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Abstract: Stabilizing multi-steered articulated vehicles in backward motion is a complex task
for any human driver. Unless the vehicle is accurately steered, its structurally unstable joint-
angle kinematics during reverse maneuvers can cause the vehicle segments to fold and enter a
jack-knife state. In this work, a model predictive path-following controller is proposed enabling
automatic low-speed steering control of multi-steered articulated vehicles, comprising a car-like
tractor and an arbitrary number of trailers with passive or active steering. The proposed path-
following controller is tailored to follow nominal paths that contains full state and control-input
information, and is designed to satisfy various physical constraints on the vehicle states as well
as saturations and rate limitations on the tractor’s curvature and the trailer steering angles.
The performance of the proposed model predictive path-following controller is evaluated in a
set of simulations for a multi-steered 2-trailer with a car-like tractor where the last trailer has
steerable wheels.
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1. INTRODUCTION

The transportation sector faces growing demands from the
society to increase efficiency and to reduce the environ-
mental footprint related to freight and public transport.
As a result, recent trends in modern transport include
an increased interest in large capacity (multi-) articulated
buses (Michalek, 2019) and long tractor-trailer combi-
nations (Islam et al., 2015). In order to improve these
long vehicle’s maneuvering capability, some of the trailers
are equipped with steerable wheels. Compared to single-
steered N-trailer (SSNT) vehicles where all trailers are
passive, multi-steered N-trailer (MSNT) vehicles are more
agile, but also significantly more difficult to control for a
human driver. This is partly because of the vehicle’s addi-
tional degrees of freedom and partly due to specific kine-
matic and dynamics properties of MSNT vehicles (Tilbury
et al., 1995; Islam et al., 2015; Orosco-Guerrero et al.,
2002; Michalek, 2019). To aid the driver, various control
systems have been proposed to automatically control the
steerable trailer wheels to either decrease the turning ra-
dius during reverse maneuvers or to diminish the so-called
off-tracking effect during tight cornering (Beyersdorfer and
Wagner, 2013; Odhams et al., 2011; Varga et al., 2018; Van
De Wouw et al., 2015; Michalek, 2019).

Even though several feedback-control strategies have been
proposed for various SSNT vehicles (see e.g. Michalek
(2014); Ljungqvist et al. (2019); Altafini et al. (2001);
Rimmer and Cebon (2017); Altafini (2003)), only a limited
amount of work has been devoted to the path-following or
the trajectory-tracking control problem for special classes
of MSNT vehicles (see e.g. Odhams et al. (2011); Varga
et al. (2018); Van De Wouw et al. (2015); Yuan et al.
(2015); Sadeghi et al. (2019)). However, these approaches
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mainly use the additional trailer-steering capability to
reduce the off-tracking effect while tracking a geometric
reference path or trajectory. As a consequence, there is
still a need to present a path-following controller for a
generic MSNT vehicle for the case when the nominal path
contains full state and control-input information, i.e., it is
tailored to operate in series with a motion planner similar
to Evestedt et al. (2016); Li et al. (2019); Beyersdorfer and
Wagner (2013); Ljungqvist et al. (2019); Bergman et al.
(2020).

The contribution of this work is a path-following controller
for a generic MSNT with a car-like tractor targeting low-
speed maneuvers, which is designed to operate in series
with a motion planner that computes feasible paths. It
is done by first deriving a path-following error model de-
scribing the vehicle in terms of deviation from the nominal
path. This error model together with physical constraints
on states and control inputs are then used to design a
path-following controller based on the framework of model
predictive control (MPC) (Mayne et al., 2000; Garcia
et al., 1989; Faulwasser et al., 2015; Lima et al., 2017).
To the best of the authors’ knowledge, this paper presents
the first path-following controller for a generic MSNT with
a car-like tractor admitting mixtures of off-axle/on-axle
hitch connections and steerable/non-steerable trailers, and
is designed to satisfy various constraints on states and
control inputs.

The remainder of the paper is structured as follows. The
kinematic vehicle model is presented in Section 2 and
the path-following error model is derived in Section 3.
The proposed model predictive path-following controller is
presented in Section 4. In Section 5, simulation results for
a MS2T with a car-like tractor is presented and the paper
is concluded in Section 6 by summarizing the contributions
and discussing directions for future work.
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2. KINEMATIC VEHICLE MODEL

The MSNT with a car-like tractor considered in this work
is composed of N + 1 interconnected vehicle segments,
including a leading car-like tractor and N number of
trailers that are either passively of actively steered. The
car-like tractor has a steerable front wheel and its rear
wheel is fixed. The MSNT vehicle is illustrated in Fig. 1,
where each vehicle segment is described by a segment
length Li > 0 and a signed hitching offset Mi. Since
low-speed maneuvers are considered, a kinematic model
is used to describe the vehicle. The model is based on the
work in Michalek (2019) and is derived based on some
assumptions including that the wheels are rolling without
slipping. By considering the steering angles as control
inputs, the MSNT with a car-like tractor can be described
with a state vector that consists of n = 3 +N variables:

– the global pose (xN , yN , θN ) of the Nth trailer in a
fixed coordinate frame

qN = [xN yN θN ]
T ∈ R2 × S, (1)

where S = (−π, π].
– for i = 1, . . . , N, a number of N constrained joint

angles

βi = θi−1 − θi ∈ Bi = [−β̄i, β̄i], β̄i ∈ (0, π/2). (2)

The state vector for the MSNT with a car-like tractor
is defined as

x =
[
qTN βN βN−1 . . . β1

]T ∈ X , (3)

where X = R2 × S× BN × BN−1 × . . .× B1.

