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Abstract: We consider the effect of using approximate system predictions in event-triggered
control schemes. Such approximations often result from numerical transcription methods for
solving continuous-time optimal control problems. Mesh refinement schemes guarantee upper
bounds on the error in the differential equations used to model system dynamics. In particular,
we show that with the accuracy guarantees of a mesh refinement scheme, then event-triggering
schemes based on bounding the difference between predicted and measured state can be used
with a guaranteed strictly positive inter-update time. We determine a lower bound for this time
and show that additional knowledge of the employed transcription method and evaluation of
the approximation errors may be used to obtain better online estimates of inter-update times.
This is the first work to consider using the solution accuracy of an optimal control problem as
a metric for triggering new control updates.
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1. INTRODUCTION

In most practical systems we do not have continuous state
feedback. Instead, the system is measured and control re-
computed at update times Tu , {tui }i∈N0

. Conventionally,
the control engineer must determine a single update inter-
val τu := ti+1− ti,∀i ∈ R+ to satisfy performance criteria
for all possible disturbance realizations (Gommans et al.,
2014). This ‘worst-case’ periodic design leads to over-
allocation of communication and computation resources,
without assurances of superior performance (Åström and
Bernhardsson, 1999). Instead, in event-triggered and self-
triggered schemes, the control is only updated when cer-
tain criteria are met, as formalized in Section 2.

(Nonlinear) model predictive control ((N)MPC) comple-
ments event- and self-triggered schemes. The predictions
resulting from the optimization may result in longer open-
loop run times than using zero-order hold state feedback
controllers (Lucia et al., 2016). However, the computa-
tional burden of solving a nonlinear program (NLP) online
is a key drawback. Aperiodic triggering schemes have the
potential to increase the average available computation
time between control updates. Results in Varutti et al.
(2009) help bridge existing work in networked control to
triggering of MPC schemes, and additionally uses predic-
tions to compensate for delays or information losses.

Numerical methods for solving continuous-time optimal
control problems only generate approximations of the con-
tinuous state and input trajectories. The computational
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burden of NMPC may potentially be reduced by either
solving a less complex NLP, resulting in lower quality
predictions, or by solving the NLP less frequently, resulting
in a more outdated prediction. We investigate how solution
accuracy and triggering conditions affect the inter-event
times in an event-triggered NMPC framework. We derive
a lower bound for the inter-update time (IUT), and further
show how information concerning solution quality may be
used online for less conservative IUT estimates.

In Section 2 we introduce the considered triggering
schemes, detail the continuous-time optimization and ex-
plain high level principles of mesh refinement procedures.
In Section 3 we derive sufficient conditions for a strictly
positive lower bound on IUTs, which we improve on in
Section 4 using additional error information provided by
mesh refinement software. The introduced concepts are
exemplified in Sections 5 and 6.

2. PRELIMINARIES

Consider the nonlinear dynamical system described by

ẋ(t) = f(t, x(t), u(t)) + w(t), (1)

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rm the
control input. The bounded exogenous w(t) ∈ Rn input
satisfies |w(t)| ≤ ŵ, where |·| is an appropriately defined
norm. Nominal system dynamics are described by f(·) and
are Lipschitz in x with constant Lx, i.e. for all x1, x2, t,

|f(t, x1, u)− f(t, x2, u)| ≤ Lx |x1 − x2|

2.1 Event- and Self-Triggering Schemes

In event-triggered control (ETC) (Heemels et al., 2012) the
system is continuously measured but the control is only
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recomputed when a certain ‘triggering’ condition is met,
e.g. the following, adapted from Heemels et al. (2012):

Problem 1. (ETC). Consider the dynamical system de-
scribed by (1), and a time-varying state feedback law
u(t) = µ(x(t), t) which renders the closed-loop system
globally asymptotically stable (GAS). Identify a set of
state- and input- dependent conditions Fevent : Rn ×
Rm → R, resulting in update times

tui+1 = inf{t ∈ R+
0 |t > tui , Fevent(x(t), u(t)) ≥ 0},

for which the closed-loop system with sampled-data im-
plementation is GAS (and satisfies appropriately defined
performance criteria).

