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Abstract: In this paper, the problem of intermittent fault detection is investigated for nonlinear
stochastic systems. The moving horizon estimation with dynamic weight matrices is proposed,
where the weight matrices are adjusted by an unreliability index of prior estimate to avoid the
smearing effects of intermittent faults. Based on the particle swarm optimization algorithm, the
nonlinear optimization problem is solved and the approximate estimate is derived. Finally, the
feasibility and effectiveness of the proposed algorithm are validated by a numerical example.

Keywords: Intermittent fault detection, Nonlinear stochastic systems, Moving horizon
estimation, Dynamic weight matrices, Particle swarm optimization.

1. INTRODUCTION

For the sake of strengthening the reliability and safety
of industrial processes, during the past several decades,
tremendous effort has been devoted to the study of fault
diagnosis techniques and a large number of research results
have been effectively applied in various fields, such as
chemical processes, aerospace systems, power systems and
so on, see Fazai et al. (2019); Mandal et al. (2019); Shen
et al. (2019). Nevertheless, it should be pointed out that
most existing literature has concentrated on permanent
faults, while little attention has been paid on another
kind of common faults, intermittent faults (IFs). Different
from permanent faults, a IF usually recurs by the same
reason and lasts within a limited period of time. Since
the appearing and disappearing times of IFs are nonde-
terministic, the system can recover without fault-tolerant
operations (Rashid et al. (2015)). Nonetheless, if IFs are
not treated properly and promptly, the destructiveness
of IFs may become larger over time and finally lead to
major accidents (Correcher et al. (2012)). In fact, in power
systems, mechanical equipment, electrical industries and
many other engineering applications with electronics, the
occurrence frequency of IFs is much larger than permanent
faults. Therefore, it is an urgent need to develop the fault
diagnosis methods for IFs.

Generally speaking, the objective of fault diagnosis con-
sists of fault detection, isolation and estimation, which
respectively study the time, location and size of faults. It
should be noted that the IF detection is more difficult than
the permanent fault, since its aim is to detect all appearing
⋆ This work is supported by National Natural Science Foundation
of China (Nos. 61773400, 61751307), Key Research and Develop-
ment Program of Shandong Province (No. 2019GGX101046), Fun-
damental Research Funds for the Central Universities of China (No.
19CX02044A), and Research Fund for the Taishan Scholar Project
of Shandong Province of China.

and disappearing times of IFs. Especially for the detection
of disappearing times, the residual is affected by previous
IFs and then remains above the threshold for an uncertain
period of time, which is the so-called smearing effects of
IFs. Up to now, there have been some research results on
the IF detection based on qualitative or quantitative anal-
ysis methods, see Constantinescu (2008); Correcher et al.
(2012); Kim (2009); Yan et al. (2018, 2016). For example,
in Yan et al. (2018) and Yan et al. (2016), the intermittent
actuator and sensor fault detection problems for linear
stochastic systems have been investigated, respectively.

On the other hand, it is well known that nonlinearity
pervasively exists in almost all dynamic systems. In order
to solve the fault detection for nonlinear systems, fruitful
methods have been proposed by a variety of communities.
These methods include, but are not limited to, the ex-
tended Kalman filter (EKF) method (Wang et al. (2019)),
particle filter (PF) method (Daroogheh et al. (2018); Yin
and Zhu (2015)), strong tracking filter (STF) method (Qin
et al. (2016)). However, after a thorough literature search,
it has been revealed that, for IFs in nonlinear systems, the
corresponding research results on the fault detection are
still in the blank.

In order to fill the research gap of existing literature, this
paper studies the IF detection for nonlinear systems with
stochastic noises. The main contributions are listed as
follows. 1) This paper represents the first of few attempts to
investigate the IF detection problem for nonlinear systems.
2) By means of the moving horizon estimation with dy-
namic weight matrices (MHEDWM), the smearing effects
of IFs are properly suppressed.

The rest of this paper is organized as follows. Section 2
gives the problem description about the IF detection for
nonlinear systems and analyzes the deficiencies of existing
methods for detecting IFs. Section 3 proposes the MHED-
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WM and then the effectiveness of such a algorithm is
validated in Section 4. Finally, in Section 5, the conclusion
is summarized and the future work is discussed.

Notations. R and N
+ represent the space of all real

numbers and positive integers, respectively. Rn and R
m×n

stand for the n-dimensional Euclidean space and the set of
allm×n real matrices, respectively. For any vector x ∈ R

n,
‖x‖ denotes the Euclidean norm of x. Additionally, for any
nonnegative matrix P ∈ R

n×n, ‖x‖P means the weighted

norm of x (i.e., ‖x‖P =
√
xTPx).

