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Abstract: In this paper, we address the problem of nonlinear continuous-discrete adaptive
observer design for a class of system with sampled data measurements subject to sensor
nonlinearities. The main difficulty of the considered class of system is coming from the fact
that the output equation contains unknown parameters which renders the design of a classical
sampled data observer difficult. To overcome this difficulty, we propose a new online continuous-
discrete adaptive observer which ensures a simultaneous exponential convergence of both states
and parameters. Comparing to other observer structures, our design is characterized by a simpler
structure thanks to the introduction of a parametric adaptation law. To show the efficiency of our
proposed approach, numerical simulations have been performed for different values of sampling
time. In addition, the delayed-sampled measurements case is also illustrated.

Keywords: nonlinear systems, continuous-discrete, nonlinear adaptive observer, Lyapunov sta-
bility, online parameter estimation.

1. INTRODUCTION

Nowadays, the problem of controlling industrial systems is
facing two major drawbacks. The first one is coming from
the fact that the system variables are partly accessibles for
sensor measurements. The second one is that, in addition
to the system variables, the system parameters can also be
unknown a priori. In addition to the problem of controlling
industrial systems, the field of system fault diagnosis is
also concerned by this problem. Indeed, comparing to
the fault free case, a faulty system behaviour usually
modifies the system structure via the states variables
or the system unknown parameters. To counteract these
problems, it is crucial to develop an adaptive observer
which can estimate simultaneously the state variables and
the unknown parameters of the system.

The problem of designing adaptive observers has been,
for many decades, an active research area with special
emphasis on observers with exponentially stable error dy-
namics. The first contributions go back to the seventies
and concern time-invariant linear systems where the uncer-
tain parameters come in linearly (e.g. Luders and Naren-
dra (1973), Kreisselmeier (1977), Ioannou and Kokotovic
(1983), Narendra and Annaswamy (2005), Ioannou and
Sun (2012), Rueda-Escobedo and Moreno (2017)).

These previous works have been widely extended to non-
linear cases (see Bastin and Gevers (1988), Khalil (2002),

Rajamani (2017a) and Rajamani (2017b)). In Krener and
Isidori (1983), Krener and Respondek (1985), Back et al.
(2006) and Boutat et al. (2007), the authors addressed
the problem of designing adaptive observers for nonlinear
systems through linearization.

In Zhang (2002), the authors have adopted a specific
design approach to deal with general time-varying systems.
The main novel idea in Zhang (2002) is a design based on a
new coordinate transformation that makes the parameter
adaptive law design decoupled from the state estimation
law. In Besançon et al. (2006), the authors show how this
design can even be equivalent to a Kalman-like adaptive
observer for state affine time-varying systems.

Despite the success of these adaptive observers, a common
characteristic of these approaches is coming from the fact
that they were designed in continuous time. In fact, the
implementation of these observers in digital platforms
requires the measured system outputs to be sampled.
Therefore, the observer convergence is no longer ensured
due to this sampling process. Meanwhile, the need of
developing adaptive observer structures which deals with
the problem of sampled data output measurements has
become an important issue to overcome this difficulty.

Sampled-data adaptive observer design can be classified
following two differents techniques. The first one is the so
called continuous-adaptive design approach. In Ahmed-Ali
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et al. (2009), an adaptive observer based on this approach
is developed. In this work the authors have considered a
class of state affine systems where the unknown parameters
enter the system through solely the state equations. Fol-
lowing the principle of this approach, the observer struc-
ture has two components. The first one is a predictor which
copies the system dynamic between two sampling times.
The second one perform a correction at each sampling
time. The correction part is fulfilled by an observer which
corrects the estimate state trajectories by using the output
error. The second technique is based upon the idea of the
use of an output predictor introduced by the authors in
Karafyllis and Kravaris (2009). The main advantage of this
observer is that the estimated states remain continuous
while the update process which concerns only the predictor
is re-initialized at each sampling time. Following this way,
the authors in Hann and Ahmed-Ali (2014) propose an
adaptive sampled-data observer which ensures that system
states as well as parameters remain continuous.

As stated previously, most of the proposed observers
assumes that the unknown parameters enter system via
the state equations. Li et al. (2011) have treated the case
of unknown parameters in both state and output equations
but only in the linear case. However, if we are brought to
consider sensor nonlinearities, this can lead to take into
account a model with unknown parameters only on the
output equation like in Giri et al. (2014). Consequently,
it is clearly impossible in this case to use an inter-sample
output predictor as in Massieu et al. (2017), Kahelras et al.
(2018) or Karafyllis and Kravaris (2009).