By treating the longitudinal velocity of the car-like tractor
v0 as an exogenous input, the control input consists of
m = 1 + S variables:

– the curvature of the car-like tractor κ0 = tan β0

L0
:

κ0 ∈ Q0 = [−κ̄0, κ̄0], (4)

where β0 ∈ [−β̄0, β̄0], β̄0 ∈ (0, π/2) is the steering

angle of the tractor’s front wheels and κ̄0 = tan β̄0

L0
is

the maximum curvature,
– and S ∈ {1, . . . , N} number of steering angles associ-

ated with actively steered trailers

γa ∈ Qa = [−γ̄a, γ̄a], γ̄a ∈ (0, π/2), (5)

where index a ∈ Ia ⊆ {1, . . . , N} specifies which
trailers that have steerable wheels. The control input
for the MSNT with a car-like tractor is defined as

u =
[
κ0 γ

T
a

]T ∈ U , (6)

where κ0 is the tractor’s curvature and γa represents
a vector of trailer steering angles and U = Q0 ×
Qa × . . .×Qa︸ ︷︷ ︸

S times

.

The leading car-like tractor is described by a kinematic
single-track vehicle model and its orientation θ0 evolves as

θ̇0 = v0κ0. (7)

Between any two neighboring vehicle segments, the trans-
formation of the angular θ̇i and longitudinal vi velocities
are given by (see, e.g., Michalek (2019)):

[
θ̇i
vi

]
=

−
Mi

Li

cos (βi − γi)
cos γi

sin (βi − γi + γi−1)

Li cos γi

Mi
sinβi

cos γi

cos (βi + γi−1)

cos γi


︸ ︷︷ ︸

Ji(βi,γi,γi−1)

[
θ̇i−1

vi−1

]
, (8)
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Fig. 1. A schematic description of the MSNT with a car-like tractor
in a global coordinate system.

for i = 1, . . . , N , where γi denotes the steering angle of the
ith trailer. Note that if the jth trailer is passive, it suffices
to take γj = 0, and that γ0 = 0 because the tractor’s rear
wheel is non-steerable.

To satisfy actuator limitations, the rate of each trailer
steering angle γa, a ∈ Ia and the tractor’s curvature κ0

are constrained as
|γ̇a| ≤ ˙̄γa, a ∈ Ia,
|κ̇0| ≤ ˙̄κ0,

(9)

which is compactly represented as u̇ ∈ Ω. Moreover, the
position of the Nth trailer evolves according to standard
unicycle kinematics (see Fig. 1)

ẋN = vN cos(θN + γN ),

ẏN = vN sin(θN + γN ).
(10)

Using (7) and (8), the angular rate θ̇N and longitudinal
velocity vN of the Nth trailer are given by[

θ̇N
vN

]
=

N−1∏
i=0

JN−i(βN−i, γN−i, γN−i−1)

[
v0κ0

v0

]
. (11)

Note that v0 enters bilinearly in (11). Therefore, using (11)
and by introducing the vectors cᵀ = [1 0] and dᵀ = [0 1],
the curvature of the Nth trailer is defined as

κN ,
θ̇N

vN
=

cT
∏N−1
i=0 JN−i(βN−i, γN−i, γN−i−1)

[
κ0
1

]
fvN (β1, . . . , βN , u)

, (12)

where

fvN = dT
N−1∏
i=0

JN−i(βN−i, γN−i, γN−i−1)

[
κ0

1

]
, (13)

which relates the longitudinal velocity of the tractor and
the Nth trailer vN = fvN (β1, . . . , βN , u)v0. To guarantee
that (12) is well defined, it is further assumed that the sets
X and U are defined such that fvN > 0. Using (10), (11)
and (13), the model for the pose of the Nth trailer can be
represented as q̇N = vNfqN (x, u). Furthermore, using (7)
and (8), the time derivative of (2) yields the joint-angle
kinematics

β̇i =θ̇i−1 − θ̇i = cT
N−1∏

j=N−i+1

JN−j(βN−j , γN−j , γN−j−1)

[
κ0
1

]
vN

fvN

− cT
N−1∏
j=N−i

JN−j(βN−j , γN−j , γN−j−1)

[
κ0
1

]
vN

fvN
, (14)
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for i = 1, . . . , N . Denote the joint-angle kinematics in (14)

as β̇i = vNfβi(β1, . . . , βN , u), for i = 1, . . . , N . Now,
the kinematic model of the MSNT vehicle with a car-like
tractor is given in (10), (11) and (14), which can compactly
be represented as

ẋ = vNf(x, u), (15)

where f : Rn × Rm → Rn is continuous and continuously
differentiable with respect to x ∈ X and u ∈ U .