2. PROBLEM FORMULATION

Consider the following nonlinear system with IFs
{
x(k + 1) =g(x(k)) + w(k) + Ff(k)

y(k) =h(x(k)) + v(k) +Gf(k),
(1)

where x(k) ∈ R
nx , y(k) ∈ R

ny and f(k) ∈ R
nf are the

state vector, measurement output and IF signal, respec-
tively. w(k) ∈ R

nx and v(k) ∈ R
ny are mutually uncor-

related zero-mean Gaussian white noises with respective
covariance matrices Rw and Rv. F and G are known
matrices with appropriate dimensions. g(·) and h(·) are
known nonlinear functions.

The intermittent fault f(k) is assumed to satisfy the
following form

f(k) =

∞∑

s=1

(Θ(k − ks,1)−Θ(k − ks,2))ms(k), s ∈ N
+,

(2)

where ks,1 and ks,2 are the sth unknown appearing time
and disappearing time of IF f(k), respectively. Θ(·) is
a function satisfying Θ(i) = 1 (i ≥ 0) and Θ(i) = 0
(i < 0). ms(k) is the sth unknown fault magnitude. Define
ds,1 = ks,2 − ks,1 and ds,2 = ks+1,1 − ks,2 as the sth active
duration time and inactive duration time of f(k). In this
paper, we suppose that there exist two known constants
d̄1 > 0 and d̄2 > 0 satisfying ds,1 ≤ d̄1 and ds,2 ≤ d̄2
(s ∈ N

+), where d̄1 and d̄2 are respectively called the
lower bounds of fault active duration and fault inactive
duration.

If a residual r(k) satisfies the following two conditions:

(1) there exists a constant 0 ≤ τ1 < d̄1 such that r(k) ≥
Jth,1 holds for all k ∈ [ks,1 + τ1, ks,2) (s ∈ N

+), where
Jth,1 is the detection threshold for the appearing time
and ks,1 + τ1 is the sth appearing time detected by
the residual r(k);

(2) there exists a constant 0 ≤ τ2 < d̄2 such that
r(k) < Jth,2 holds for all k ∈ [ks,2 + τ2, ks+1,1)
(s ∈ N

+), where Jth,2 is the detection threshold
for the disappearing time and ks,2 + τ2 is the sth
disappearing time detected by the residual r(k),

it is said that IF f(k) is detectable by the residual r(k).

Remark 1. The core task for IF detection is to detect all
appearing and disappearing times of IFs. If condition (1)
is fulfilled, the designed residual r(k) must be larger than
the threshold Jth,1 before fault f(k) disappears, which
means that there must exist a period of alarm time during
[ks,1, ks,2) (s ∈ N

+). Condition (2) shows that r(k) can
decrease below the threshold Jth,2 before the next fault
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Fig. 1. IF and the residual of EKF in the case of fa = 1
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Fig. 2. IF and the residual of EKF in the case of fa = 2

f(k) appears, which ensures that the sth disappearing time
and the s + 1th appearing time of IF f(k) can be clearly
distinguished. Combining the two conditions, it is easy to
deduce that all appearing and disappearing times of IF
f(k) can be detected by the residual r(k).

Example 1: Consider the nonlinear system with the follow-
ing parameters

x(k) = [x1(k), x2(k)]
T , g(x(k)) = [g1(x(k)), g2(x(k))]

T ,

g1(x(k)) = 0.89x1(k) + 0.1x2(k)− 0.11 sin(x1(k)x2(k)),

g2(x(k)) = 0.9x2(k)− 0.2x1(k) + 0.01 cos(x2
2(k)),

h(x(k)) = 0.5x1(k) + x2(k),

F = [2, 0]T , G = 0, Rw = 0.052I, Rv = 0.052.

The IF f(k) is chosen as

f(k) =







fa, k ∈ [50, 70]∪ [85, 105]∪ [120, 150]

∪ [165, 203]∪ [215, 243]∪ [255, 270],

0, otherwise.

By means of EKF, the estimate x̂⋆(k) can be derived.
Then the residual is defined as r(k) = y(k) − h(x̂⋆(k)).
The trajectories of r(k) in the case of fa = 1 and fa = 2
are respectively depicted in Figs. 1 and 2.
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Then it can be found that there exist two following main
difficulties for the IF detection of nonlinear systems.

(1) In traditional fault detection methods for nonlinear
systems, such as EKF, PF, STF and so on, it can
be only ensured that the designed residual is larger
than the detection threshold after the fault appears
However, when the fault disappears, owing to the
smearing effects, it is hard to guarantee that the
residual is smaller than the threshold, see Fig. 1.

(2) The model linearization method cannot be applied
to the IF detection of nonlinear systems, due to the
fact that the omitted high order terms of Taylor
expansion maybe larger than the reserved lower order
terms after the fault occurs. Thus, the existing IF
detection methods for linear systems are unsuitable
to be extended to nonlinear systems by the model
linearization. Similarly, EKF, STF and other similar
methods containing Taylor expansion approximation
will also meet such a problem. By employing the
imprecise approximation model, the estimation error
may tend to diverge, see Fig. 2.