In this paper, we propose a continuous-discrete adaptive
observer for a class of system subject to sensor nonlinear-
ities like in Ahmed-Ali et al. (2019). Comparing to this
work, our proposed observer is characterized by a simpler
structure in terms of parameter estimation law. So, in
addition to simplifying the implementation, this allows us
to deal with the case of sampled and delayed measurements
in a simpler way.

Our paper is organized as follows. In section 2, the class
of the nonlinear system considered is presented. Section 3
presents our continuous-discrete adaptive observer design
and the analysis of states and parameters errors which
leads to the main result of this paper. Section 4 presents
an extension to the delayed sampled-measurements case.
A simulation example is used in section 5 to illustrate the
efficiency of our proposed design method. Some concluding
remarks end the paper in section 6.

2. PROBLEM STATEMENT

We are considering the class of continuous-discrete systems
described by the following equations:

ẋ(t) = A(t)x(t) +B[u(t)]

y(t) = Cx(tk) + φ[y(tk)]θ

t ∈ [tk tk+1), k ∈ N
(1)

A ∈ Rn×n;B ∈ Rn;C ∈ R1×n;φ ∈ R1×m, θ ∈ Rm. A, B
and φ are C1 functions and φ is supposed to be bounded.
u and y respectively denote the bounded input and output
and x ∈ Rn is the state vector with x(0) arbitrary chosen.

All quantities in the model are known or accessible to
measurements, except the state vector x and the constant

parameter vector θ. The problem at hand is precisely
to design an observer that provides simultaneous online
estimation of x and θ, based only on the measurements of
the output y, only accessible at sampling instants tk .

Remark 1. The class of continuous-discrete systems (1)
we consider is almost the same than in Ahmed-Ali et al.
(2019). However, the design of our observer is simpler than
in this work in the sense that there is one less ODE to solve.

Remark 2. The input signal u(t) must be a persistent
excitation in order to guarantee the uniform stability of
system (1). Details can be found in Besançon et al. (1996).

3. OBSERVER DESIGN AND ANALYSIS

To get simultaneous online estimates of both state vec-

tor x̂ and parameter vector θ̂, we propose the following
continuous-discrete adaptive observer, composed of two
interconnected parts (the state observer (2-3) and the
parameter vector estimator (4-7):

˙̂x(t) = A(t)x̂(t) +B[u(t)]

− S(t)−1CT
[
Cx̂(tk) + φ[y(tk)]θ̂(tk)− y[tk]

]
(2)

Ṡ(t) = −∆ S(t)− S(t) A(t)−AT (t)S(t) + CTC (3)

S(0) > 0, ∆ > 0

θ̂(tk) = θ̂(tk−1)− FT (tk)

1 + ‖F (tk)‖2
ỹ(tk) (4)

F (tk) = Cλ(tk) + φ[y(tk)] (5)

ỹ(tk) = Cx̂(tk) + φ[y(tk)]θ̂(tk)− y(tk) (6)

λ̇(t) = A(t)λ(t)− S(t)−1CTCλ(tk)

− S(t)−1CTφ[y(tk)] (7)

t ∈ [tk tk+1), k ∈ N

The analysis will mainly consist in proving that our ob-
server is a global exponential observer for system (1).
This will be done in two steps. Foremost, we study state
observer convergence. Then, we focus on parameters esti-
mation. At last, we state the theorem which guarantees
the global exponential convergence of both states and
parameters.

3.1 States observer

The following definitions (Gauthier and Kupka (1994) and
Batista et al. (2017)) introduce the concepts of observabil-
ity Gramian and uniform complete observability:

Definition 1. (Observability Gramian). The observability
Gramian associated with the pair (A(t), C(t)) on [t0, tf ]
is defined as:

W0(t0, tf ) =

∫ tf

t0

(
CΥ(s, t0)

)T (
CΥ(s, t0)

)
ds

whereΥ(t, t0) is the state transition matrix associated with
A(t) from t0 to t.

