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Abstract: This paper presents the design of a particle swarm-optimised model predictive
controller (MPC) for a half-car nonlinear electrohydraulic suspension system as it traverses
a deterministic road disturbance. The particle swarm optimisation (PSO) algorithm uses an
objective function which is based on conflicting active vehicle suspension system (AVSS) design
specifications such as: ride comfort, road holding, road handling, suspension travel and power
consumption. An inner-loop PID-based force feedback control is incorporated in the design
to ensure good force tracking. The half-car model is composed of nonlinear suspensions and
actuator dynamics. Simulation results demonstrate the superior performance of the proposed
control scheme over the passive vehicle suspension system (PVSS) and the non-optimised MPC
in rejecting the deterministic road disturbance.
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1 Introduction

The requirement to simultaneously increase road holding
and ride comfort is a problem which constantly troubles
the designers of passive vehicle suspension system (PVSS)
as these two goals are at odds with one another. It is
therefore customary of the PVSS designer to make an
optimal trade-off between road holding and ride comfort
(Thaller et al., (2016); Sharp and Crolla (1987)).

AVSS has been successfully utilised in the partial decou-
pling of road holding and ride comfort so that they may
both be simultaneously improved. However, tuning the
controller gains still remains an issue, the controller tuning
complexity increases with the amount of adjusted param-
eters/gains, number of controllers used and sophistication
of the controllers utilised (Bemporad et al., (2010)).

Proportional, Integral and Derivative (PID) control has
been used in AVSS with success. It is possible to tune
the PID controller by intuition when the plant model is
linear, but for nonlinear systems a great deal of intuitive
reasoning, experience and rigorous fine-tuning is required
in order to achieve satisfactory results (Dangor et al.,
(2014)). PID control is the most prevalent controller and
tuning methods such as Ziegler-Nichols and Cohen-Coon
may be used to aid in the selection of gains (Dahunsi and
Pedro (2015); Noris (2006)).

For nonlinear systems, using Ziegler-Nichols and Cohen-
Coon methods only serves to give a reasonable initial
approximation of the gains; it is then required of the
control engineer to refine the gains. Heuristic optimisa-
tion principles such as controlled random search (CRS),
genetic algorithm (GA), differential evolution (DE), pat-
tern search (PS) and PSO have been used to refine PID-
controller gains for AVSS purposes (Dangor et al., (2014);
Ou and Lin (2006)).

Model predictive control (MPC) is a powerful control
method which combines optimisation with preview capa-
bilities, it can also enforce plant input and output con-
straints (Bemporad et al., (2010)). MPC was traditionally
used in the chemical process industry because the slow sys-
tem dynamics allowed online optimisation to be completed
before the next time step (Garriga and Soroush (2010)).
Modern computers have more processing power and it is
now possible to use MPC for system with fast varying
dynamics, such as AVSS (Rathai et al., (2018); Gohrle et
al., (2012)).

MPC is therefore an attractive and feasible controller for
AVSS purposes, however it has not enjoyed widespread
usage in this field (Nguyen et al., (2016)). This can be
partially attributed to the difficulty involved in attaining
an accurate linear system model, which the MPC uses for
forecasting purposes, and the complexity associated with
tuning the MPC parameters.
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The model predictive controller found in Matlab Simulink
has 7 key parameters that can be varied to tune the MPC
(MathWorks (2019)). More often than not, only the sample
time, prediction horizon and control horizon are varied
when tuning the controller. Meaning that the full potential
of the MPC is not exploited. Manually tuning such a high
number of parameters accurately is a tedious task and the
likelihood of obtaining the best parameters for the system
is reduced.

This paper presents the tuning of MPC and PID parame-
ters using particle swarm optimisation (PSO) algorithm to
control nonlinear suspension system with actuator dynam-
ics in order to simultaneously improve ride comfort and
road holding. The paper is organized as follows: the sys-
tem model is presented in Section 2. Section 3 introduces
controller implementation which also includes performance
specifications and implementation of the PSO algorithm.
Section 4 presents simulation results with discussion and
the paper is concluded in Section 5.