Determining an appropriate Fevent(·) is an open problem
and depends on the control scheme under consideration.
Many event-based controllers trigger on a measure of the
difference between predicted and measured state. We ex-
plicitly denote triggering dependency on most recent state
predictions x̃(t) by defining and employing the triggering

condition F̃event (x(t), u(t), x̃(t)) . The ETC scheme must
satisfy the following properties. The IUTs, τui := tui+1 −
tui ,∀i ∈ R+

0 , must be strictly positive. To avoid ‘Zeno’
phenomena there must exist a lower bound τu ≤ τui (Borg-
ers and Heemels, 2014). The IUTs must also be upper
bounded. This is easier to enforce, and in the case of MPC
schemes is often restricted to τui being less than or equal to
the prediction horizon. Feasibility of the MPC parametric
optimization problem must be guaranteed ∀t ∈ Tu.

In self-triggered control (STC) (Anta and Tabuada, 2010;
Gommans et al., 2014; Velasco et al., 2003), the control
is computed and IUTs explicitly calculated from the pre-
dicted system trajectory under this control, e.g. the fol-
lowing, which is adapted from Anta and Tabuada (2010):

Problem 2. (STC). Consider the dynamical system de-
scribed by (1), and time-varying state feedback law u(t) =
µ(x(t), t) which renders the closed-loop system GAS. Iden-
tify a set of state and input dependent conditions Fself :
Rn × Rm × R+ → R, resulting in inter-sample periods

τui = inf{τ ∈ R+
0 |Fself(x(tui ), u(t), τ) ≥ 0},

for which the closed-loop system is GAS (and satisfies
appropriately-defined performance criteria).

Typically both Fevent(·) and Fself(·) must ensure sufficient
decrease in an appropriately defined Lyapunov function.
STC lacks the inherent robustness of ETC, but doesn’t
require dedicated hardware for continuous operation. Fur-
thermore, in STC tui+1 and τui are known in advance, which
may be important for process scheduling on embedded
platforms or dynamic communication resource allocation.
Both STC and ETC conditions are based on emulation of
an a priori known control law µ(·).

2.2 Nonlinear Model Predictive Control

In MPC a finite time control sequence/trajectory is de-
signed to optimize some performance metric of predicted
plant evolution (Mayne et al., 2000). Classical MPC
paradigms account for uncertainty by resolving the op-
timization problem — which is parametric in the most
recent measurements — periodically. Only the first por-
tion of the computed input is applied to the plant before

the procedure is repeated. The complexity of performing
optimization in real-time has historically restricted MPC
to slow and/or simple (linear) dynamical systems. Greater
computational resources and tailor-made optimization al-
gorithms allow MPC of faster and more complex systems.

The continuous-time NMPC problem solved at time tui
may be cast in the general Bolza form

min
x̂,û

Φ(x̂(t0), x̂(tf )) +

tf∫
t0

L(x̂(t), û(t), t) dt (Pa)

s.t. ∀t ∈ [t0, tf ],

˙̂x(t) = f(x̂(t), û(t), t), (Pb)

c(x̂(t), û(t), t) ≤ 0, (Pc)

φ(x̂(t0), x̂(tf )) = 0, (Pd)

x̂(t0) = x(tui ), (Pe)

where t0 := tui . Optimization is performed over horizon
T := tf−t0 > 0 on the internal variables x̂, û, representing
the state and input trajectory. The cost (Pa) is composed
of the stage (Lagrange) cost functional L(·) and boundary
(Mayer) cost functional Φ(·). The resulting state trajectory
satisfies the nominal dynamics f(·), typically enforced as
ordinary differential equations (Pb). States and controls
must satisfy the path constraints (Pc) for all time. Key
advantages of MPC are its use of a predictive model and
guarantees of constraint satisfaction. With reference to the
description of system (1), if we can determine the feasible
set for problem (P), then we may relax Lx to be a local
Lipschitz constant valid on the set of admissible states.

