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Abstract: This work investigates the position control problem for a soft continuum manipulator in 
Cartesian space intended for minimally invasive surgery. Soft continuum manipulators have a large 
number of degrees-of-freedom and are particularly susceptible to external forces because of their 
compliance. This, in conjunction with the limited number of sensors typically available, results in 
uncertain kinematics, which further complicates the control problem. We have designed a partial state 
feedback that compensates the effects of external forces employing a rigid-link model and a port-
Hamiltonian approach and we have investigated in detail the use of integral action to achieve position 
regulation in Cartesian space. Local stability conditions are discussed with a Lyapunov approach. The 
performance of the controller is compared with that achieved with a radial-basis-functions neural network 
by means of simulations and experiments on two prototypes. 
Keywords: Disturbance Rejection, Lagrangian and Hamiltonian systems, Passivity-based control. 

 

1. INTRODUCTION 

Soft robots have desirable features for minimally invasive 
surgery (MIS) such as light weight, high deformability and 
adaptability to the environment. Soft robotic manipulators for 
MIS are characterized by slender bodies that allow access to 
natural orifices or small incisions, in a similar fashion to 
conventional endoscopes (Runciman, Darzi, & Mylonas, 
2019). Additionally, their structural compliance could reduce 
the risk of damaging internal organs as a result of accidental 
movements or of deformations of the tissues. Nevertheless, 
several challenges remain before soft robots can be 
extensively used in clinical practice. These include the ability 
to exert sufficient forces with miniaturized actuators, and to 
achieve reliable and accurate positioning (Thuruthel, Ansari, 
Falotico, & Laschi, 2018). Common actuation principles for 
soft continuum manipulators include pneumatics, cable 
driven, hydraulics, and shape memory alloy. Among 
pneumatic systems, the flexible micro actuator (FMA), 
originally proposed in (Suzumori, 1996), has inspired a 
variety of designs, including our recent work (Garriga-
Casanovas, Collison, & Rodriguez y Baena, 2018). FMAs 
have internal chambers that can be pressurized independently 
resulting in bending of the actuator on different planes. Since 
FMAs and soft continuous manipulators in general, have a 
large number of degrees-of-freedom (DOFs), their 
configuration is typically reconstructed from a limited 
number of sensors. In the absence of external forces, FMAs 
bend with constant curvature (CC), thus their tip position in 
the Cartesian space is uniquely defined by the bending angle. 
Disturbances, which are ubiquitous in MIS applications, 
invalidate the CC assumptions resulting in uncertain 

kinematics. Data-driven and numerical approaches for 
kinematic model identification and kinematic based control 
of soft continuum manipulators include: Kalman filters (Li, 
Kang, Branson, & Dai, 2018); machine learning techniques 
(Thuruthel et al., 2017); reduced-order finite element 
methods (Bieze et al., 2018). Analytical approaches can be 
divided into those based on continuum models, such as 
Cosserat beam theory (Renda, Boyer, Dias, & Seneviratne, 
2018); discrete parameter models, such as piecewise constant 
curvature (PCC) (Katzschmann, Santina, Toshimitsu, Bicchi, 
& Rus, 2019); and rigid-link models (Godage, Wirz, Walker, 
& Webster, 2015). While continuum models are more 
accurate, they do not typically allow for closed-form 
solutions. Instead, discrete models are more computationally 
efficient, but introduce approximations that should be 
accounted for in the system dynamics. In summary, soft 
continuum manipulators combine the difficulties of uncertain 
dynamics and those of uncertain kinematics, posing a 
remarkable challenge from a control prospective.  

A variety of control approaches have been proposed for this 
class of systems, including feedback linearization 
(Falkenhahn, Hildebrandt, Neumann, & Sawodny, 2017), 
sliding mode control (Alqumsan, Khoo, & Norton, 2019), 
and passivity based control (Mattioni, Wu, Ramirez, Gorrec, 
& Macchelli, 2018). However, feedback linearization is 
sensitive to model uncertainties, while sliding mode control 
employs high gains which can alter the system compliance in 
closed loop. We have recently developed an adaptive partial-
state feedback control based on the Interconnection and 
Damping Assignment Passivity based control methodology 
(IDA-PBC) (Ortega, Spong, Gomez-Estern, & Blankenstein, 
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2002) that compensates the effect of external disturbances in 
FMAs (Franco et al., 2019; Franco & Garriga-Casanovas, 
2020). The extension of these ideas to position regulation in 
Cartesian space is not straightforward because of kinematic 
uncertainties. In this work we introduce an integral action to 
regulate the position of our manipulators in Cartesian space. 
Local stability conditions are analyzed with a Lyapunov 
approach. The performance of the controller is then compared 
with that achieved with a different estimator based on a 
radial-basis-functions neural network via simulations and 
experiments on two soft continuum prototypes. 

Section 2 describes the system model and gives an overview 
of the IDA-PBC methodology. Section 3 details the 
controller design. Section 4 presents simulations and 
experimental results. Section 5 contains concluding remarks. 