Definition 2. (Uniform Complete Observability). The pair
(A(t), C(t)) is uniformly completely observable if there
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exist positive constants α > 0 and β > 0 such that, for
all t ≥ t0:

W0(t, t+ β) ≥ αI

Suppose uniform observability as Definition 2 is checked
for system (1), let us now consider the following errors
system:

x̃(t) = x̂(t)− x(t)

θ̃(tk) = θ̂(tk)− θ
t ∈ [tk tk+1), k ∈ N

(8)

Subtracting (1) from (2), one gets:

˙̃x(t) = A(t)x̃(t)− S(t)−1CT
[
Cx̃(tk) + φ[y(tk)]θ̃(tk)

]
(9)

Let us now introduce the following decoupling change of
variable (Zhang (2002)):

η(t) = x̃(t)− λ(t)θ̃(tk) (10)

Differentiating (10) with respect to time yields:

η̇(t) = ˙̃x(t)− λ̇(t)θ̃(tk) (11)

η̇(t) = A(t)x̃(t)− S(t)−1CTCx̃(tk)

− S(t)−1CTφ[y(tk)]θ̃(tk)− λ̇(t)θ̃(tk)
(12)

η̇(t) = A(t)
[
η(t) + λ(t)θ̃(tk)

]
− S(t)−1CTC

[
η(tk) + λ(tk)θ̃(tk)

]
− S(t)−1CTφ[y(tk)] θ̃(tk)− λ̇(t)θ̃(tk)

(13)

We derive that

η̇(t) = A(t)η(t)− S(t)−1CTCη(tk)

+
[
A(t)λ(t)− S(t)−1CTCλ(tk)

−S(t)−1CTφ[y(tk)]− λ̇(t)
]
θ̃(tk)

(14)

Replacing λ̇(t) by its expression in (7), one gets:

η̇(t) = A(t)η(t)− S(t)−1CTCη(tk) (15)

The exponential stability of (15) is ensured under the two
following conditions (Proof of Part 1, eq. 48) in Ahmed-Ali
et al. (2019):{

∆− TeK(∆) > 0 (16)

1− Te [λMAX(CTC) + TeK(∆) + ∆] > 0 (17)

with K(∆) = max
[
K1(∆),K2(∆)

]
such that:

- K1(∆) =

(
2 sup ‖A(t)− S(t)−1CTC‖

)2
αS(∆)

- αS(∆) I ≤ S(t) and αS(∆) is a decreasing function
of ∆ (Besançon et al. (1996))

- K2

(
∆) = 2(α−1

S (∆)‖CTC‖
)2

Under conditions (16)-(17), η(t) tends exponentially to the
origin as t→∞.

3.2 Parameters estimation

In this section, the estimation of the unknown vector
parameter is done only at each sampling time tk, k ∈ N.{

y(tk) = Cx(tk) + φ[y(tk)]θ

ŷ(tk) = Cx̂(tk) + φ[y(tk)]θ̂(tk)
(18)

Let
ỹ(tk) = Cx̃(tk) + φ[y(tk)]θ̃(tk) (19)

Using (10) leads to:

ỹ(tk) = C
[
η(tk) + λ(tk)θ̃(tk)

]
+ φ[y(tk)]θ̃(tk) (20)

ỹ(tk) = Cη(tk) +
[
Cλ(tk) + φ[y(tk)]

]
θ̃(tk) (21)

ỹ(tk) = Cη(tk) + F (tk)θ̃(tk) (22)

with F (tk) = Cλ(tk) + φ[y(tk)]

The estimate of the unknown vector parameter θ can be
expressed under the following well-known regressor form
(Anderson et al. (1986)):

θ̂(tk) = θ̂(tk−1)− FT (tk)

1 + ‖F (tk)‖2
ỹ(tk) (23)

3.3 Main result

Assumption 1. Let λ(t) ∈ Rn×m be the solution of (7),
the matrix λ(t) is persistently excited so that there exist
k ∈ N, β > 0 such that:

∞∑
k=1

F (tk)TF (tk) ≥ β In

Theorem 1. Under Assumption 1, for 0 < Te < TeMAX,
system (2-7) is a continuous-discrete adaptive observer for
system (1) with the following properties:

i) The auxiliary variable λ(t) is bounded.

ii) the parameter estimation θ̂ converges exponentially
toward θ.

iii) x̂(t) exponentially converges to x(t).

Proof.