Although we will assume existence of a local minimizer to
problem (P), we require no assumptions on the uniqueness
of the minimizer. We refer to x∗(·), u∗(·) as the true
solution of the optimal control problem (P),

(x∗(·), u∗(·)) := arg min
(x̂,û)

(P).

2.3 Direct Collocation & Mesh Refinement

The dynamic optimization (P) is continuous-time and
infinite-dimensional. The problem is intractable or impos-
sible to solve analytically in all but the simplest cases.
Instead, direct collocation methods transcribe (P) into a
finite-dimensional NLP, after which numerical optimiza-
tion methods are employed. The NLP solution is then in-
terpolated to reconstruct an approximate continuous-time
solution x̃(·), u(·) to (P) (Betts, 2010). System trajectories
may be approximated as continuous piecewise polynomials
using a combination of h- and p-methods (known as hp-
methods) (Kelly, 2017), briefly detailed below. Define the
interval Ω := (t0, tf ), and Ω as the closure of Ω.

Definition 1. (Mesh). The set Th is called a mesh and
consists of open intervals T ⊂ Ω satisfying conditions

(1) Disjunction T1 ∩ T2 = ∅ ∀ distinct T1, T2 ∈ Th,
(2) Coverage ∪T∈ThT = Ω,
(3) Resolution maxT∈Th |T | = h,

(4) Quasi-uniformity minT1,T2∈Th
|T1|
|T2| ≥ σ > 0,

where the constant σ must not depend on the mesh
parameter h.
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Fig. 1. A comparison of x(·), x∗(·) and the approximate
solution x̃(·) ∈ XP defined on mesh Th.

We denote the number of mesh segments by K := card Th
and refer to the kth segment as Tk,∀k ∈ Kh := {1, . . . ,K}.
We define the ordered set of mesh points as Tm ,
∪k∈K inf T k, where two polynomial segments are joined,
and index them identically to the mesh segments. The
approximate state trajectory x̃(·) defined on this mesh will
then satisfy

x̃ ∈ Xp := {x : Ω→ Rn|x ∈ C0(Ω), x ∈ Pp(T )n,∀T ∈ Th},

where Pp(T ) is the space of functions that are polynomials
of maximum degree p ∈ N0 on interval T . In collocation
methods the dynamic constraints (Pb) are enforced at a
finite number of collocation points in each Tk, the location
and number of which depend on the chosen method.
Denote collocation points in Tk as tck ∈ Tk,c, and

˙̃x(tc) = f(x̃(tc), u(tc), tc),∀tc ∈ Tk,c, k ∈ K.

In h-methods (e.g. Euler, Hermite-Simpson), a fixed-
degree polynomial is used on each segment (Betts, 2010).
For fixed p, the approximation quality may be improved
by reducing h and increasing the number of segments. In
p-methods the unknown trajectories are approximated as
an interpolation of orthogonal basis functions (Fahroo and
Ross, 2008). In global p-methods, a single interpolated
function is used over the entire interval Ω. Approximation
quality is adjusted by changing the polynomial order.

Mesh refinement schemes iteratively adjust the number
of segments and/or polynomial order of the transcription.
At each iteration of the refinement, problem (P) must
be re-transcribed and the resulting NLP resolved. Such
schemes guarantee a user-defined level of accuracy of the
approximation, which is important in applications. We
must therefore consider three different trajectories. The
true solution of (P), x∗(·), u∗(·), which is in general un-
known. The approximate solution x̃(·), u(·) which depends
on the chosen transcription method and is computed nu-
merically. Finally, the actual state trajectory x(·) of the
plant resulting from evaluating (1) with the approximate
input u(·). In general x̃(t) 6= x∗(t) 6= x(t),∀t 6∈ Tu. A
pictorial representation of this is shown in Fig. 1.