2. PROBLEM FORMULATION 

2.1  System overview 

The soft continuum manipulators considered in this work 
have three internal chambers spaced at 2𝜋𝜋/3 and an 
inextensible thread running along their central axis to prevent 
elongation, see (Garriga-Casanovas et al., 2018). A second 
thread is wound around the external surface of the 
manipulators to prevent radial expansion. The structural 
stiffness 𝑘𝑘 of the manipulators is assumed constant and 
uniform. The internal pressures 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3 produce a bending 
moment resulting in the tip rotation 𝜃𝜃 on the bending plane. 
The orientation of the bending plane with respect to a fixed 
reference frame is defined by the angle 𝜑𝜑. The angles 𝜃𝜃 and 
𝜑𝜑 depend on 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3 according to (Suzumori, 1996) 

𝜃𝜃 =
1
𝑘𝑘√2

�(𝑃𝑃1 − 𝑃𝑃2)2 + (𝑃𝑃1 − 𝑃𝑃3)2 + (𝑃𝑃3 − 𝑃𝑃2)2

tan(𝜑𝜑) =
√3(𝑃𝑃1 − 𝑃𝑃2)
𝑃𝑃1 + 𝑃𝑃2 − 2𝑃𝑃3

.
 (1) 

The manipulator is modelled as a rigid-link system (Godage 
et al., 2015) consisting of 𝑛𝑛 virtual elastic joints in the plane 
of bending (see Figure 1). The control input is thus defined as 
𝑢𝑢 = �(𝑃𝑃1 − 𝑃𝑃2)2 + (𝑃𝑃1 − 𝑃𝑃3)2 + (𝑃𝑃3 − 𝑃𝑃2)2 (see Figure 2). 
The system dynamics on the bending plane can be described 
in port-Hamiltonian form as 

�𝑞̇𝑞𝑝̇𝑝� = � 0 𝐼𝐼
−𝐼𝐼 −𝑅𝑅� �

∇𝑞𝑞𝐻𝐻
∇𝑝𝑝𝐻𝐻

� + �0𝐺𝐺� 𝑢𝑢 − �0𝛿𝛿�, (2) 

where 𝐻𝐻 = 1
2
𝑝𝑝𝑇𝑇𝑀𝑀−1𝑝𝑝 + 𝑉𝑉 is the Hamiltonian, with potential 

energy 𝑉𝑉 and inertia matrix 𝑀𝑀(𝑞𝑞) = 𝑀𝑀𝑇𝑇. The system states 
are the virtual positions 𝑞𝑞(𝑡𝑡) ∈ ℝ𝑛𝑛 and the momenta 𝑝𝑝 =
𝑀𝑀𝑞̇𝑞. The constant matrix 𝐺𝐺 is a column vector, thus 
rank{𝐺𝐺} = 1 which indicates underactuation. The effects of 
external forces and of model uncertainties are lumped in the 
disturbance 𝛿𝛿 which includes matched components (i.e. those 
affecting the actuated DOF) and unmatched components (i.e. 
those affecting the unactuated DOF). The damping matrix is 
𝑅𝑅 > 0, while 𝐼𝐼 is the identity matrix. 

2.2  Overview of IDA-PBC design 

The design approach is based on the IDA-PBC methodology 
(Ortega et al., 2002) and achieves the closed-loop dynamics 

�𝑞̇𝑞𝑝̇𝑝� = � 0 𝑀𝑀−1𝑀𝑀𝑑𝑑
−𝑀𝑀𝑑𝑑𝑀𝑀−1 𝐽𝐽2 − 𝑅𝑅𝑀𝑀−1𝑀𝑀𝑑𝑑 − 𝐺𝐺𝑘𝑘𝑣𝑣𝐺𝐺𝑇𝑇

� �
∇𝑞𝑞𝑊𝑊
∇𝑝𝑝𝑊𝑊

�, (3) 

with storage function 𝑊𝑊 = 𝐻𝐻𝑑𝑑 + Λ𝑇𝑇(𝑞𝑞 − 𝑞𝑞∗) + 𝒞𝒞, where 
𝐻𝐻𝑑𝑑 = 1

2
𝑝𝑝𝑇𝑇𝑀𝑀𝑑𝑑

−1𝑝𝑝 + 𝑉𝑉𝑑𝑑 is the desired Hamiltonian. The 
controller parameters are the inertia matrix 𝑀𝑀𝑑𝑑, the potential 
energy 𝑉𝑉𝑑𝑑, and the free matrix 𝐽𝐽2 = −𝐽𝐽2𝑇𝑇, which should satisfy 
the partial differential equations (PDEs) 

𝐺𝐺⊥�∇𝑞𝑞𝑉𝑉 − 𝑀𝑀𝑑𝑑𝑀𝑀−1∇𝑞𝑞𝑉𝑉𝑑𝑑� = 0 (4.a) 

𝐺𝐺⊥�∇𝑞𝑞(𝑝𝑝𝑇𝑇𝑀𝑀−1𝑝𝑝) −𝑀𝑀𝑑𝑑𝑀𝑀−1∇𝑞𝑞(𝑝𝑝𝑇𝑇𝑀𝑀𝑑𝑑
−1𝑝𝑝) + 2𝐽𝐽2𝑀𝑀𝑑𝑑

−1𝑝𝑝� = 0 (4.b) 

where 𝐺𝐺⊥ is such that 𝐺𝐺⊥𝐺𝐺 = 0 and rank(𝐺𝐺⊥) = 𝑛𝑛 − 1. The 
term Λ can be interpreted as a vector of closed-loop non-
conservative forces and should verify the algebraic equations 

𝐺𝐺⊥(𝛿𝛿 −𝑀𝑀𝑑𝑑𝑀𝑀−1Λ) = 0. (5) 

If 𝛿𝛿 is constant and known and if 𝑞𝑞 is bounded, then 𝑊𝑊 > 0 
and the control law that achieves (3) is as in (Franco, 2019a) 