2 System Overview and Modelling

Figure 1 depicts the half-car schematic used in this pa-
per. The front and rear springs and dampers are fitted
between the half-car sprung mass and unsprung masses
respectively.

Fig. 1: Half-car schematic

The front and rear sprung mass displacements are given
respectively as (Ekoru and Pedro (2013)):

zf = zc − lf sin θ; zr = zc + lr sin θ, (1)

where zc and θ are the vertical and angular displacements
of the sprung mass, lf and lr are the distances measured
from the centre of gravity up to the chassis front and rear
respectively. The front and rear velocities of the chassis
are given respectively as:

żf = żc − lf θ̇ cos θ; żr = żc + lr θ̇ cos θ, (2)

where żc and θ̇ are the vertical and angular velocities of the
sprung mass. The front and rear suspension stiffness forces
are represented by Fksf and Fksr which are described
respectively as:

Fksf = klf (ztf − zf ) + knlf (ztf − zf )3,

Fksr = klr(ztr − zr) + knlr (ztr − zr)3,
(3)

where klf and klr are the linear spring stiffnesses, knlf and

knlr are the nonlinear spring stiffnesses and (ztf − zf ) and
(ztr − zr) are the suspension travel for the front and rear

respectively. The front and rear damping forces, Fbsf and
Fbsr are given respectively as:

Fbsf =blf (żtf − żf )− bsymf |żtf − żf |+

bnlf sgn(żtf − żf )
√
|żtf − żf |;

Fbsr =blr(żtr − żr)− bsymr |żtr − żr|+
bnlr sgn(żtr − żr)

√
|żtr − żr|,

(4)

where blf and blr are the linear damping, bsymf and bsymr

are the asymmetric damping, bnlf and bnlr are the nonlinear

damping and (żtf − żf ) and (żtr − żr) are the suspension
velocity for the front and rear respectively.

The tyre forces due to stiffness, Fktf and Fktr, are given
respectively as:

Fktf = ktf (ztf − wf ); Fktr = ktr(ztr − wr), (5)

where ktf and ktr are the tyre stiffness, wf and wr are
the road profile and (ztf −wf ) and (ztr −wr) are the tyre
deflections for the front and rear respectively. The tyre
damping forces Fbtf and Fbtr are respectively given as:

Fbtf = btf (żtf − ẇf ); Fbtr = btr(żtr − ẇr), (6)

where btf and btr are the tyre damping constants, ẇf and
ẇr are the road profile time derivatives and (żtf − ẇf )
and (żtr − ẇr) are tyre deflection time derivatives for the
front and rear respectively. The electrohydraulic actuator
governing equations are given as:

ẋvi =
1

τ
(−xvi +Ki · ui), (7)

where xvi is the spool-valve displacement, τ is the servo
time constant, ẋvi is the spool-valve velocity, Ki is the
servo gain factor and ui is the input voltage from a
controller, the subscript i will be replaced by f for front
and r for rear respectively. The pressure time derivative is
represented by Ṗli and is given as:

Ṗli = γQi − βPli + αAhyd(żti − żi), (8)

where α = 4βe

Vt
, β = Ctp

4βe

Vt
and γ = Cdis ·Ω·

√
1
ρ
4βe

Vt
where

Cdis is the discharge coefficient, Ω is the spool-valve area
gradient, ρ is the hydraulic fluid density, βe is the bulk
modulus, Vt is the actuator total volume, Ctp is the leakage
coefficient, Pli is the pressure applied on the piston face
and Ahyd is the piston area. The flowrate is given as:

Qi = xvi · sgn[Ps − sgn(xvi)Pli]
√
|Ps − sgn(xvi)Pli| (9)

where Ps is the supply pressure. The respective actuator
force is then given as:

Fai = Ahyd · Pli. (10)