Based on the above analysis, it can be seen that the
IF detection for nonlinear systems is a quite challenging
problem, which cannot be properly solved by the existing
methods. Hence, the main objective of this paper is to
design a new algorithm to deal with such a problem.

3. IF DETECTION ALGORITHM

In this section, the following algorithm of MHEDWM
is designed, where for each time k ≥ N (N <
min

{
d̄1 − 1, d̄2 − 1

}
), the system state x(k − N) is es-

timated depending on the past measurement outputs
{y(k − i)}0≤i≤N . For facilitating the understanding, we

respectively define x̂(k − N) and x̄(k − N |k) = g(x̂(k −
1 − N)) as the posteriori estimate and prior estimate of
x(k−N). Construct the following quadratic cost function
(QCF)

J (k, x̂(k −N |k)) = ‖x̂(k −N |k)− x̄(k −N |k)‖2P (k)

+

N∑

i=0

‖y(k − i)− ŷ(k − i|k)‖2Q(k) ,

(3)

where P (k) ≥ 0 and Q(k) ≥ 0 is a set of weight matrices
to be designed, ŷ(k− i|k) = h(x̂(k− i|k)) (0 ≤ i ≤ N) and
x̂(k − i+ 1|k) = g(x̂(k − i|k)) (1 ≤ i ≤ N). Therefore, the
desired estimate x̂(k − N) can be derived by solving the
following optimization problem (OP)

x̂(k −N) = arg min
x̂(k−N |k)

J (k, x̂(k −N |k)). (4)

In this paper, an unreliability index of prior estimate x̄(k−
N |k) is designed as follows

ρ(k) = ‖σ(k)‖2 , (5)

where

σ(k) = Y (k)− Ȳ (k|k),
Y (k) =

[
yT (k −N), · · · , yT (k)

]T
,

Ȳ (k|k) =
[
ȳT (k −N |k), · · · , ȳT (k|k)

]T
,

ȳ(k − i|k) = h(x̄(k − i|k)), 0 ≤ i ≤ N,

x̄(k − i+ 1|k) = g(x̄(k − i|k)), 1 ≤ i ≤ N.

In order to avoid the smearing effects of IFs, the prior esti-
mate x̄(k −N |k) should be properly discarded during the
estimation process, which can be achieved by regulating
the weight matrices P (k) and Q(k). Then the following
rules are established

1) If ρ(k) ≤ ρ, let P (k) = I and Q(k) = 0;
2) If ρ(k) ≥ ρ̄, let P (k) = 0 and Q(k) = I;
3) If ρ < ρ(k) < ρ̄, let P (k) = β(k)I and Q(k) = (1 −

β(k))I, where β(k) = (ρ̄− ρ(k))/(ρ̄− ρ),

where ρ̄ ≥ ρ ≥ 0 are given scalars related to the stochastic
noises.

Defining g(i)(x) = g(g(i−1)(x)) (i ∈ N
+) and g(0)(x) = x,

one has

x̂(k −N + i|k) = g(i)(x̂(k −N |k)). (6)

Then the QCF (3) can be rewritten as the following form

J (k, x̂(k −N |k)) = ‖x̂(k −N |k)− x̄(k −N |k)‖2P (k)

+
∥
∥
∥Y (k)− Ŷ (k|k)

∥
∥
∥

2

Q̃(k)
, (7)

where

Q̃(k) = diag{Q(k), · · · , Q(k)
︸ ︷︷ ︸

N+1

},

Ŷ (k|k) =
[
ŷT (k −N |k), · · · , ŷT (k|k)

]T

ŷ(k −N + i|k) = h
(

g(i)(x̂(k −N |k))
)

, i = 0, · · · , N.

It can be found that for time instant k > N , the QCF
J (k, x̂(k − N |k)) is a nonlinear function of x̂(k − N |k),
which is related to functions g(·) and h(·). For general
nonlinear functions g(·) and h(·), it is hardly possible to
give a precise analytical solution of the nonlinear OP (4).
Hence, in this paper, the particle swarm optimization (P-
SO) algorithm is introduced to search for an approximate
solution x̂◦(k −N) of OP (4). Defining the residual

r(k) = x̂◦(k −N)− g(x̂◦(k − 1−N)), (8)

the evaluation function J(k) and threshold Jth can be
given as follows

J(k) =

L−1∑

l=0

‖r(k − l)‖2 , (9)

Jth = sup
f(k)=0

J(k), (10)

where L is a given positive integer satisfying N + L <
max{d̄1 − 1, d̄2 − 1}. The IF f(k) can be detected by the
following test

{
J(k) ≥ Jth =⇒ faults occur =⇒ alarm

J(k) < Jth =⇒ no faults.