𝑢𝑢 = 𝑢𝑢𝑒𝑒𝑒𝑒 + 𝑢𝑢𝑑𝑑𝑑𝑑 + 𝑢𝑢∗,
𝑢𝑢𝑒𝑒𝑒𝑒 = 𝐺𝐺†�∇𝑞𝑞𝐻𝐻 −𝑀𝑀𝑑𝑑𝑀𝑀−1∇𝑞𝑞𝐻𝐻𝑑𝑑 + 𝐽𝐽2∇𝑝𝑝𝐻𝐻𝑑𝑑�,

𝑢𝑢𝑑𝑑𝑑𝑑 = −𝑘𝑘𝑣𝑣𝐺𝐺𝑇𝑇∇𝑝𝑝𝐻𝐻𝑑𝑑,
𝑢𝑢∗ = 𝐺𝐺†(𝛿𝛿 −𝑀𝑀𝑑𝑑𝑀𝑀−1Λ),

 (6) 

where 𝐺𝐺† = (𝐺𝐺𝑇𝑇𝐺𝐺)−1𝐺𝐺𝑇𝑇. Instead, state dependent 
disturbances, which are part of our future work, can be 
accounted for as in (Franco, 2019b; Franco, Rodriguez Y 
Baena, & Astolfi, 2020). For simplicity, the effect of the 
weight of the manipulator is not accounted for in the potential 
energy 𝑉𝑉 = 𝑞𝑞𝑇𝑇𝑘𝑘𝑘𝑘/2, and the damping matrix is assumed 
diagonal and constant. The effects of these approximations 
are included in the lumped disturbance 𝛿𝛿. Since 𝐺𝐺 = [1𝑛𝑛] is 
constant, the tip rotation is 𝐺𝐺𝑇𝑇𝑞𝑞 = 𝜃𝜃. Setting 𝑀𝑀𝑑𝑑 = 𝑘𝑘𝑚𝑚𝑀𝑀 and 
𝐽𝐽2 = 0 solves (4.b), while (4.a) yields 

𝑉𝑉𝑑𝑑 =
𝑘𝑘

2𝑘𝑘𝑚𝑚
� 𝑞𝑞𝑖𝑖2

𝑛𝑛

𝑖𝑖=1
−

𝑘𝑘
2𝑛𝑛𝑘𝑘𝑚𝑚

𝜃𝜃2 +
𝑘𝑘𝑝𝑝

2𝑘𝑘𝑚𝑚
(𝜃𝜃 − 𝜃𝜃∗)2, (7) 

which has a strict minimizer in 𝜃𝜃 = 𝜃𝜃∗. The domain of 
attraction can be approximated as Ω = {𝑞𝑞 ∈ ℝ𝑛𝑛|𝑉𝑉𝑑𝑑 < 𝑐𝑐}. 
Substituting (7) in (6) yields the control law (Franco & 
Garriga-Casanovas, 2020) 

𝑢𝑢 =
𝑘𝑘
𝑛𝑛
𝜃𝜃 − 𝑘𝑘𝑝𝑝(𝜃𝜃 − 𝜃𝜃∗) −

𝑘𝑘𝑣𝑣
𝑘𝑘𝑚𝑚

𝜃̇𝜃 + 𝐺𝐺†�𝛿𝛿 − 𝑘𝑘𝑚𝑚Λ�, (8) 

where 𝑘𝑘𝑝𝑝, 𝑘𝑘𝑚𝑚,𝑘𝑘𝑣𝑣 are positive tuning parameters, and 𝛿𝛿 is an 
estimate of 𝛿𝛿. In particular, solving (5) with 

Λ𝑖𝑖 =
1

𝑛𝑛𝑘𝑘𝑚𝑚
�(𝑛𝑛 − 1)𝛿𝛿𝑖𝑖 −� 𝛿𝛿 𝑗𝑗≠𝑖𝑖

𝑛𝑛

𝑗𝑗=1
� (9) 

results in 𝐺𝐺†Λ = 0, thus this term does not appear in (8). The 
disturbances are estimated adaptively from (2) with a 
variation of the Immersion and Invariance method (Astolfi, 
Karagiannis, & Ortega, 2007), giving the dynamic estimator 
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𝛿̇𝛿 = −𝛼𝛼�∇𝑞𝑞𝑉𝑉 + 𝑅𝑅𝑞̇𝑞 − 𝐺𝐺𝐺𝐺 + 𝛿𝛿�. (10) 

Pre-multiplying (10) by the constant matrix 𝐺𝐺† results in 

𝐺𝐺†𝛿̇𝛿 = −𝛼𝛼 �
𝑘𝑘𝑘𝑘
𝑛𝑛

+
𝑅𝑅𝜃̇𝜃
𝑛𝑛
− 𝑢𝑢 + 𝐺𝐺†𝛿𝛿�, (11) 

which only depends on the tip rotation 𝜃𝜃 and on its first order 
time derivative. As a result, controller (8) is implementable 
and achieves the regulation goal 𝜃𝜃 = 𝜃𝜃∗ in the presence of 
constant disturbances (Franco & Garriga-Casanovas, 2020). 

Regulating the tip position of the manipulator in Cartesian 
space is however not immediate since the mapping (𝑥𝑥,𝑦𝑦) =
𝑓𝑓(𝑞𝑞) is not known. Even though (8) is a linear control law, 
simply replacing 𝜃𝜃 with 𝑥𝑥 would alter the closed-loop 
dynamics since the relationship between these two variables 
is nonlinear. Additionally, the physical interpretation of the 
control in terms of energy shaping would be lost since the 
potential energy is not directly related to the position (𝑥𝑥,𝑦𝑦). 

 
Fig. 1. Schematic of the rigid-link model showing different 
configurations (a); test setup with one FMA (b). 

3. MAIN RESULT 

The control aim considered in this work is the regulation of 
the tip position in Cartesian space. This is achieved 
combining controller (8) and the adaptive law (11) with an 
integral action that estimates the mapping (𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑞𝑞). For 
illustrative purposes, we consider the regulation goal 𝑥𝑥 = 𝑥𝑥∗ 
on the bending plane. 