3. PATH-FOLLOWING ERROR MODEL

It is assumed that a nominal trajectory (xr(·), ur(·), vNr(·))
for the MSNT vehicle (15) is provided that satisfies the
constraints on states xr(·) ∈ X , and control inputs
ur(·) ∈ U and u̇r(·) ∈ Ω. Given the vehicle’s current state
x(t), define s(t) as the distance traveled by the position
of the Nth trailer onto its projection to its nominal
path (xNr(·), yNr(·)) up to time t. By applying time-
scaling (Sampei and Furuta, 1986), the nominal trajectory
can instead be interpreted as a nominal path (Ljungqvist
et al., 2019):

dxr
ds

= v̄Nrf(xr, ur), (16)

where v̄Nr = sign(vNr) ∈ {−1, 1} specifies the nominal
motion direction. Similar to Ljungqvist et al. (2019), the
idea is now to model the MSNT vehicle in terms of devia-
tion from this nominal path, as illustrated in Fig. 2. Denote
z̃N (t) as the signed lateral error between the position of
the Nth trailer and its projection to its nominal path
(xNr(·), yNr(·)). Denote the orientation error of the Nth

trailer as θ̃N (t) = θN (t) − θNr(s(t)) and define the joint-

angle errors β̃i(t) = βi(t)−βir(s(t)), i = 1, . . . , N . Finally,
define the control-input deviation as ũ(t) = u(t)− ur(s(t))
and let κNr = κN (β1r, . . . , βNr, ur) represent the cur-
vature of the nominal path for the Nth trailer. Using
the Frenet-frame transformation together with the chain
rule, the MSNT vehicle (15) can be described in terms of
deviation from the nominal path (16) as

ṡ = vN
v̄Nr cos(θ̃N + γ̃N )

1− κNr z̃N
, (17a)

˙̃zN = vN sin(θ̃N + γ̃N ), (17b)

˙̃
θN = vN

(
κN (β̃1 + β1r, . . . , β̃N + βNr, ũ+ ur)

− κNr cos(θ̃N + γ̃N )

1− κNr z̃N

)
, (17c)

˙̃
βi = vN

(
fβi(β̃1 + β1r, . . . , β̃N + βNr, ũ+ ur)

− cos(θ̃N + γ̃N )

1− κNr z̃N
fβi(β1r, . . . , βNr, ur)

)
, (17d)

for i = N,N − 1, . . . , 1. The transformation to the Frenet
frame path-coordinate system is valid as long as z̃N and
the sum θ̃N + γ̃N satisfy

1− κNr(s)z̃N > 0, |θ̃N + γ̃N | < π/2. (18)

Essentially, this gives that |z̃N | < |κ−1
Nr(s)| must hold

when z̃N and κNr(s) have the same sign. Note that
v̄Nr is included in (17a) to make ṡ > 0 as long as the
constraints in (18) are satisfied, and the Nth trailer’s
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Fig. 2. A schematic description of the MSNT with a car-like tractor
in the Frenet frame coordinate system.

velocity vN and the nominal motion direction v̄Nr have
the same sign. Moreover, since it is assumed that fvN > 0
and the relationship vN = v0fvN (β1, . . . , βN , u) holds, an
equivalent condition is that the velocity of the car-like
tractor v0 is selected such that sign(v0) = v̄Nr.

Define the path-following error x̃ =
[
z̃N θ̃N β̃N . . . β̃1

]ᵀ
,

where its model is given by (17b)–(17d). From the struc-
ture of (17b)–(17d), it is straightforward to verify that
the origin (x̃, ũ) = (0, 0) is an equilibrium point for all
t. Moreover, since the velocity v0 of the tractor is se-
lected such that ṡ(t) > 0, it is possible to perform time-
scaling (Sampei and Furuta, 1986) and eliminate the time-
dependency presented in (17b)–(17d). Using the chain
rule, it holds that dx̃

ds = dx̃
dt

1
ṡ , and the spatial version of

the path-following error model (17b)–(17d) becomes
dz̃N

ds
= v̄Nr(1− κNr z̃N ) tan(θ̃N + γ̃N ), (19a)

dθ̃N

ds
= v̄Nr

(
1− κNr z̃N

cos(θ̃N + γ̃N )
κN (β̃1 + β1r, . . . , β̃N + βNr, ũ+ ur)

− κNr
)
, (19b)

dβ̃i

ds
= v̄Nr

(
1− κNr z̃N

cos(θ̃N + γ̃N )
fβi (β̃1 + β1r, . . . , β̃N + βNr, ũ+ ur)

− fβi (β1r, . . . , βNr, ur)

)
, i = N,N − 1, . . . , 1, (19c)

which can be compactly represented as
dx̃

ds
= v̄Nrf̃(s, x̃, ũ), (20)

where f̃(s, 0, 0) = 0 for all s. In the next section, a model
predictive path-following controller is proposed to stabilize
the path-following error model (20) around the origin, i.e.,
around the nominal path (16).