Since x∗(·), u∗(·) are not known, they cannot be used to
evaluate the approximation accuracy. One possible error
metric is the absolute local error at time t in the ith state,

εi(t) := ˙̃xi(t)− fi(t, x̃(t), u(t)). (3)

ε(t) , [ε1(t), . . . , εn(t)]′ is the error in the solution of the
differential equations (Pb) resulting from the transcription
method, and is necessarily zero at collocation points. The
approximation error in state i over mesh interval Tk is

given by the quadrature

ηk,i :=

∫ tk+1

tk

|εi(τ)|dτ, (4)

for tk, tk+1 ∈ Tm. Refinement schemes guarantee upper
bounds on the error quadrature in each segment, ηk,i ≤
η̂i,∀k ∈ K, ∀i ∈ {1, . . . , n}. Although it is common to use
maxi ηk,i as a basis for refinement, some problems require
states to be resolved to different accuracies. However, for
our following analysis, we bound the sum error in Tk as

ηk :=

∫ tk+1

tk

|ε(τ)|dτ ≤ η̂. (5)

This is by no means the only error metric used. Other
examples include relative local error (Betts, 2010) or local
error in dual variables (Paiva and Fontes, 2019).

3. MINIMUM IUT

Define the prediction error as ε(t) := x̃(t) − x(t), where
ε(t) = 0, ∀t ∈ Tu, and the associated prediction error

dynamics ε̇(t) = ˙̃x(t) − ẋ(t). We propose employing a
commonly used triggering condition (Li and Shi, 2014)

F̃event(x(t), u(t), x̃(t)) := ε̂− |ε(t)| , (6)

for some ε̂ > 0. Problem (P) is resolved whenever the error
magnitude passes a certain threshold.

Importantly, triggering is not based on the true solution
of (P), but rather on the approximation x̃(t). Even if
there are no exogenous inputs or unmodelled dynamics,
this error metric may be non-zero for any t 6∈ Tu. We
seek an expression to relate the prediction error |ε(t)|
to the maximum allowable approximation error η̂, and
thereby guarantee an IUT τu when triggering is based on
a (possibly bad) approximate solution of (P).

Theorem 1. For the ETC resulting from solving (P) to sat-
isfy (5) at times Tu, implicitly defined through triggering
condition (6), the minimum IUT

τu =
ε̂− η̂

η̂
σh + Lxε̂+ ŵ

(7)

is guaranteed to be strictly positive for ε̂ > η̂.

Proof 1. For succinctness we will write f(t, x, u) as f(x).
Without loss of generality, assume problem (P) was solved
at tui = 0, parametrized as x̃(0) = x(0). Then,

ε(t) =

∫ t

0

ε̇(τ)dτ =

∫ t

0

˙̃x(τ)− f(x(τ))− w(τ)dτ. (8)

Rearranging (3) and subsequently substituting ˙̃x(t) =
ε(t) + f(x̃(t)) into (8) results in

ε(t) =

∫ t

0

ε(τ) + f(x̃(τ))− f(x(τ))− w(τ)dτ.

Through application of the triangle inequality, the predic-
tion error magnitude |ε(t)| is bounded from above by∫ t

0

|ε(τ)|dτ +

∫ t

0

|f(x̃(τ))− f(x(τ))|dτ +

∫ t

0

|−w(τ)|dτ.

(9)

Now consider the set Tt ⊆ Th of open intervals of T , i.e.
Tt := {T ∈ Th|T ∩ (0, t) 6= ∅}, which is also a mesh on
Ωt = (0, t), and by construction satisfies the properties of
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Definition 1. Since the mesh refinement scheme guarantees
ηk ≤ η̂, the first integral in (9) is bounded from above as∫ t

0

|ε(τ)|dτ ≤
∑
T∈Tt

∫
T

|ε(τ)|dτ ≤
∑
T∈Tt

η̂.

Through application of the resolution and quasi-uniformity
properties of mesh Tt, the smallest interval satisfies
minT∈Tt |T | ≥ σh := h. Using d·e to denote the ceiling
function, we bound the maximum number of segments in
interval (0, t) as dth−1e, from which it follows that∫ t

0

|ε(τ)|dτ ≤
⌈
t

h

⌉
η̂ ≤

(
t

h
+ 1

)
η̂.