Remark 2. As is known to all, the prior estimate derived
by the previous estimates plays an important role in
traditional estimation methods, such as Kalman filter, PF,
Luenberger observer and so on. When the fault disappears,
the posteriori estimate is still affected by IFs existing in
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the prior estimate. Therefore, the key point for detecting
the disappearing times of IFs is to appropriately discard
the prior estimate. In this paper, according to the index
ρ(k), the unreliability degree of prior estimate can be
clearly reflected. Then the weight matrices P (k) and
Q(k) are dynamically regulated, which can guarantee the
performance of estimator, in the meantime suppress the
smearing effects.

Based on the above analysis, the following IF detection
algorithm is obtained.

IF Detection Algorithm for Nonlinear Systems

(1) Set ρ̄ and ρ according to Rw and Rv. Select N and L

depending on d̄1 and d̄2. The threshold Jth is obtained
by 100 Monte Carlo simulations without faults.

(2) If k > N +L, calculate the index ρ(k) and the weight
matrices P (k) and Q(k). Otherwise, jump to Step (6).

(3) Compute the QCF (7) by means of P (k), Q(k), x̄(k−
N |k) and y(k − i) (i = 0, · · · , N).

(4) By utilizing the PSO algorithm, solve the suboptimal
estimate x̂◦(k −N) of OP (4).

(5) Calculate the residual r(k) and evaluation function
J(k). If J(k) ≥ Jth, faults occur. Otherwise, no fault
occurs.

(6) Let k = k + 1. Return to Step (2).

4. A NUMERICAL EXAMPLE

Consider Example 1 in Section 2 and the parameters of
MHEDWM are selected as follows

N = 4, L = 3, ρ̄ = 0.1, ρ = 0.001, x(0) = [−1, 1]T .

The simulation results are shown in Figs. 3-8. Figs. 3 and 4
depict the trajectories of system state and state estimates
in the absence of faults, where xi(k), x̂◦

i (k), x̂•
i (k) and

x̂⋆
i (k) (i = 1, 2) respectively represent the system state, the

estimate of MHEDWM, the estimate of moving horizon
estimation with constant weight matrices (MHECWM)
P (k) = 0.5I, Q(k) = 0.5I, and the estimate of EKF.
Figs. 5 and 7 respectively describe the trajectories of IF,
the evaluation functions of MHEDWM and MHECWM,
and the corresponding thresholds in the case of fa = 1
and fa = 2. The alarm times detected by MHEDWM
and MHECWM in the case of fa = 1 and fa = 2 are
respectively shown in Figs. 6 and 8.

Define δ = 1/Z
∑Z

z=1 1/kf
∑kf

k=1 e
T
z (k)ez(k) as the mean

square estimate error (MSEE), where Z is the number of
simulation tests, kf is the step number of each simulation
test, and ez(k) is the estimate error in the zth simulation
test. In the case of no fault and after 100 simulations tests,
the corresponding MSEEs of MHEDWM, MHECWM and
EKF are derived as follows

δMHEDWM = 0.0152, δMHECWM = 0.0148, δEKF = 0.0196.

From the simulation results, it can be seen that 1)
MHECWM is a hysteretic estimation algorithm with the
highest estimation accuracy and the smearing effects; 2)
EKF is a real-time estimation algorithm with the worst
smearing effects; 3) MHEDWM is a hysteretic estimation
algorithm with the second-highest estimation accuracy
and without the smearing effects, which can detect all
appearing and disappearing times of IF f(k) accurately
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Fig. 3. System state x1(k) and its estimates
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Fig. 4. System state x2(k) and its estimates
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Fig. 5. IF and residuals in the case of fa = 1

and timely by properly selecting N and L. Therefore,
MHEDWM is superior to MHECWM and EKF in the
problem of IF detection for nonlinear systems.
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Fig. 6. Alarm times of IF in the case of fa = 1
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Fig. 7. IF and residuals in the case of fa = 2
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Fig. 8. Alarm times of IF in the case of fa = 2

5. CONCLUSIONS AND PERSPECTIVES

In this paper, the IF detection problem for nonlinear
stochastic systems has been investigated based on the
moving horizon estimation (MHE) algorithm. By intro-
ducing the unreliability index of prior estimate, the weight
matrices in MHE has been dynamically adjusted, which

can avoid the smearing effects of IFs. The simulation has
shown the proposed MHEDWM can guarantee the accura-
cy of estimator, in the meantime detect all appearing and
disappearing times of IFs.

Further research topics include 1) the convergence analysis
for the estimation error of MHEDWM; 2) the reduction of
the calculation load for nonlinear OP; 3) the simplification
of QCF.
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