4. MODEL PREDICTIVE PATH-FOLLOWING
CONTROLLER

The objective of the model predictive path-following con-
troller is to control the tractor’s curvature κ0 and the
trailer steering angles γa such that the path-following
error is minimized, while the constraints on states x ∈ X ,
and control inputs u ∈ U and u̇ ∈ Ω are satisfied for
all time instances. To obtain an MPC problem that can
be solved online at a high sampling rate, the goal is to
derive an MPC formulation that can be converted into
the form of a quadratic programming (QP) problem. First,
the nonlinear path-following error model (20) is linearized
around the origin (x̃, ũ) = (0, 0), i.e., around the nominal
path:

dx̃

ds
= v̄NrA(s)x̃+ v̄NrB(s)ũ, (21)
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where x̃ is the path-following error and ũ is the control-
input deviation. Using Euler-forward discretization with
sampling distance ∆s, the discrete-time approximation
of (21) becomes

x̃k+1 = Fkx̃k +Gkũk, (22)

where

Fk = I + ∆sv̄NrAk, Gk = ∆sv̄NrBk. (23)

Since the tractor’s curvature and the trailer-steering angles
are uk = ũk + ur,k ∈ U , they are bounded as

−ūk ≤ ũk + ur,k ≤ ūk, (24)

where ūk =
[
κ̄0,k γ̄ᵀ

a,k

]ᵀ
and γ̄a,k represents a vector of

maximum trailer-steering angles. Furthermore, since ṡ > 0
and vN = v0fvN (β1, . . . , βN , u), the rate limits on the
control input u̇ ∈ Ω can be described in s using the chain
rule as∣∣∣∣dκ0

ds

∣∣∣∣ ≤ ˙̄κ0

ṡ
=

1− κNr z̃N
|v0|fvN (β1, . . . , βN , u) cos(θ̃N + γ̃N )

˙̄κ0,∣∣∣∣dγads

∣∣∣∣ ≤ ˙̄γa
ṡ

=
1− κNr z̃N

|v0|fvN (β1, . . . , βN , u) cos(θ̃N + γ̃N )
˙̄γa,

(25)

for a ∈ Ia. Locally around the origin (x̃, ũ) = (0, 0), it

holds that cos(θ̃N + γ̃N ) ≈ 1 and κNr z̃N ≈ 0. Therefore,
to avoid coupling between ũ and x̃, the constraints in (25)
are approximated as∣∣∣∣dκ0

ds

∣∣∣∣ ≤ ˙̄κ0

|v0|fvN (β1r, . . . , βNr, ur)
, c̄0(s),∣∣∣∣dγads

∣∣∣∣ ≤ ˙̄γa
|v0|fvN (β1r, . . . , βNr, ur)

, c̄a(s), a ∈ Ia.
(26)

By discretizing (26) using Euler forward with sampling
distance ∆s, the rate limits on the control input can be
described by the following slew-rate constraint

−c̄k∆s ≤ ũk − ũk−1 − ūr,k ≤ c̄k∆s, (27)

where ūr,k = ur,k − ur,k−1 and c̄k =
[
c̄0,k c̄ᵀa,k

]ᵀ
,

where c̄a,k represents a vector of rate limits for the
trailer-steering angles. Denote the linear inequality con-
straints in (24) and (27) as ũk ∈ Ũk. Finally, since

βi,k = βir,k + β̃i,k, i = 1, . . . , N , the constraints on the
joint angles can be written as

−β̄i ≤ βir,k + β̃i,k ≤ β̄i, i = 1, . . . , N, (28)

which is compactly denoted as x̃k ∈ X̃k. Note that
X̃k can be designed to also include constraints on other
path-following error states. Now, given the path-following
error x̃(s(t)) at time t, the MPC problem with prediction
horizon N is defined as follows

minimize
x̃,ũ

VN (x̃, ũ) = Vf (x̃N ) +

N−1∑
k=0

l(x̃k, ũk)

subject to x̃k+1 = Fkx̃k +Gkũk, k = 0, . . . , N − 1,

x̃k ∈ X̃k, ũk ∈ Ũk, k = 0, . . . , N − 1,

x̃0 = x̃(s(t)) given,

(29)

where x̃ᵀ = [x̃ᵀ0 x̃ᵀ1 . . . x̃ᵀ
N

] is the predicted path-

following error sequence and ũᵀ = [ũᵀ0 ũᵀ1 . . . ũᵀ
N−1

] is

the control-input deviation sequence. The stage-cost is
chosen to be quadratic l(x̃k, ũk) = ||x̃k||2Q + ||ũk||2R as

well as and the terminal cost Vf (x̃N ) = x̃T
N
PN x̃N , where

the matrices Q � 0, R � 0 and PN � 0 are design
choices. Since the cost function VN is quadratic and there
are only linear equality and inequality constraints, the

optimization problem in (29) can be written as a standard
QP problem. Thus, at each sampling instance, the QP
problem in (29) is solved to obtain the optimal open-loop
control-input deviation sequence ũ∗. Only the first control-
input deviation ũ∗0 is deployed to the vehicle

u(t) = ur(s(t)) + ũ∗0, (30)

and the QP problem (29) is repeatedly solved at a fixed
controller frequency fs using the current state estimate.
Note that the MPC controller only computes the feedback
part of the control input ũ∗0, as the optimal feedforward
ur(s(t)) already is provided by the motion planner.