From the assumption of Lipzchitz continuity of f(·) and
application of the proposed triggering condition (6), the
second integral in (9) is bounded as∫ t

0

|f(x̃(τ))− f(x(τ))|dτ ≤ tLxε̂.

The final integrand in (9) is bounded as |−w(t)| ≤ ŵ by
assumption. Therefore,

|ε(t)| ≤
(
t

h
+ 1

)
η̂ + t (Lxε̂+ ŵ) .

We guarantee τu > 0 by showing that ∃ t > 0 such that(
t

h
+ 1

)
η̂ + t (Lxε̂+ ŵ) ≤ ε̂.

Through manipulation, this inequality is satisfied when

t ≤ ε̂− η̂
η̂
σh + Lxε̂+ ŵ

.

Since all parameters are in R+
0 , the RHS is guaranteed to

be strictly positive as long as ε̂ > η̂. 2

The bound will be finite even when ŵ = 0 and doesn’t use
knowledge of the discretization/interpolation schemes, in
which case the bound may be improved. Mesh refinement
schemes warm-start and solve the NLP resulting from (P)
with each new, increasingly dense, mesh. Betts (2010) sug-
gests an initial relatively sparse mesh, with the refinement
adding in points where necessary, as opposed to an unnec-
essarily dense starting mesh. For small η̂ this may result
in more NLPs being solved for a single approximation
x̃(·), u(·). Being a decreasing function of η̂, (7) relates a
trade-off between solving more NLPs per control update —
yielding a higher accuracy solution — but less frequently,
to solving fewer NLPs at each update, but more frequently.

4. ONLINE ESTIMATION OF IUT

The IUT bound (7) can be improved with information
provided by solving (P). This is the first explicit definition
of IUTs accounting for both problem data and the solu-
tion accuracy of (P). Although the following conditions
resemble STC, we make no claims about stability or per-
formance. Instead, we simply provide estimates of IUTs,
which may be useful for computation and communication
resource scheduling. First, we determine a lower bound on
τui , not dependent on ηk, through using knowledge of the
collocation constraints.

Theorem 2. (Collocation Triggering (CT)). Let Lp,k be the
Lipschitz constant of the approximating polynomial used
in segment Tk. The IUT

τCT
i = sup

{
τ ∈ R+|

∑
k∈Kt

(t− tui ) (Lxε̂+ ŵ) +

Lx

∫
Tk

|x̃(τ)− x̃(tck)|dτ + Lp,k

∫
Tk

|τ − tck|dτ ≤ ε̂

} (10)

calculated from the approximate solution x̃(·) to prob-
lem (P) at time tui satisfies |ε(tui + τ)| ≤ ε̂,∀τ ≤ τCT

i .

Proof 2. We begin by noting that∫ t

0

|ε(t)|dτ ≤
∑
k∈Kt

∫
Tk

∣∣ ˙̃x(t)− f(x̃(τ))
∣∣dτ, (11)

where the inequality follows from supTk ≥ t. As (Pb) are
satisfied exactly at points tcolk , we may write (11) as∑
k∈Kt

∫
Tk

∣∣ ˙̃x(τ)− ˙̃x(tcolk ) + f(x̃(tcolk ))− f(x̃(τ))
∣∣dτ

≤
∑
k∈Kt

∫
Tk

∣∣ ˙̃x(τ)− ˙̃x(tcolk )
∣∣+
∣∣f(x̃(tcolk ))− f(x̃(τ))

∣∣ dτ
≤
∑
k∈Kt

∫
Tk

Lp,k
∣∣τ − tcolk

∣∣+ Lx
∣∣x(tcolk )− x̃(τ)

∣∣dτ,
where the second inequality results from noting that
all polynomials in Pp(Tk) defined on bounded set Tk
are Lipschitz, with Lipschitz constant denoted as Lp,k.
Substituting the quadrature error bound into (9) and
restricting the RHS to ≤ ε̂ yields the explicit IUT (10).

2

For lower-order h methods, in particular, it may be easy
to evaluate Lp,k online for each interval Tk.