The front and rear active vehicle suspension system forces
are given respectively as:

fsf = Fksf + Fbsf − Faf ; fsr = Fksr + Fbsr − Far, (11)

where Faf and Far are the front and rear actuator forces
respectively. The tyre forces for the front and rear are
summed up and expressed as:

ftf = Fktf + Fbtf ; ftr = Fktr + Fbtr, (12)

where ftf and ftr are the front and rear tyre forces
respectively. Equations (13) - (16) are the acceleration
terms of the four half-car degrees-of-freedom:

z̈c =
1

Ms
(fsf + fsr), (13)
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θ̈ =
1

Iθ
(−lf · fsf · cos θ + lr · fsr · cos θ), (14)

z̈ft =
1

Mft
(−fsf − ftf ) and (15)

z̈rt =
1

Mrt
(−fsr − ftr), (16)

where z̈c and θ̈ are the heave and pitching accelerations of
the sprung mass and Ms is the sprung mass. z̈ft and z̈rt
are the front and rear unsprung mass heave accelerations,
while Mft and Mrt are the front and rear unsprung masses
respectively.

The selected deterministic disturbance consists of a single
sinusoidal half wave, the equations describing it are given
as (Ekoru and Pedro (2013)):

wf =


a

2

(
1− cos (

2πV t

λ
)

)
if 1 ≤ t ≤ (1 +

λ

V
),

0 otherwise,
(17)

wr =


a

2

(
1− cos (

2πV t

λ
)

)
if (1 + td) ≤ t ≤

(1 + td +
λ

V
),

0 otherwise,

(18)

where wf and wr are the front and rear road displacements
respectively, a is the hump amplitude, V is the velocity of
the vehicle and remains constant through each simulation,
t is the time and λ is the hump half-wavelength. Time
delay is represented by td, it is the time by which the rear
wheel lags the front wheel, it is expressed as:

td =
lf + lr
V

(19)

the deterministic disturbance and AVSS half-car parame-
ters are the same as described in (Ekoru and Pedro (2013)).

The AVSS governing equations can be expressed in state-
space format as:

ẋ = f(x) + g(x)u + p ·w, (20)

where (x) is the state vector, g(x) is the control input
matrix, u is the control input vector, p is the disturbance
input matrix and w is the disturbance input vector. The
state vector, x, is given as:

x = [zc, θ, ztf , ztr, żc, θ̇, żtf , żtr, Plf , Plr, xvf , xvr]
T

= [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12]T ,
(21)

the control input vector is given as:

u = [Vcontrol1 , Vcontrol2 ]T = [u1, u2]T , (22)

the disturbance input vector is given as:

w = [wf , wr, ẇf , ẇr]
T , (23)

the output vector is given as:

y = h(x) =

[
x3 − x1 + lf sinx2
x4 − x1 − lr sinx2

]
. (24)

3 Controller Implementation

The objective function is specified in such a way that when
it is minimised, the road holding and ride comfort are
improved over the PVSS case, the specifications selected

are based on the physical limits of the system (Dangor et
al., (2014)). The performance index is given as:

J = J1 + J2 + J3 + J4 + J5

=
1

T

∫ T

0

( z̈c
z̈cmax

)2

+

(
θ̈

θ̈max

)2
 dt+

1

T

∫ T

0

[(
Ftf

Ftfmax

)2

+

(
Ftr

Ftrmax

)2
]
dt+

1

T

∫ T

0

[(
yf

yfmax

)2

+

(
yr

yrmax

)2
]
dt+

1

T

∫ T

0

[(
uf

ufmax

)2

+

(
ur

urmax

)2
]
dt+

1

T

∫ T

0

[(
Faf

Fafmax

)2

+

(
Far

Farmax

)2
]
dt,

(25)

where J1 pertains to ride comfort and vehicle handling
while z̈cmax

and θ̈max are the maximum permitted chassis
heave and pitching accelerations respectively, J2, J3, J4
and J5 address dynamic tyre forces, suspension travel,
controller voltage and actuator force respectively, the
subscript max refers to the maximum allowable value of
each respective entity.

3.1 Particle Swarm Optimization

PSO is a random search optimisation routine which
searches a predetermined area of feasibility with the aim
of minimising the performance index given by Equation
(25). Each PSO particle individually explores the area of
feasibility, with the expectation that as the number of
iterations increases, all particles will migrate towards one
point, which is the minimum of the performance index
J (Mpanza and Pedro (2016)). The area of feasibility is
defined through intuitive reasoning and experience gained
through manual tuning (Pedro et al., (2018)), in this in-
stance, it is specified by defining upper and lower limits for
each gain/parameter. The PSO algorithm is as described
in (Dangor et al., (2014)).

