect a slow high-gain response in the first
principal component and a faster low-gain response in the
second principal component, which are straightforward to
identify with e.g. first-order models.

2.4 Identification Using Output Rotation

Next, we suggested a method for identification of ill-
conditioned systems that uses output rotation and the
example models G62 (3) and G51 (5). We continue the
discussion with two-input-two-output processes, but the
concept can be extended to processes with more inputs
and outputs.

We start with design of input excitation. For ill-conditioned
processes it is common to design input excitation such that
the low gain direction is sufficiently perturbed. This can
only be done if an estimate of the steady-state gain is
available. At this point, however, we do not assume any
knowledge of the process so at least the initial experiment
is done using uncorrelated input excitation. If needed, the
identification experiment is extended with excitation of the
process in the low gain direction, which is often necessary if
the low gain direction is hidden by noise and disturbances.
This is discussed later.

Initially any uncorrelated input excitation method may be
used (sequential or simultaneous steps or PRBS or other).
After the identification experiment, with the input-output
data matrices collected, we start with output scaling and
rotation. With PCA it is common practice to scale each
output signal to obtain zero mean and unity variance.
Applying PCA to the outputs, we obtain the rotated
outputs, i.e. the principal components T.

With rotated outputs we identify the high gain direction
first, i.e. we identify a model from inputs to the first
principal component (t1). Applying Eq. (14) and (15) on
models G62 and G51 we can expect a first-order response
governed by time constant T1 in the high-gain direction,
so we start by identifying the parameters kv1, kv2 and T1
of the model
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t1(s) =
kv1u1(s) + kv2u2(s)

T1s+ 1
(16)

Here any system identification method can be used, but
in the examples below we use least-squares identification
of ARX models. With kv1, and kv2 identified, we can
determine the matrix V assuming that the low gain
direction is orthogonal to the high gain direction. We can,
for example, select

V =

(
kv1 kv1
kv2 −kv2

)
(17)

With V known, the low gain direction identification re-
duces to identification from input

ulg = kv1u1 − kv2u2 (18)

to second principal component t2. For model G62 (Eq. 3)
we identify parameters k2 and T2 of the single-input-single-
output model

t2(s) =
k2

T2s+ 1
ulg(s) (19)

At this point we evaluate the identification result. Com-
monly, the high gain direction (Eq. 16) is easy to iden-
tify, but the model fit in the low-gain direction (Eq. 19)
is worse. Therefore, the low-gain direction fit is a clear
indication of identification success. When the low gain fit
is poor, we need to continue with input excitation in the
low-gain direction (Eq. 18) and re-identify the low gain.

Note that there is no need to modify output rotation or
high-gain identification when we continue with process
excitation in the low gain direction. All we need to do
is to re-identify the low gain direction. Again, model fit in
low gain direction is a good measure of success.

The identification method is summarized in Table 1 for a
2 × 2 system.

Table 1. Summary of identification using out-
put rotation

Step Description
1 Perform a standard identification experiment consisting of

input excitation and data collection. At this point the inputs
must be uncorrelated, but otherwise any excitation method
can be used (step, PRBS, etc.).

2 Make a PCA analysis to obtain the first and second principal
components of the outputs. PCA also gives the output rotation
matrix W.

3 Identify a model from inputs to first principal component (Eq.
16).

4 Identify the input rotation matrix V (Eq. 17).
5 Identify a model from low-gain input direction (Eq. 18) to

second principal component (Eq. 19).
6 Evaluate the quality of the identified second principal compo-

nent.
7 If evaluation result in step 6 was good, model is identified,

otherwise continue with excitation in low gain direction and
go to step 5.

Fig. 1. Identification of the Heat Exchanger example (t <
1000), and validation in the difficult low gain direction
(t > 1000)

2.5 Case Example 1: A Linear Heat Exchanger Model

Consider the heat exchanger model discussed by Jacobsen
and Skogestad (1994). The model is

G(s) =
89.243

(T1s+ 1)(T2s+ 1)

(
−21(T3s+ 1) 20

−20 21(T3s+ 1)

)
(20)

with T1 = 100, T2 = 2.439, and T3 = 4.762. This model
is ill-conditioned with a condition number 41. There is a
clear difference in the dynamics of the high and low gain
directions, indicated by time constants T1 and T2.

To demonstrate the difficulties of identifying this model,
and to illustrate output rotation, we simulated the sys-
tem, added some noise and disturbances, back-identified
the model from the simulated data, and evaluated the
results. Models were simulated using discretized models
with sampling time Ts = 1.

Model fit was calculated from average (ȳ), estimated (ŷi)
and measured (yi) outputs as (Ghosh, 2016)

Fp = 1 −
∑

i (ŷi − yi)
2∑

i (yi − ȳ)2
(21)

For multi-variable models we use Eq.(21) to calculate the
fit for each variable but report the average fit, unless
otherwise stated.

First we used a traditional system identification method
to obtain the parameters of model G106 (Eq. 2) using ARX
models and standard least-squares identification.

The simulated responses of the Heat Exchanger (Eq. 20)
and for the identified model are shown in Fig. 1. As
expected, we get a good model fit for the test data (left
part of the figure, t < 1000). However, when we validate
the model with excitation in the tricky low gain direction
(right part, t > 1000) we notice that the low gain has been
poorly identified.