Lemma 1: Given the mapping 𝑥𝑥 = 𝑓𝑓(𝜃𝜃), assume that there 
exist a function 𝜎𝜎 and some positive values 𝜎𝜎0 and 𝜎𝜎1 such 
that 𝑥𝑥∗ − 𝑥𝑥 = 𝜎𝜎(𝜃𝜃∗ − 𝜃𝜃) with 𝜎𝜎 > 𝜎𝜎0, and that |𝜎̇𝜎|/𝜎𝜎2 < 𝜎𝜎1. 
Consider the observer state 𝜃𝜃� with the update law 

𝜃𝜃�̇ = 𝑘𝑘𝐼𝐼(𝑥𝑥∗ − 𝑥𝑥). (12) 

Then 𝜃𝜃� converges exponentially to 𝜃𝜃∗, where 𝑥𝑥∗ = 𝑓𝑓(𝜃𝜃∗), for 
all 𝑘𝑘𝐼𝐼 > 𝜎𝜎1. 

Proof: Define the observer error 𝜍𝜍 = 𝜃𝜃∗ − 𝜃𝜃�. By hypothesis 
there exist some function 𝜎𝜎 > 𝜎𝜎0 > 0 for which 𝑥𝑥∗ − 𝑥𝑥 =
𝑓𝑓(𝜃𝜃∗) − 𝑓𝑓�𝜃𝜃� � = 𝜎𝜎𝜎𝜎 (e.g. the hypothesis is verified for a 
continuously differentiable and monotonically increasing 
mapping 𝑓𝑓). Defining the storage function 𝑊𝑊0 =
1
2

 (𝑥𝑥∗ − 𝑥𝑥)2 = 1
2
𝜎𝜎2𝜍𝜍2 and computing its time derivative 

along the system’s trajectories yields 

𝑊̇𝑊0 = 𝜎𝜎2𝜍𝜍𝜍𝜍̇ + 𝜎𝜎𝜎̇𝜎𝜍𝜍2. (13) 

Observing that 𝜍𝜍̇ = −𝜃𝜃�̇ and substituting (12) yields 

𝑊̇𝑊0 = 𝜍𝜍𝜍𝜍̇ = −(𝑘𝑘𝐼𝐼𝜎𝜎2 − 𝜎̇𝜎)𝜎𝜎𝜎𝜎2. (14) 

Then 𝑊̇𝑊0 < 0 for all 𝑘𝑘𝐼𝐼 > 𝜎𝜎1 > |𝜎̇𝜎|/𝜎𝜎2 and 𝜍𝜍 converges to 
zero exponentially, concluding the proof ∎ 

For our prototypes, the maximum tip rotation is bounded so 
that |𝜃𝜃| < 𝜋𝜋/2. While larger rotations are theoretically 
possible employing larger pressures, in practice this results in 
leakages from the internal chambers thus |𝜃𝜃| does not 
increase further. In the present case the mapping 𝑥𝑥 = 𝑓𝑓(𝜃𝜃) is 
a trigonometric function and it is monotonically increasing 
provided that the measurement frame and the robot frame are 
chosen so that 𝑥𝑥 and 𝜃𝜃 have the same sign. 

Proposition 1: Consider system (2) with the mapping 𝑥𝑥 =
𝑓𝑓(𝜃𝜃) in closed loop with the control law 

𝑢𝑢 =
𝑘𝑘
𝑛𝑛
𝜃𝜃 − 𝑘𝑘𝑝𝑝�𝜃𝜃 −  𝜃𝜃� � −

𝑘𝑘𝑣𝑣
𝑘𝑘𝑚𝑚

𝜃̇𝜃 + 𝐺𝐺†𝛿𝛿, (15) 

where 𝐺𝐺†𝛿̇𝛿 is given in (11) and 𝜃𝜃� is given in (12). Assume 
that there exist positive constants 𝜎𝜎0 and 𝜎𝜎1 such that 𝜎𝜎 > 𝜎𝜎0 
and |𝜎̇𝜎|/𝜎𝜎2 < 𝜎𝜎1 for all 𝜃𝜃, and that �𝛿̇𝛿� is bounded from 
above. Then there exist values of 𝑅𝑅,𝛼𝛼, 𝑘𝑘𝑚𝑚,𝑘𝑘𝑣𝑣, and 𝑘𝑘𝐼𝐼 such 
that the equilibrium 𝑥𝑥 = 𝑥𝑥∗ is locally stable and 𝑥𝑥 converges 
to 𝑥𝑥∗ asymptotically for all 𝑘𝑘𝑝𝑝 > 0. 

Proof: Defining the disturbance estimation error 𝑧𝑧 = 𝛿𝛿 −
𝛼𝛼𝛼𝛼 − 𝛿𝛿 as in (Franco et al., 2019) and substituting (15) in (2) 
yields 

𝑝̇𝑝 = −𝑘𝑘𝑚𝑚∇𝑞𝑞𝑊𝑊 − (𝑅𝑅𝑘𝑘𝑚𝑚 + 𝐺𝐺𝑘𝑘𝑣𝑣𝐺𝐺𝑇𝑇)∇𝑝𝑝𝑊𝑊 + 𝑘𝑘𝑝𝑝𝐺𝐺𝐺𝐺 + 𝛼𝛼𝛼𝛼 + 𝑧𝑧. (16) 

Defining the Lyapunov function candidate 

𝑊𝑊′ = 𝑊𝑊 + 𝑊𝑊0 + 𝑧𝑧𝑇𝑇𝑧𝑧/2, (17) 

computing its time derivative along the trajectories of the 
system and substituting (11), (12), and (16) yields 