Although the mesh refinement algorithm may not return
the approximation error over arbitrary intervals, software
such as ICLOCS2 (Nie et al., 2018) does return ηk corre-
sponding to Tk. However, depending on how the integral
(4) is evaluated, we do not necessarily know the distribu-
tion of ε(t) over this interval.

Corollary 1. (Quadrature Error Triggering (QET)).
The IUT

τQET
i = sup

{
τ ∈ R+|

∑
k∈Kt

ηk + t (Lxε̂+ ŵ) ≤ ε̂

}
(12)

determined from x̃(·), ηk, which approximately solves
problem (P) at time tui , satisfies |ε(tui + τ)| ≤ ε̂,∀τ ≤
τQET
i .

Proof 3. We begin by noting that
∫ t
0
|ε(τ)|dτ ≤

∑
k∈Kt

ηk,

where the inequality follows from sup |Tt| ≥ t. Therefore
we may bound the prediction error at t ∈ [tui , t

u
i+1) as

|ε(t)| ≤
∑
k∈Kt

ηk + (t− tui ) (Lxε̂+ ŵ) .

Substituting into (9), and restricting the RHS to be ≤ ε̂
results in the explicitly defined IUT given in (12). 2

If instead the refinement returns ε(t), then replacing
∑
ηk

with
∫ t
0
|ε(t)| guarantees the ordering τCT

k ≤ τQET
k .

5. EXAMPLE: LINEAR SYSTEM

Consider the LTI system described by

ẋ(t) = Ax(t) + Eŵ, (13)
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Fig. 2. A comparison of the true x(t), the nominal x∗(t)
and the approximate x̃(t) ∈ X1 resulting from FE and
HS collocation on a mesh with h = 1.5, σ = 1.
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(b) Prediction errors of collocation schemes.

Fig. 3. Errors associated to the trajectories shown in Fig. 2.

x(t0) =

[
10
10

]
, A =

[
0.05 0.5

0 −0.5

]
, E =

[
1
1

]
,

where x ∈ Rn, simulated over Ω = 6 s. We discretize x(t)
on a coarse uniform mesh of h = 1.5 s using a Forward
Euler(FE) or a third-order Hermite-Simpson (HS) scheme,
detailed in Kelly (2017). Fig. 2 shows both approximations
alongside the ‘true’ and ‘nominal’ trajectories x(t), x∗(t)
generated from Matlab’s linsim function. Shown in
Fig. 3a, the approximation error εi(t) and quadratures ηk,i
for the HS scheme are orders of magnitude lower than the
FE. We choose η̂ = maxk ηk a posteriori, being 3.8420 in
the case of FE and 0.0081 for HS. Since (13) is unstable,
the states diverge and approximation errors grow.

To guarantee ε̂ > η̂, we chose an ETC threshold ε̂ = 5
for the FE and ε̂ = 0.5 for the HS scheme. The ETC
condition (6) is met at 4.12 s and 1.7 s, respectively. Fig. 3b
shows the FE approximation error results in rapid growth
in ε(t). The minimum IUT τu and τQET, τCT are detailed
in Table 1, and the associated functions plotted in Fig. 4.
The line segments of QET-FE(η) and QET-HS(η) in Fig. 4
have slope Lxε̂ + ŵ, and reflect state uncertainty due to
w(t). The discontinuities arise from approximation errors.
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Fig. 4. A comparison of the online triggering estimations
proposed in Section 4 for FE and HS Schemes.

Table 1. Comparison of estimated IUTs.

η̂ τu τQET(η) τQET(ε) τCT

FE (ε̂ = 5) 3.842 0.25 1.49 1.74 1.39
HS (ε̂ = 0.5) 0.0081 1.22 1.27 1.28 0.005

For the FE scheme, τu is significantly more conservative
than τQET(η), whereas τu ≈ τQET(η) for the HS. This
is because τu is estimated from the worst case absolute
local error. Using relative local error, as suggested in Betts
(2010, Ch. 5), may result in better agreement between τ
and τQET(η) for the FE scheme.