4.1 Controller design

We now turn to the problem of designing the cost function
VN for the MPC controller (29). Since the nominal path
contains full state and control-input information, it is
possible to compute the nominal path as well as the nomi-
nal orientation of each vehicle segment using holonomic
relationships (Altafini, 2001). In order to minimize the
risk of colliding with any obstacle, it is preferred that the
MPC controller is tuned such that all path-following errors
are penalized. Denote z̃i, i = 0, . . . , N − 1 as the lateral
error of the ith vehicle segment with respect to its nominal
path, and denote θ̃i = θi − θir, i = 0, . . . , N − 1 as their
corresponding heading errors. As explained in Altafini
(2003), it is for general paths not possible to derive closed-
form expressions to relate these auxiliary path-following
errors as a function of the modeled ones x̃. However,
around a straight nominal path, closed-form expressions
exist and the lateral and heading errors can be described
as a function of x̃ using the following recursion

z̃i = z̃i+1 + Li+1 sin θ̃i+1 +Mi+1 sin(θ̃i+1 + β̃i+1),

θ̃i = θ̃i+1 + β̃i+1, i = N − 1, . . . , 0.
(31)

Using these approximate relationships also for curved
nominal paths, define

z = [x̃T z̃N−1 θ̃N−1 . . . z̃0 θ̃0]T , hz(x̃), (32)

where hz(0) = 0, which defines the control-objective
vector intended to be penalized. Since hz(x̃) in non-
linear, it is linearized around the origin which yields

z = ∂hz(0)
∂x̃ x̃ ,M x̃. The matrix M is then used to select

the weight matrix for the quadratic stage-cost on x̃ as
Q = MTQ̄M , where Q̄ � 0 is a diagonal design matrix.
Now, each diagonal element in Q̄ penalizes a specific
control objective in z. The matrix M is then used to
transform the specified design choice to Q, which typically
obtains nonzero off-diagonal elements.

When the matrices Q and R are selected, the weight ma-
trix for the terminal cost PN � 0 is computed by solving
the discrete-time algebraic Riccati equation (DARE):

PN = F TPNF +Q1 − F TPNGK, (33)

where K = (R + GTPNG)−1GTPNF is the linear
quadratic (LQ) feedback gain, and F and G are the dis-
crete system matrices (23) for the linearized path-following
error model (21) around a straight nominal path. Note that
since the nominal motion direction v̄Nr ∈ {−1, 1} enters
bilinearly in (21), the system’s stability properties depend
on the nominal motion direction. As a consequence, differ-
ent terminal costs are used during backward and forward
motion tasks (Ljungqvist et al., 2019; Altafini et al., 2001).
Moreover, since the prediction model used in the MPC
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controller is an approximation, the originally hard joint-
angle constraints are replaced with soft constraints using
standard techniques (Mayne et al., 2000).

Even though there exists a well-established theory for
guaranteeing closed-loop stability for MPC (see e.g. Mayne
et al. (2000); Garcia et al. (1989)), a formal stability
analysis is out of the scope in this work. Instead, exten-
sive simulations are included to indicate the performance
and stability properties of the MSNT vehicle using the
proposed MPC controller (29).

5. SIMULATION RESULTS

In this section, the proposed model predictive path-
following controller is evaluated on a MS2T with a car-
like tractor, where trailer N = 2 is steerable, i.e., Ia =
{2}, and a mixture of off-axle (M1 6= 0) and on-axle
(M2 = 0) hitch connections. The vehicle parameters are
presented in Table 1. Except for that trailer 2 is steerable,
the parameters coincide with the full-scale test platform
presented in Ljungqvist et al. (2019). Using the formulas
presented in Section 2, it is now straightforward to de-
rive the kinematic vehicle model (15) with state vector
xᵀ = [x2 y2 θ2 β2 β1] and control input uᵀ = [κ0 γ2].

Moreover, the path-following error is x̃ᵀ =
[
z̃2 θ̃2 β̃2 β̃1

]
and the control-input deviation is ũᵀ = [κ̃0 γ̃2]. Using the
recursive formulas presented in Section 2 and Section 3 for
this specific MS2T vehicle, the spatial path-following error
model (20) becomes

dz̃2

ds
= v̄2r(1− κ2r z̃2) tan(θ̃2 + γ̃2),

dθ̃2

ds
= v̄2r

(
1− κ2r z̃2

cos(θ̃2 + γ̃2)
κ2(β2r + β̃2, γ2r + γ̃2)− κ2r

)
,

dβ̃2

ds
= v̄2r

(
1− κ2r z̃2

cos(θ̃2 + γ̃2)
fβ2 (β1r + β̃1, β2r + β̃2, ur + ũ)

− fβ2 (β1r, β2r, ur)

)
,

dβ̃1

ds
= v̄2r

(
1− κ2r z̃2

cos(θ̃2 + γ̃2)
fβ1 (β1r + β̃1, β2r + β̃2, ur + ũ)

− fβ1 (β1r, β2r, ur)

)
,

(34)

where κ2r = κ2(β2r, γ2r) is the nominal curvature of trailer
2, and the functions fβ1

, fβ2
and κ2 are provided in

Appendix A. The model in (34) can compactly be written

as dx̃/ds = v̄2rf̃(s, x̃, ũ), and its linearization around the
origin (x̃, ũ) = (0, 0) can be written as in (21), where
the matrices A(s) and B(s) are provided in Appendix
A. The linearized system (21) is then discretized using a
sampling distance ∆s = 0.2 m to obtain a discrete-time
representation (22).