𝑊̇𝑊′ = −𝑅𝑅𝑞̇𝑞2/𝑘𝑘𝑚𝑚 − 𝑘𝑘𝑣𝑣𝜃̇𝜃2/𝑘𝑘𝑚𝑚2 + 𝑞̇𝑞𝑇𝑇(𝑧𝑧 + 𝛼𝛼𝛼𝛼 + 𝑘𝑘𝑝𝑝𝐺𝐺𝐺𝐺)/𝑘𝑘𝑚𝑚
−(𝑘𝑘𝐼𝐼𝜎𝜎2 − 𝜎̇𝜎)𝜎𝜎𝜍𝜍2 − 𝛼𝛼𝑧𝑧𝑇𝑇�𝑧𝑧 − ∇𝑞𝑞(𝑝𝑝𝑇𝑇𝑀𝑀−1𝑝𝑝) + 𝛼𝛼𝛼𝛼�

+Λ̇𝑇𝑇(𝑞𝑞 − 𝑞𝑞∗) − 𝑧𝑧𝑇𝑇𝛿̇𝛿.
 (18) 

Since the elements of 𝑀𝑀 depend on the cosine of the virtual 
positions 𝑞𝑞𝑖𝑖, we have that max{𝑀𝑀} < 𝑚𝑚𝑇𝑇, with 𝑚𝑚𝑇𝑇 the mass 
of the manipulator and max{𝑀𝑀} the largest element of  𝑀𝑀. 
Thus the inequalities |𝑝𝑝| ≤ 𝑐𝑐1𝑚𝑚𝑇𝑇|𝑞̇𝑞| and ∇𝑞𝑞(𝑝𝑝𝑇𝑇𝑀𝑀−1𝑝𝑝) 2⁄ ≤
𝑐𝑐2𝑚𝑚𝑇𝑇|𝑞̇𝑞|2 hold for some 𝑐𝑐1 > 0 and 𝑐𝑐2 > 0. Additionally, 
using the Young’s inequalities �𝑧𝑧𝑇𝑇𝛿̇𝛿� ≤ �𝛿̇𝛿�

2
+ |𝑧𝑧|2/4 and 

|𝑧𝑧𝑇𝑇||𝑞̇𝑞2| ≤ |𝑞̇𝑞|4 + |𝑧𝑧|2/4 and rearranging terms in (18) yields 

𝑊̇𝑊′ ≤ −[𝜃̇𝜃 𝜍𝜍] �
𝑘𝑘𝑣𝑣 2𝑘𝑘𝑚𝑚2⁄ ⋆
−𝑘𝑘𝑝𝑝 2𝑘𝑘𝑚𝑚⁄ (𝑘𝑘𝐼𝐼𝜎𝜎2 − 𝜎̇𝜎)𝜎𝜎� �

𝜃̇𝜃
𝜍𝜍�

−[𝑞̇𝑞𝑇𝑇 𝑧𝑧𝑇𝑇] �
(𝑅𝑅 − 𝛼𝛼𝑐𝑐1𝑚𝑚𝑇𝑇) 𝑘𝑘𝑚𝑚⁄ ⋆

1
2

(𝛼𝛼2𝑐𝑐1𝑚𝑚𝑇𝑇 − 1 𝑘𝑘𝑚𝑚⁄ ) 𝛼𝛼 −
(𝛼𝛼2 + 1)

4
� �𝑞̇𝑞𝑧𝑧�

−𝑘𝑘𝑣𝑣𝜃̇𝜃2/2𝑘𝑘𝑚𝑚2 + �𝛿̇𝛿�
2

+ 𝑐𝑐22𝑚𝑚𝑇𝑇
2 |𝑞̇𝑞|4 + Λ̇𝑇𝑇(𝑞𝑞 − 𝑞𝑞∗).

 (19) 

Employing a Schur complement argument we conclude that 
𝑊̇𝑊′ ≤ 0 provided that 𝛼𝛼, 𝑘𝑘𝑝𝑝, 𝑘𝑘𝑚𝑚, 𝑘𝑘𝑣𝑣, 𝑘𝑘𝐼𝐼 are such that 

(a) (b) EM tracking 
system 
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(𝑅𝑅 − 𝛼𝛼𝑐𝑐1𝑚𝑚𝑇𝑇)(4𝛼𝛼 − 1 − 𝛼𝛼2) > 𝑘𝑘𝑚𝑚(𝛼𝛼2𝑐𝑐1𝑚𝑚𝑇𝑇 − 1 𝑘𝑘𝑚𝑚⁄ )2

𝑘𝑘𝑣𝑣(𝑘𝑘𝐼𝐼𝜎𝜎2 − 𝜎̇𝜎)𝜎𝜎 > 𝑘𝑘𝑝𝑝2 /2

𝑘𝑘𝑣𝑣𝜃̇𝜃2 > 2𝑘𝑘𝑚𝑚2 ��𝛿̇𝛿�
2

+ 𝑐𝑐22𝑚𝑚𝑇𝑇
2 |𝑞̇𝑞|4 + Λ̇𝑇𝑇(𝑞𝑞 − 𝑞𝑞∗)� .

 (20) 

It follows from (19) that 𝑞̇𝑞, 𝜃̇𝜃, 𝑧𝑧, 𝜍𝜍 ∈ ℒ2 ∩ ℒ∞. Additionally, it 
follows from (16) that 𝑝̇𝑝 ∈ ℒ∞ and thus 𝑞̈𝑞 ∈ ℒ∞. Computing 
the time derivative of 𝑧𝑧 and substituting (10) and (16) yields 

𝑧̇𝑧 = −𝛼𝛼�𝑧𝑧 − ∇𝑞𝑞(𝑝𝑝𝑇𝑇𝑀𝑀−1𝑝𝑝) + 𝛼𝛼𝛼𝛼� + 𝛿̇𝛿. (21) 