6. CLOSED-LOOP SIMULATION

We now consider decreasing-horizon closed-loop simula-
tion of a cart-pole swing-up problem while minimizing
the integral of the square of the control effort. The non-
linear dynamics f(·) and trapezoidal collocation scheme
we employ are detailed by Kelly (2017, Sec. 6). This
transcription scheme results in piecewise quadratic state
reconstruction and piecewise linear inputs. Additive noise
satisfying ŵ ≤ 10−1 has been added. In this example
our mesh refinement strategy is similar to that presented
by Betts (2010, Ch. 5), but acting upon the absolute
local error. Our results do not depend on the proxy used
for refinement, or the method of adding/removing new
points – only on the termination criteria of the refinement
scheme. The resulting NLP is solved using IPOPT. The
mesh points at tui are Tm,i. At each control update IPOPT is
warm-started with the primal variables from the previous
solution x̃(t), u(t) ∀t > tui , t ∈ Tm,i−1.

Fig. 5 shows the system trajectory for a decreasing horizon
NMPC, with an initial horizon length of 2 s. For the full
problem definition see Kelly (2017, Sec. 6). In short, the
cart must invert the pendulum and move a certain distance
by time 2 s. We estimate Lx = 37.9 for the admissible
set, resulting in a guaranteed IUT of τu = 0.0207 s. From
Fig. 5, the average IUT is actually significantly larger. We
also observe a correspondence between the density of mesh
points and update times. The bound (7) suggests a trade-
off between the cost of each update, and update frequency.
We now simulate the cart-pole swing-up problem in a
receding horizon fashion, using a constant horizon of 2 s
for 10 s. For this numerical analysis, the mesh refinement
scheme terminates based on the relative local error (Betts,
2010, Ch. 5) — which we bound with η̂rel — since this is
more representative of the state-of-the-art. Owing to the
benefits of warm-starting, the initial solve accounts for a
large amount of the total computation time.
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Fig. 5. An example closed-loop trajectory for the cart-pole
swing-up problem with η̂ = 0.01 and ε̂ = 0.05.
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Fig. 6. Time in IPOPT — normalized by simulation termi-
nation times — and average IUTs for a range of η̂, ε̂.
Values of η̂, ε̂ causing feasibility issues are omitted.

The total time in IPOPT and the average IUT is shown in
Fig. 6 for a range of η̂rel, ε̂. As we reduce η̂rel, or increase ε̂,
the average IUT increases, as expected. Although there
is a marginal increase in average IUT time for a given
η̂rel by increasing ε̂ (due to physical system parameters
such as ŵ and Lx), we do see that even for relatively
large allowable prediction errors, using a tighter ODE
tolerance has significant effects on the IUT. Similarly, as ε̂
increases, the time in IPOPT tends to decreases, since the
number of solves decrease. However, there is also an effect
of η̂rel on the computation time, because η̂rel also affects
the quality of our warm-start. If we write problem (P) as
being parametric in the measured state, then the variable
ε̂ determines the amount this problem is being perturbed
at each update. For a large perturbation, our previous
solution may not be an effective guess for warm-starting.
In particular, note that for the largest ODE tolerance, the
computational time is almost as much as for the smallest.

7. CONCLUSIONS

Event- and self-triggering schemes attempt to regulate
performance loss due to the growth in uncertainty as the
system evolves in open-loop. Typically, uncertainty arising
in the physical world may be at best unmodelled and at
worst unstructured. However, uncertainty arising due to
the solution of (P) is highly structured – therefore it should
not be treated equivalently to, say, w(t). This is the first
work that has considered using the accuracy of the solution
of an optimal control problem as a metric for triggering
times. We have considered the use of approximate system
predictions arising through numerical direct collocation
solutions of OCPs in event-triggered control schemes. A
commonly used metric for refining the state approxima-
tions has allowed us to guarantee a minimum inter-update
time τu of the ETC. If additionally the direct collocation

software returns the approximation error metric as part
of the solution, we may achieve a better estimate of the
inter-update interval. Further work may consider the use of
path constraint violation as a metric for mesh refinement
and/or triggering.
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