The proposed MPC controller is designed following the
approach presented in Section 4, where the design param-
eters are listed in Table 2 and the control-objective vector
is zᵀ =

[
x̃ᵀ z̃1 θ̃1 z̃0 θ̃0

]
. The terminal costs PN (one for

forward and one for backward motion tasks) are computed
by solving the DARE in (33) using the discrete system
matrices F = I + ∆sv̄2rA and G = ∆sv̄2rB, obtained
around a straight nominal path in forward (v̄2r = 1) and
backward (v̄2r = −1) motion. The matrices A and B are
provided in Appendix A.

Table 1. Vehicle parameters for the MS2T vehicle.

Vehicle parameter Value

Tractor’s wheelbase L0 4.62 m
Length of off-hitch M1 1.66 m
Length of trailer 1 L1 3.87 m
Length of trailer 2 L2 8.0 m
Maximum joint angles β̄i, i = 1, 2 0.8 rad
Maximum curvature of tractor κ̄0 0.18 m−1

Maximum curvature rate of tractor ˙̄κ0 0.13 m−1s−1

Maximum steering angle trailer 2 γ̄3 0.35 rad
Maximum steering-angle rate trailer 2 ˙̄γ2 0.8 rad/s

The MPC controller is implemented in Matlab using
YALMIP where Gurobi 8.1.1 is used as QP solver (Gurobi
Optimization, 2019) to solve (29) at each sampling in-
stance. The performance of the proposed MPC controller
is evaluated in a simulation study containing a straight
and a figure-eight nominal path. The simulations are per-
formed on a standard laptop computer with an Intel Core
i7-4600U@2.1GHz CPU. The proposed MPC controller
(MS2T-MPC) is benchmarked with an LQ controller
(MS2T-LQ), as proposed in Ljungqvist et al. (2019). The
LQ controller is given by ũ = Kx̃, where the feedback gain
K is computed by solving the DARE in (33) using the
weight matrices Q and R that are also used by the MPC
controller. Additionally, to analyze if the MPC controller is
able to exploit the additional steering capability, it is also
compared with an MPC controller for an SS2T vehicle,
i.e., γ̄2 = 0, with the same vehicle parameters. This MPC
controller (SS2T-MPC) uses the same design parameters
except that the weight matrix on the control-input devia-
tion is selected as R = 4, because the control input ũ = κ̃0

is a scalar for SS2T. Moreover, to make fair comparisons
the nominal paths are designed to be feasible for the SS2T
vehicle, i.e., γ2r = 0. In the simulations, the initial path-
following error x̃i = x̃(0) is perturbed to compare how
the different controllers handle disturbance rejection while
satisfying the constraints on the joint angles.

The first set of simulations involves backward track-
ing of a straight nominal path aligned with the x-axis,
where the longitudinal velocity of the tractor is selected
as v0 = −1 m/s. In this scenario, the initial state is

x̃i =
[
0 0 βi2 βi1

]ᵀ
, where the initial joint-angle errors

βi2 and βi1 are perturbed to various degrees. First, to
analyze the stability region of the closed-loop systems,
we numerically compute the region of attraction for the
systems by performing simulations from a large set of
initial joint-angle errors. In these simulations, the joint-
angle constraints are temporarily removed from the MPC
controllers and the closed-systems are checked for conver-
gence to the straight nominal path. The resulting regions
obtained from simulations are illustrated in Fig. 3c. As
expected, MS2T-MPC (blue set) has the largest region.
Even though SS2T-MPC has non-steerable trailers, its
region of attraction (red set) is larger than for MS2T-
LQ (green set). This result is obtained because the LQ

Table 2. Design parameters for the MPC controller.

Vehicle parameter Value

Prediction horizon N 40
Weight matrix Q̄ 1/35× diag([0.5 1 4 4 0.5 1 0.5 1])
Weight matrix R diag([4 3])
Sampling distance ∆s 0.2 m
Controller frequency fs 10 Hz
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(c) The simulated stability
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(f) Control input uᵀ = [κ0 γ2] from x̃iS . κ0 (solid) and γ2 (dashed)
and their limits κ̄0 (dashed-dotted black) and γ̄2 (dotted black).

Fig. 3. Path following of a straight nominal path (y3r = 0) in backward motion from perturbed initial joint-angle errors β̃i1, β̃
i
2 ∈ [−0.6, 0.6]

rad, using MS2T-LQ (green lines), SS2T-MPC (red lines) and MS2T-MPC (blue lines). High-lighted initial state x̃iS in Fig. 3a is for

(βi2, β
i
1) = (0.6,−0.6) rad. In Fig. 3b, the gray box illustrates the used joint-angle constraints.

controller is not aware of the control-input constraints, as
opposed to the two MPC controllers.

The envelopes of the trajectories for position (x2(·), y2(·))
using MS2T-MPC and SS2T-MPC with initial joint-angle
errors β̃i1, β̃

i
2 ∈ [−0.6, 0.6] rad, are illustrated in Fig. 3a 1 .