Since 𝛿̇𝛿 is bounded by hypothesis, then 𝑧̇𝑧 ∈ ℒ∞. Thus, 
according to Barbalat’s Lemma, 𝑝̇𝑝, 𝜃̇𝜃, 𝑧𝑧, 𝜍𝜍 converge to zero 
asymptotically. Substituting 𝑝̇𝑝 = 𝜃̇𝜃 = 𝑧𝑧 = 𝜍𝜍 = 0 in (16) 
yields ∇𝑞𝑞𝑊𝑊 = 0 or equivalently ∇𝑞𝑞𝑉𝑉𝑑𝑑 + Λ = 0. Substituting 
(7) and (9) in the former equation and pre-multiplying by 𝐺𝐺†, 
while recalling that 𝐺𝐺†Λ = 0, gives 

𝐺𝐺†∇𝑞𝑞𝑉𝑉𝑑𝑑 + 𝐺𝐺†Λ = (𝜃𝜃 − 𝜃𝜃�)𝑘𝑘𝑝𝑝/𝑘𝑘𝑚𝑚. (22) 

Thus 𝜃𝜃 converges to 𝜃𝜃� asymptotically. Since 𝜎𝜎 < 𝜎𝜎0 and 
since |𝜎̇𝜎|/𝜎𝜎2 < 𝜎𝜎1 by hypothesis, there exist some 
𝑅𝑅,𝛼𝛼, 𝑘𝑘𝑣𝑣, 𝑘𝑘𝑚𝑚, 𝑘𝑘𝐼𝐼 that verify inequalities (20). Finally, it follows 
from Lemma 1 that 𝜃𝜃� converges to 𝜃𝜃∗ concluding the proof ∎ 

Since FMAs typically have a small mass (i.e. 𝑚𝑚𝑇𝑇 ≪ 1), the 
inequalities (20) can be simplified omitting terms in 𝑚𝑚𝑇𝑇 as 

𝛼𝛼2 − 4𝛼𝛼 + 1 + 1/(𝑘𝑘𝑚𝑚𝑅𝑅) < 0
𝑘𝑘𝐼𝐼 > 𝑘𝑘𝑝𝑝2 /(2𝑘𝑘𝑣𝑣𝜎𝜎3) + |𝜎̇𝜎|/𝜎𝜎2

𝑘𝑘𝑣𝑣𝜃̇𝜃2 > 2𝑘𝑘𝑚𝑚2 �𝛿̇𝛿�
2

+ 2𝑘𝑘𝑚𝑚2 �Λ̇�|𝑞𝑞 − 𝑞𝑞∗|,
 (23) 

which represent sufficient stability conditions. The first 
inequality in (23) is verified by the following set of values 
2 −�3 − 1 (𝑘𝑘𝑚𝑚𝑅𝑅)⁄ < 𝛼𝛼 < 2 + �3 − 1 (𝑘𝑘𝑚𝑚𝑅𝑅)⁄ , provided 
that 𝑘𝑘𝑚𝑚𝑅𝑅 > 1 3⁄ . This indicates that either a sufficiently large 
damping 𝑅𝑅 or a large 𝑘𝑘𝑚𝑚 are required to ensure stability of 
the equilibrium. However, increasing 𝑘𝑘𝑚𝑚 affects the third 
inequality, which demands a larger 𝑘𝑘𝑣𝑣. The latter can result in 
a slower transient, which might not be desirable for some 
applications. It follows from (9) that �Λ̇� < �𝛿̇𝛿� if  𝑘𝑘𝑚𝑚 > 1 
and, since the tip rotation is limited by |𝜃𝜃| < 𝜋𝜋 2⁄ , the third 
inequality can be further simplified as 𝑘𝑘𝑣𝑣𝜃̇𝜃2 > 2𝑘𝑘𝑚𝑚2 �𝛿̇𝛿���𝛿̇𝛿� +
𝜋𝜋 2⁄ �. The second inequality expresses a more stringent 
condition on 𝑘𝑘𝐼𝐼 compared to Lemma 1. For 𝑛𝑛 = 1 we have 
𝑥𝑥 = sin(𝜃𝜃) thus, employing Taylor series, 𝜎𝜎 = (1 − 𝜃𝜃2/6). 
Hence 𝜎𝜎 > 1/2 for all |𝜃𝜃| < 𝜋𝜋/2, while 𝜎̇𝜎 = −𝜃𝜃𝜃̇𝜃/3 is 
bounded as a result of Proposition 1. Thus, the second 
inequality in (23) is verified by 𝑘𝑘𝐼𝐼 ≥ 4𝑘𝑘𝑝𝑝2/𝑘𝑘𝑣𝑣 + 4|𝜎̇𝜎|.  

The result of Proposition 1 can be readily extended to the 
regulation of the three coordinates (𝑥𝑥,𝑦𝑦, 𝑧𝑧) of the tip of a 
manipulator consisting of multiple FMAs. Since each FMA 
has one actuated DOF on the plane of bending, two FMAs 
connected in series are required to regulate simultaneously 
the two coordinates (𝑥𝑥,𝑦𝑦) of the tip of the manipulator (see 
Figure 2). The control input for each FMA is then computed 
using (15) and (11) replacing 𝜃𝜃 with 𝜃𝜃1,𝜃𝜃2, which are 
kinematically decoupled and represent the tip rotations of 
each FMA with respect to its base. Two separate observers 

(12) should then be employed to estimate the mappings 𝑥𝑥 =
𝑓𝑓(𝜃𝜃1) and 𝑦𝑦 = 𝑓𝑓(𝜃𝜃2). Varying the individual pressures in the 
internal chambers of the first FMA while preserving 𝑢𝑢1, 
results in different orientations 𝜑𝜑1 of the bending plane 
according to (1). This additional DOF allows regulating the 
remaining coordinate 𝑧𝑧 by using a third separate observer that 
estimates the mapping 𝑧𝑧 = 𝑓𝑓(𝜑𝜑1). This result is summarized 
in the following corollary, omitting the proof for brevity. 