Part i) Choosing λ(t) as in (7), η(t) can be expressed
by (15).Then, it’s easy to find a Lyapunov function, as in
Appendix (Proof of Part 1) in Ahmed-Ali et al. (2019), to
prove stability of (15). Thereby, η(t) tends exponentially
to the origin as t tends to infinity. It implies that λ(t) stays
bounded under the following additional conditions (Proof
of Part 2) in Ahmed-Ali et al. (2019):{ ∆

2 − TeK3(∆) > 0 (24)

1− Te [λMAX(CTC) + TeK3(∆) + ∆] > 0 (25)

with K3(∆) = max

[
3K2

1 (∆)

αS(∆)
, 3K2

2 (∆)

]
Inequations (16)-(17) and (24)-(25) make it possible to
obtain TeMAX the upper bound of Te:

TeMAX ≤ min{(16), (17), (24), (25)} (26)

Part ii) In this part, we will show the exponential

convergence of the parametric error θ̃(tk) toward zero.
Combining (8) and (23), for t ∈ [tk tk+1), we have:

θ̃(tk) = θ̃(tk−1)− FT (tk)

1 + ‖F (tk)‖2
ỹ(tk) (27)

Replacing ỹ(tk) by its expression in (22), we derive:

θ̃(tk) =

[
I− F

T (tk)F (tk)

1 + ‖F (tk)‖2

]
θ̃(tk−1)−F

T (tk)Cη(tk)

1 + ‖F (tk)‖2
(28)
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From i), η(t) converges to the origin and we know that
λ(t) is bounded and as φ is also bounded, then the non-
homogenous part of (28) vanishes.

With respect to Assumption 1, the homogenous part of
(28) ensures an exponentially convergence to the origin
(for more details, see Ahmed-Ali et al. (2009)).

Part iii) Equation (10) allows to write ‖x̃(t)‖ ≤ ‖η(t)‖+

‖λ(t)‖ ‖θ̃(tk)‖ which implies that x̃(t) is exponentially
vanishing because parts i)-ii) of proof. 2

4. EXTENSION TO DELAYED
SAMPLED-MEASUREMENTS

In this section, we will assume that in addition to the fact
that state variables, which are available for measurements
at only sampling times tk, are also received within a delay τ
(Hespanha et al. (2007)). For t ∈ [tk tk+1), k ∈ N, the
initial system (1) becomes:

ẋ(t) = A(t)x(t) +B[u(t)]

y(t) = Cx(tk) + φ[yd(tk))].θ

yd(t) = y(t− τ)

(29)

In the sequel, we will design a continuous discrete observer
for system (29) which provides simultaneous estimation of
the state x and the parameter vector θ based only on the
delayed sampled-measurements.

The whole observer will be composed of the three following
components:

- An observer (30)-(31) which provides the estimation
of the delayed state vector x(t− τ),

- A predictor (32) which provides estimation of state
vector x(t), at each sampling time,

- An estimator (33)-(36) which delivers the value of the
unknown parameter vector θ, at each sampling time.

ż(t) = A(t−τ)z(t) +B[u(t−τ)]− S(t)−1CT

×
[
Cz(tk)+φ[y(tk−τ)]θ̂(tk)− y[tk−τ ]

]
(30)

Ṡ(t)=−∆S(t)−S(t)A(t−τ)−AT (t−τ)S(t)+CTC (31)

S(0) > 0,∆ > 0

x̂(t) = z(t) +
∫ t
t−τ (A(s)x̂(s) +B[u(s)]) ds (32)

x̂(s) = 0, s ∈ [−τ, 0]

θ̂(tk) = θ̂(tk−1)− FT (tk)

1 + ‖F (tk)‖2
ỹ(tk − τ) (33)

F (tk) = Cλ(tk) + φ[y(tk − τ)] (34)

ỹ(tk − τ) = Cz(tk) + φ[y(tk − τ)]θ̂(tk)− y(tk − τ) (35)

λ̇(t) = A(t− τ)λ(t)− S(t)−1CTCλ(tk)

− S(t)−1CTφ[y(tk − τ)] (36)

t ∈ [tk tk+1), k ∈ N

Due to the lack of space, only a sketch of proof is given
in this paper. Inspired from Ahmed-Ali et al. (2016), the
proof of the convergence of our proposed observer will
consists in demonstrating the following properties:

i) The auxiliary variable λ(t) is bounded.

ii) the parameter estimation θ̂ converges exponentially
toward θ.

iii) z(t) exponentially converges toward the delayed state
x(t− τ).

iv) x̂(t) exponentially converges to x(t).