The transient response for MS2T-MPC yields a signifi-
cantly smaller maximum overshoot in the lateral error of
trailer 2 (0.26 m) compared to SS2T-MPC (6.1 m). The
reason for this can be seen in Fig. 3f, where the control-
input trajectories are plotted from initial state x̃iS with

(β̃i2, β̃
i
1) = (0.6,−0.6) rad. The results show that MS2T-

MPC uses a positive trailer-steering angle γ2 (blue dashed
line) to compensate for the initially positive value of β2

(see Fig. 3b). The trailer-steering angle is also used by
MS2T-MPC to reduce the maximum overshoot in the
heading error of trailer 2 (0.26 rad) compared to SS2T-
MPC (0.62 rad) (see Fig. 3d). Moreover, the joint-angle
trajectories from initial state x̃iS are plotted in Fig. 3b. As
can be seen, MS2T-LQ is not able to stabilize the vehicle
due to the input constraints and jackknifing occurs almost
instantly. As a comparison, both MPC controllers are able
to make the system converge to the straight nominal path,
but SS2T-MPC has to initially violate the soft joint-angle
constraints, which is not the case for MS2T-MPC.

The second set of simulations involves backward tracking
(v0 = −1 m/s) and forward tracking (v0 = 1 m/s) of
a figure-eight nominal path in (x2r(·), y2r(·)), which has
been computed as described in Ljungqvist et al. (2019).
Also in this set of simulations, the initial state x̃(0) is
perturbed to compare the performance of the controllers.
The simulation results are presented in Fig. 4. Scenario A
involves a heading error θ̃i2 ∈ [−1, 1] rad and Scenario B
a lateral error z̃i2 ∈ [−5, 5] m, both in backward motion.
As for the first set of simulations, the MS2T-MPC uses
the trailer-steering angle to reduce the overshoot and

1 The envelope for MS2T-LQ is not presented in Fig. 3a since the
vehicle enters a jack-knife state for some β̃i1, β̃

i
2 ∈ [−0.6, 0.6], e.g.,

from the initial state x̃iS with (βi2, β
i
1) = (0.6,−0.6) rad.

convergence times for z̃2 and θ̃2 compared to SS2T-MPC
(see, e.g., Fig. 4d–4e). Moreover, MS2T-LQ is not able to
stabilize the system and jack-knife occurs almost instantly
from some initial states, e.g., x̃iA1 with θ̃i2 = −1 rad (see
Fig. 4b) and x̃iB1 with z̃i2 = −5 m. Finally, Scenario
C involves both a lateral z̃i2 ∈ [−2, 2] m and an initial

heading error θ̃i2 ∈ [−0.3, 0.3] rad in forward motion. As
can be seen in Fig. 4a, the envelope of the trajectories
(x2(·), y2(·)) is smallest for MS2T-LQ (green set). The
joint-angle trajectories (see Fig. 4c) in the MS2T-LQ case
are however drastically violating their constraints at some
parts of the maneuvers, which is neither the case for
MS2T-MPC nor SS2T-MPC. As a final note, the average
computation time in Gurobi for the proposed MS2T-MPC
is 35 ms compared to 25 ms for SS2T-MPC which is less
than the sampling time Ts = 100 ms of the controllers.

6. CONCLUSIONS

A model predictive path-following controller is proposed
for multi-steered articulated vehicles composed of a car-
like tractor and an arbitrary number of off/on-axle hitched
trailers with steerable/non-steerable wheels. The proposed
MPC controller uses a path-following error model of the
vehicle for predictions, is designed to satisfy physically
constraints on states and control inputs, and is tailored to
follow nominal paths that contain full state and control-
input information. The performance of the proposed path-
following controller is evaluated in a set of practically
relevant scenarios for a multi-steered 2-trailer with a car-
like tractor where the last trailer is steerable. In simula-
tions, it is shown that the proposed controller outperforms
a linear quadratic controller and efficiently exploits the
additional trailer-steering capability, while recovering from
non-trivial initial states in backward motion.

As future work, we would like develop a motion planner
and evaluate the framework in real-work experiments on
a full-scale test vehicle.
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(a) The envelopes of the trajectories for the position of trailer 2
during backward and forward tracking of a figure-eight nominal
path in (x2r(·), y2r(·)) (black line), using MS2T-LQ (green sets),
SS2T-MPC (red sets) and MS2T-MPC (blue sets). For some high-
lighted initial states, MS2T-LQ leads to jack-knife (see Fig. 4b.).
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(b) Joint-angle trajectories from
high-lighted initial state x̃iA1 in
Fig. 4a. Initial state denoted
by black star and nominal path
(β1r(·), β2r(·)) by black line.
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(c) Joint-angle trajectories from
high-lighted initial state x̃iC1 in
Fig. 4a. Initial state denoted by
black star and nominal path in
(β1r(·), β2r(·)) by black line.
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from initial state x̃iA1.
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(f) Control input uᵀ = [κ0 γ2] from x̃iA1. κ0 (solid) and γ2 (dashed)
and their limits κ̄0 (dashed-dotted black) and γ̄2 (dotted black).

Fig. 4. Path following of a figure-eight path in backward (Scenario A and Scenario B) and in forward motion (Scenario C) from perturbed
initial states using MS2T-LQ (green lines), SS2T-MPC (red lines) and MS2T-MPC (blue lines). In Scenario A (see Fig. 4), heading
error θ̃i2 ∈ [−1, 1] rad, in Scenario B, lateral error z̃i2 ∈ [−5, 5] m and in Scenario C, both lateral error z̃i2 ∈ [−2, 2] m and heading error

θ̃i2 ∈ [−0.3, 0.3] rad. In Fig. 4b-4c, the gray box illustrates the joint-angle constraints.