Corollary 1: Consider system (2) consisting of two FMAs 
connected in series, each approximated with a 𝑛𝑛 DOF rigid-
link model, in closed-loop with the control laws 

𝑢𝑢𝑗𝑗 =
𝑘𝑘
𝑛𝑛
𝜃𝜃 − 𝑘𝑘𝑝𝑝�𝜃𝜃𝑗𝑗 −  𝜃𝜃�𝑗𝑗  � −

𝑘𝑘𝑣𝑣
𝑘𝑘𝑚𝑚

𝜃̇𝜃𝑗𝑗 + 𝛿𝛿𝑗𝑗 ,

𝛿̇𝛿𝑗𝑗 = 𝛼𝛼 �
𝑘𝑘𝜃𝜃𝑗𝑗
𝑛𝑛

+
𝑅𝑅𝜃̇𝜃𝑗𝑗
𝑛𝑛

− 𝑢𝑢𝑗𝑗 + 𝛿𝛿𝑗𝑗� ,
 (24) 

where 1 ≤ 𝑗𝑗 ≤ 2 and 𝜃𝜃�1(𝑥𝑥),𝜃𝜃�2(𝑦𝑦),𝜑𝜑�1(𝑧𝑧) are each estimated 
independently with the integral action (12), and 𝜑𝜑�1 depends 
on the internal pressures 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3 according to (1). Then the 
equilibrium position associated to the coordinates (𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
(𝑥𝑥∗,𝑦𝑦∗, 𝑧𝑧∗) within the reachable workspace of the 
manipulator is locally stable and the tip position (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 
converges to (𝑥𝑥∗,𝑦𝑦∗, 𝑧𝑧∗) asymptotically provided that 
𝑅𝑅,𝛼𝛼, 𝑘𝑘𝑚𝑚, 𝑘𝑘𝑣𝑣, 𝑘𝑘𝐼𝐼 satisfy the inequalities (20) for all 𝑗𝑗. 

The peripheral FMA, due to its weight, introduces an 
additional disturbance on the first one. This results in 
kinematic and dynamic coupling between the two FMAs, 
which is accounted for by the scalar values of the lumped 
disturbances 𝛿𝛿𝑗𝑗. Notably, the regulation of the 𝑧𝑧 coordinate 
only depends on the observer 𝜑𝜑�̇1 = 𝑘𝑘𝐼𝐼(𝑧𝑧∗ − 𝑧𝑧), since the 
relationship between the internal pressures and the orientation 
of the bending plane is purely geometrical (see Figure 2).  

  
Fig. 2. Schematic of a soft manipulator consisting of two 
FMAs connected in series (a); section view of one FMA (b): 
the control input 𝑢𝑢 is the vector sum of the internal pressures 
which define the bending plane and the tip rotation. 

Adding a third FMA in series allows regulating all 6 DOFs at 
the tip of the manipulator. In practice, the position regulation 
is only possible within the reachable workspace of the 
manipulator, which depends on the dimension and number of 
FMAs, but also on the disturbances. A computation of the 
reachable workspace should thus be performed at each instant 
based on the current state and on the estimated disturbances. 
The study of this aspect is part of our future work. 

4. EXPERIMENTAL RESULTS 

4.1  Simulations 

𝜑𝜑 

(a) (b) 

𝑥𝑥 

𝑦𝑦 

𝑧𝑧 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9985



 
 

     

 

The model (2) and the control law (24) with the integral 
observer (12) have been simulated in Matlab using the 
parameters 𝑘𝑘 = 5, 𝑅𝑅 = 0.1, 𝑚𝑚𝑇𝑇 = 1.5, 𝑛𝑛 = 3, 𝑘𝑘𝑝𝑝 = 0.2, 
𝑘𝑘𝑚𝑚 = 10, 𝑘𝑘𝑣𝑣 = 10, 𝛼𝛼 = 1, and 𝑘𝑘𝐼𝐼 = 5, which verify 
inequalities (23) for all 𝜎𝜎 > 0.3 and 𝛿̇𝛿2 < 0.03𝜃̇𝜃2. For 
comparison purposes, a different approach based on a radial-
basis-functions neural network (RBFNN) has been employed 
to estimate the mapping 𝑥𝑥 = 𝑓𝑓(𝜃𝜃). The RBFNN has a simple 
structure consisting of three layers (i.e. input layer, hidden 
layer, and output layer) and can approximate highly nonlinear 
functions (Park & Sandberg, 1991). The hidden layer consists 
of 𝑚𝑚 = 2 neurons implemented with a Gaussian function 

𝜙𝜙𝑗𝑗(𝑥𝑥) = exp�
�𝑥𝑥 − 𝑐𝑐𝑗𝑗�

2𝜌𝜌𝑗𝑗2
�,  

where 𝑐𝑐𝑗𝑗 is the center and 𝜌𝜌𝑗𝑗 is the width of the neuron 𝑗𝑗. The 
output of the RBFNN estimator is then computed as 

𝜃𝜃� = 𝑊𝑊Φ,  

where Φ is the vector of the elements 𝜙𝜙𝑗𝑗. The term 𝑊𝑊 is a 
scalar matrix of weights computed from training data, which 
consist of known pairs (𝑥𝑥,𝜃𝜃). The latter pairs are gathered 
recursively at run time in batches of size 𝑏𝑏, where 𝑏𝑏0 is the 
initial batch size. In summary, the parameters of the RBFNN 
estimator are 𝑐𝑐𝑗𝑗 ,𝜌𝜌𝑗𝑗 , 𝑏𝑏, 𝑏𝑏0 and 𝑚𝑚, which have been set as 𝑐𝑐𝑗𝑗 =
0,𝜌𝜌𝑗𝑗 = 1, 𝑏𝑏 = 100, 𝑏𝑏0 = 5000,𝑚𝑚 = 2 in simulations. These 
values are the result of an extensive parameter search. 