The reason for modeling failure is that it is difficult to
properly identify all parameters of model (2) with noise in
the outputs.
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Fig. 2. Same as Fig. 1 but with identification in the rotated
domain.

Next we demonstrate how the same identification task is
done using model G62 (Eq. 3) and output rotation. We
rotated the outputs using standard PCA (with standard
deviation scaling) and identified the process from inputs to
rotated outputs. The trends, both measured and rotated
outputs are illustrated in Fig. 2. Above are shown the two
outputs, and third from above is the high gain direction
(first principal component), which is well identified. Fourth
trend from above is the low-gain direction (second princi-
pal component) which is clearly more difficult to identify.
The low gain direction is almost hidden in noise because
the low gain is only slightly perturbed. Still, both high and
low gain directions can be identified, and we get a good
model fit also in the validation part (t > 1000).

The heat exchanger example demonstrates some advan-
tages with the suggested method. With traditional identi-
fication, which identifies the process from physical inputs
to physical outputs, the model fit looks good even though
it is not. With the suggested method, however, we get a
realistic impression of the identification quality, seen in the
low-gain fit. A clear advantage with rotated outputs is that
we have fewer parameters at the identification step. In this
case the identification results are also better, considering
the validation results.

We did a large number of simulation experiments with
model (20), and fitted it to the models G106, G62, and
G51, with different input/output disturbances and types
(from white noise to random walk). Fig. 3 illustrates the
model fit as a function of noise level (with white noise
added to the outputs). Fig. 4 illustrates the impact of input
disturbances on the identification result. For the input
disturbances we used random walk noise, as disturbances
are usually auto-correlated.

From Fig. 3 and 4 we conclude that G106 is extremely
sensitive to output noise and that there are practically
no significant difference between models G62 and G51.
This result suggests that we should neglect the low gain

Fig. 3. Model fit obtained from identification of the heat
exchanger example with white noise added to the
outputs, and noise level increasing from left to right.
The trends show model fit for validation experiments
(solid lines) and test experiments (dashed lines) of the
models G106, G62, and G51.

Fig. 4. Same as Fig. 3 but with random walk noise added
to the inputs.

time constant T2 when it is clearly smaller than the time
constant in the high-gain direction (in this case T1 = 100,
T2 = 2.439).

2.6 Case Example 2: A Non-Linear Distillation Column

In this section we test the suggested method on a simulated
distillation column model, ”Column A” discussed by Sko-
gestad and Morari (1988) and Skogestad and Postlethwaite
(2007). The column has 40 theoretical stages and separates
a binary mixture into products of 99% purity, and it cap-
tures the main effects important for dynamics and control.
We used the Matlab implementation of the model, which
is available on the internet (Skogestad, 1997).

The Column A model uses feed flow and feed composi-
tion as inputs, so it is easy to add disturbances to make
realistic experiments. Here we used random walk distur-
bances in the feed flow and composition. To speed up the
simulations, we modified the disturbances once every 60th

minute.

Fig. 5 shows an identification experiment of the non-
linear distillation column. The first part of the experiment,
i.e. time up to 5000 min, is evaluated first. In this part
the high-gain direction (3rd plot from above, Eq. 16) is
well identified but we are unable to identify the low gain
direction (4th plot from above, Eq. 19). The low-gain
excitation is weak, and only some perturbation resulting
from model non-linearities are seen in the trend. Therefore
it is evident that the low gain direction can not be
identified based on the first 5000 minutes.

At time instant t = 5000, a decision to continue the
identification experiment by excitation of process in the
low gain direction (Eq. 18) was made. In Fig. 5, for
time t > 5000, is shown that this excitation enables
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Fig. 5. Identification of the Column A model.

identification of the low gain direction (4th plot from
above, t > 5000). Hence, the parameters of model G62

(Eq. 3) could be successfully identified.

2.7 Summary and Conclusions

We have suggested a new method for identification of ill-
conditioned processes. The main idea is to identify the
output rotation matrix from output data using principal
component analysis (PCA) before the actual identification
step. As a result, the identification step simplifies from
identification of high-order MIMO models in one step to
identification of first-order models one output at a time.
Simple ARX identification methods can be used.

The suggested concept has many advantages important
for industrial applications. We get a reliable assessment of
identified model quality. We can capture the directionality
of the process, both gain and dynamics, which is crucial
when the model is used for control purposes. Still, com-
pared to traditional identification methods, we can reduce
the number of parameters and states in the models. Simple
least-squares identification of ARX models one output at
a time can be used, so only lightweight tools are needed in
the calculations. By identifying the process in directions
important for control, it is easier to ensure integral con-
trollability. The main drawback of the suggested method
is that both SVD and PCA depend on scaling. Scaling to
unit variance often works well but not always. If we notice
large overshoots in the second principal component, it is
an indication that we should modify scaling.

Future plans include extending the concept from open-
loop to closed-loop identification (Friman, 2020), and
investigating how the simple models (in particular the
single state model G51) perform in model-based control
of high-purity distillation columns.
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