5. SIMULATION EXAMPLE

This section is dedicated to the illustration of the proposed
observer by means of a second order system (37) which
belongs to the class of system described in (1) expanded
to the case of a delayed output.

ẋ1(t) = −x1(t) +
(

2 + cos(t)
)
x2(t)

ẋ2(t) = −x1(t) + sin(0.5 t)

y(t) = x1(t) + cos
(
y(tk)

)
θ

t ∈ [tk tk+1), k ∈ N
yd(t) = y(t− τ)

(37)

The simulations were conducted with τ a constant delay,
the parameter θ has been chosen constant by steps of 10
seconds with variations not too large, system states are
initialized such as x(0) = [1;−1], initial estimated states

are x̂(0) = [0; 0], unknown estimated parameter θ̂ is

initialized such as θ̂(0) = 1 and observer (2)-(7) and (30)-
(36) parameters are chosen such as ∆ = 2, S(0) = I2×2,
λ(0) = [1; 1]. In this paper we presents two simulations
cases. The first one without delay (τ=0) and the second
one with a non-zero constant delay.

Case 1: without delay

These simulations have been done in the case where
Te = 0.1 (s). The reference profile chosen for θ is
depicted in Fig. 1a. On the same figure, the estimated
value of θ appears in dotted-line. After a short transient,

the estimated θ̂ clearly converges to the real value θ. To
highlight this result, Fig. 1b describes the sum of squares
of θ̃ for the same reference profile. We can clearly see that
after the transient, the sum of squares of θ̃ is approaching
nearly to zero.

0 10 20 30 40 50

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

(a) θ and θ̂.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

(b) Sum of squares of θ̃.

Fig. 1. Parameter and his estimate (a) and parameter
estimation errors (b).

While considering the same reference profile, Fig. 2 shows
the state errors versus time. The initial transient seems
important because initial conditions are far from zero, but
then for each next step with θ, the transient is very smaller

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5116



and shorter. Results are of course depending on the choice
of Te.

0 10 20 30 40 50

Time (s)

-1.5

-1

-0.5

0

0.5

1

Fig. 2. Evolution of the state errors.

Case 2: non-zero constant delay

In this case, we present the extension to the non-zero
constant delay τ = Te = 0.1 s on the output.
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(a) θ and θ̂.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

(b) Sum of squares of θ̃.

Fig. 3. Parameter and his estimate (a) and parameter
estimation errors (b).
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Fig. 4. Evolution of the state errors.

Looking at Fig. 3a-4, we can say that the observer (30)-
(36) still performs in terms of parameter and states esti-
mations.

In the case of many practical applications, it turns out
critical to be able to work with a great sampling period.
Moreover, the output can be delayed by, for example, a
network. Then, it is interesting to explore the behavior of
our observer for different values of Te < TeMAX and τ . To
this end, let us introduce the following criteria:

MSE =
1

N

N∑
i=1

[
θ̃(ti)

2 + x̃1(ti)
2 + x̃2(ti)

2

]
(38)

Application of (38) for different values of τ and Te leads
to results plotted in Fig. 5.

0
1

0.2

0.8 1
0.6

0.4

0.8
0.60.4

0.6

0.40.2 0.2
0 0

Fig. 5. MSE versus τ and Te.

It’s clear that the MSE is growing fast with the value of
Te but stays unsignificant for small Te. Until a quite large
enough sampling period, our design allows a correct behav-
ior in spite of a deterioration of the observer performances.
For a too large sampling period (greater than TeMAX), the
loss of convergence occurs. The same behaviour is observed
with τ . Considering the two cumulating effects, the worst
case obviously appears for great values of τ and Te, but
even for small values of Te, the performances fall down for
big delay.

6. CONCLUDING REMARKS

In this paper, a new continuous-discrete adaptive non-
linear observer for time-varying nonlinear systems with un-
known parameters in output equation has been designed.
The main advantage of the proposed observer lies in its
simplicity. Proof of convergence of both parameter and
state vectors is given and ensured that it remains valid for
high sampling periods, less than TeMAX which is explicited
in the main result part. As the good simulations results
suggest, future work will focus on the extension to NCS
(Hespanha et al. (2007)).
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