APPENDIX A

We start by deriving the functions fβ1 , fβ2 and κ2 de-
scribing the path-following error model for the specific
MS2T with a car-like tractor (34). The matrices J1 and
J2 describing the longitudinal and angular velocity trans-
formations between neighboring vehicle segments (8) are

J1(β1, 0, 0) =

−M1

L1
cosβ1

sinβ1

L1

M1 sinβ1 cosβ1

 ,

J2(β2, γ2, 0) =

0
sin (β2 − γ2)

L2 cos γ2

0
cosβ2

cos γ2

 ,
(35)

since M2 = γ0 = γ1 = 0. Thus, the velocity transformation
from trailer 2 to the car-like tractor (13) is

fv2 (β1, β2, u) = d
T
J2J1

[
κ0

1

]
=

cos β2

cos γ2
(M1 sin β1κ0 + cos β1) , (36)

and the curvature of trailer 2 (12) is

κ2(β2, γ2) =

cTJ2J1

[
κ0

1

]
dTJ2J1

[
κ0

1

] =
sin(β2 − γ2)

L2 cosβ2
. (37)

Finally, using (35)–(37) the functions describing the joint-
angle kinematics (14) are

fβ2 (β1, β2, u) =
cos γ2

(
sin β1
L1
− M1

L1
cosβ1κ0

)
cosβ2(M1 sinβ1κ0 + cosβ1)

−
sin(β2 − γ2)

L2 cosβ2

,

fβ1 (β1, β2, u) =
cos γ2

(
κ0 − sin β1

L1
+

M1
L1

cosβ1κ0

)
cosβ2(M1 sinβ1κ0 + cosβ1)

. (38)

The Jacobian linearization of the nonlinear path-following
error model (34) around the origin (x̃, ũ) = (0, 0) can be
represented as in (21), where the matrices A(s) and B(s)
have the following structure

A(s) =
f̃(s, 0, 0)

∂x̃
=


0 1 0 0

a21(s) 0 a23(s) 0
a31(s) 0 a33(s) a34(s)
a41(s) 0 a43(s) a44(s)

 , (39)

and

B(s) =
f̃(s, 0, 0)

∂ũ
=

 0 1
0 b22(s)

b31(s) b32(s)
b41(s) b42(s)

 , (40)

where

a21(s) =−
sin2 (β2r − γ2r)
L2
2 cos2 β2r

,

a23(s) =
cos(β2r − γ2r)
L2 cosβ2r

+
sin(β2r − γ2r) tanβ2r

L2 cosβ2r
,

a31(s) =−
sin(β2r − γ2r)
L2 cos2 β2r

(
cos γ2r(sinβ1r − κ0rM1 cosβ1r)

L1(cosβ1r + κ0rM1 sinβ1r)

−
sin(β2r − γ2r)

L2

)
,
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a33(s) = cos γ2r

(
sinβ2r(sinβ1r − κ0rM1 cosβ1r)

L1 cosβ2
2r(cosβ1r + κ0rM1 sinβ1r)

−
1

cos2 β2rL2

)
,

a34(s) =
cos γ2r(1 + κ20rM

2
1 )

L1 cosβ2r(cosβ1r + κ0rM1 sinβ1r)2
,

a41(s) =
cos γ2r(κ0rL1 − sinβ1r +M1 cosβ1rκ0r)

L1L2 cos2 β2r(cosβ1r +M1κ0r sinβ1r)
sin (γ2r − β2r),

a43(s) =
cos γ2r tanβ2r

L1

(
κ0rL1 + κ0rM1 cosβ1r − sinβ1r

cosβ2r(cosβ1r + κ0rM1 sinβ1r)

)
,

a44(s) =−
1 + κ20rM

2
1 + κ20rL1M1 cosβ1r − κ0rL1 sinβ1r

sec γ2rL1 cosβ2r(cosβ1r + κ0rM1 sinβ1r)2
,

and

b22(s) = −
cos(β2r − γ2r)
L2 cosβ2r

,

b31(s) = −
M1 cos γ2r

L1 cosβ2r(cosβ1r + κ0rM1 sinβ1r)2
,

b32(s) =
cos(β2r − γ2r)
L2 cosβ2r

+
(κ0rM1 cosβ1r − sinβ1r) sin γ2r

cosβ2rL1(cosβ1r + κ0rM1 sinβ1r)
,

b41(s) =
cos γ2r(M1 + L1 cosβ1r)

cosβ2rL1(cosβ1r + κ0rM1 sinβ1r)2
,

b42(s) = −
(κ0rL1 + κ0rM1 cosβ1r − sinβ1r) sin γ2r

cosβ2rL1(cosβ1r + κ0rM1 sinβ1r)
.

Around a straight nominal path, the system matrices
in (39) and (40) simplify to

A =



0 1 0 0

0 0
1

L2
0

0 0 −
1

L2

1

L1

0 0 0 −
1

L1


, B =



0 1

0 −
1

L2

−
M1

L1

1

L2

M1 + L1

L1
0


. (41)
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