 
Fig. 3. Simulation results with disturbance acting at 75 
seconds: (a) tip position 𝑥𝑥; (b) corresponding control input. 

For illustrative purposes, the regulation of the tip position 
along the 𝑥𝑥 axis for one FMA in the presence of an impulsive 
disturbance (i.e. a lateral force 𝐹𝐹 = 0.01 𝑁𝑁 acting on the tip 
at time 𝑡𝑡 = 75 seconds) is shown in Figure 3. The observer 
(12) results in a smoother response and a slower convergence 
to the equilibrium position compared to that obtained with 
the RBFNN estimator. Employing larger values of 𝑘𝑘𝐼𝐼 results 
in faster response but also increases the initial overshoot. 
This issue could be addressed with anti-windup strategies, 
which will be investigated as part of our future work. 

4.2  Experiments 

The controller (24) has been tested with two soft continuum 
prototypes that employ pneumatic actuation (Garriga-
Casanovas et al., 2018). The first test setup is shown in 
Figure 1 and employs proportional pressure regulators (Tecno 
Basic, Hoerbiger, Germany) supplying the internal chambers 
of one FMA, and an electromagnetic tracking system (NDI 

Aurora, Canada) measuring the position and orientation of 
the tip of the manipulator. The mass of one FMA is 𝑚𝑚𝑇𝑇 =
1.5 grams and the damping matrix has been estimated 
experimentally as 𝑅𝑅 = diag{0.03}. The controller parameters 
have been set as 𝑘𝑘𝑝𝑝 = 0.2, 𝑘𝑘𝑚𝑚 = 20, 𝑘𝑘𝑣𝑣 = 1,𝛼𝛼 = 1, 𝑘𝑘𝐼𝐼 = 10 
and 𝑛𝑛 = 3 for (24) with the observer (12), which verify 
inequalities (23) for all 𝜎𝜎 > 0.2 and for all 𝛿̇𝛿2 < 0.01𝜃̇𝜃2. To 
obtain a comparable response with both estimation methods, 
the parameters of the RBFNN estimator have been set as 𝑐𝑐 =
0,𝜌𝜌 = 1, 𝑏𝑏0 = 75, 𝑏𝑏 = 75, and 𝑚𝑚 = 2 neurons. 

 
Fig. 4. Experimental results for one FMA: (a) tip coordinates 
𝑥𝑥 and 𝑧𝑧 for constant setpoint; (b) tip coordinates 𝑥𝑥 and 𝑧𝑧 for 
continuously varying setpoint (i.e. sinusoidal path on 𝑥𝑥). 

 
Fig. 5. Experimental results for two FMA: (a) tip coordinates 
𝑥𝑥,𝑦𝑦 and 𝑧𝑧 with integral observer (12); (b) tip coordinates 𝑥𝑥,𝑦𝑦 
and 𝑧𝑧 with RBFNN estimator. 

The regulation of the tip position along the 𝑥𝑥 and 𝑧𝑧 axes for 
one FMA is illustrated in Figure 4. The controller (24) 
correctly compensates the disturbances, which are due to the 
weight of the manipulator and of the sensor, and the model 
uncertainties. The observer (12) and the RBFNN estimator 
have been employed to regulate the coordinates (𝑥𝑥, 𝑧𝑧) =
(𝑥𝑥∗, 𝑧𝑧∗) in the case of a constant setpoint and of a sinusoidal 
path. In both cases the experimental results show a good 
agreement with the simulations. The closed-loop response is 
faster than in simulation because of the larger value of 𝑘𝑘𝑚𝑚 
used, which effectively scales down the derivative gain 𝑘𝑘𝑣𝑣 in 
(24). The regulation of all three coordinates (𝑥𝑥,𝑦𝑦, 𝑧𝑧), is 
achieved with two FMAs connected in series (Figure 5). In 
this setup the weight of the distal FMA acts as an additional 
disturbance on the first FMA. Notably, the RBFNN estimator 
with the same tuning parameters results in a more oscillatory 
response, which appears erratic on the 𝑧𝑧 axis. This could be 
due to the larger disturbances acting on the first FMA, which 
includes out-of-plane components. This behavior could also 
highlight a limitation of our implementation, which employs 
separate RBFNN estimators for each coordinate. A detailed 
investigation of this aspect is part of our future work. 
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In summary, the tip position of the manipulator in Cartesian 
space can be regulated with either the RBFNN estimator or 
the observer (12) combined with the controller (24). The 
simulations and the experimental results suggest that the 
RBFNN estimator can lead to a faster response, depending on 
the tuning parameters employed. Conversely, the integral 
observer (12) results in a smoother but slower response. 
Notably, the integral observer (12) introduces only one 
additional parameter, while the RBFNN estimator requires 
tuning four parameters. Additionally, Proposition 1 ensures 
local stability of the desired equilibrium provided that the 
inequalities (20) are verified. Instead, no equivalent stability 
conditions could be derived for the RBFNN estimator. 

6. CONCLUSIONS 

This paper has investigated the position regulation problem 
for a class of soft continuum manipulators similar to FMA in 
Cartesian space. To this end we have added an integral action 
to a partial-state feedback control with adaptive disturbance 
compensation. Sufficient conditions for the stability of the 
desired equilibrium have been expressed highlighting the 
effect of the tuning parameters. The performance of the 
controller has been assessed via simulations and via 
experiments on two soft continuum prototypes. The 
comparison with a RBFNN estimator suggests that the 
integral action results in a slower but smoother response over 
a range of setpoints and of external disturbances. The 
RBFNN estimator leads to a faster convergence to the 
equilibrium position, but can result in overshoot, oscillations, 
and even erratic behavior in the case of larger disturbances. 
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