The optimisation is carried out offline by iteratively com-
puting the position of each particle using:

x(t+ 1) = x(t) + V(t+ 1) (26)

where x is the position vector of each particle and V is the
velocity vector, it randomly determines how far a particle
moves during the particular iteration, V is defined as:

V(t+ 1) =wV(t) + r1c1(Pbest − x(t))+

r2c2(Gbest − x(t))
(27)

where Gbest is the set of problem variables that produced
the best global results thus far, Pbest is a matrix containing
the individual best positions of each particle, (Pbest−x(t))
is called the local search vector and (Gbest − x(t)) is the
global search vector, w is the inertia weight, c1 and c2
are the learning rates, r1 and r2 are uniformly distributed
random numbers between 0 and 1.

The PSO algorithm can be carried out for a specified
number of iterations or until certain stopping criterion,
such as gain standard deviation, are reached (Pedro et
al., (2018)). PSO was used separately for the inner and
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outer loop, beginning with the inner loop, to determine
the optimal gains. The number of iterations was specified
as 150 and the PSO parameters used are: w = 0.7, c1 = 2
and c2 = 3 respectively.

3.2 PID Controller Design

The half-car AVSS consists of two control loops, an inner
loop to control the actuator force and an outer loop to
control suspension travel. The inner loop utilises parallel
PID controllers, time domain representations and error
signal are given respectively as:

Fdesiredi(t) =

(
KP +KI

∫
dt+KD

d

dt

)
e(t), (28)

e = R− (zti − zi), (29)
where KP , KI and KD are the proportional, integral and
derivative gains respectively, i denotes either front or rear,
R is the reference suspension travel and (zti − zi) is the
suspension travel at the front or rear. The PID gains were
initially selected by manual tuning, thereafter they were
refined using PSO to minimise the performance index J .
Table 1 gives the values of the PID gains, ISO2631 − 1
comfort rating and performance index for the manually
and PSO-tuned PIDs (Plewa et al., (2012)).

Table 1. PID inner-loop gains

Technique Station KP KI KD ISO2631 − 1 J

Manual
Front 0.01667 1 4 × 10−4

0.2489 0.1206
Rear 0.01667 1 4 × 10−4

PSO
Front 0.0045 1.3701 4 × 10−4

0.2485 0.1202
Rear 0.0044 1.1788 3 × 10−4

3.3 MPC Controller Design

The half-car outer control loop utilises two MPC con-
trollers for maintaining the desired suspension travel; the
required suspension travel is set to 0m, therefore making
this a regulation control problem. The MPC controller
determines the relevant future manipulated variable by
minimising the following performance index (Zhao and
Zhu (2019)):

J
MPC

=

p∑
i=1

Qy(y(k + i)− w(k + i))2+

m∑
i=1

Ru∆u2(k + j − 1),

(30)

where Qy = diag(q1 q2 · · · qp) and Ru = diag(r1 r2 · · · rm)
respectively. TheQy andRu matrices are the weight matri-
ces of the output and manipulated variables respectively.

The MPC approach is described as in (Zhao and Zhu
(2019)):

x(k + 1) = Ax(k) +Buu(k) +Bvv(k) +Bdk,

yu(k) = Cux(k) +Duuu(k) +Ddud(k),

ym(k) = Cmx(k) +Dvmv(k) +Ddm(k),

(31)

where yu(k) is the unmeasured system output, ym(k) is the
measured system output, uk is the manipulated variable,
vk is the measured disturbance and d(k) is the unmeasured
disturbance.

Table 2 gives the MPC parameters, ISO2631 − 1 comfort
rating and performance index for the manually and PSO-
tuned MPCs,

Table 2. MPC outer-loop parameters

Technique Manual PSO

Station Front Rear Front Rear

MVs 10 10 33.102 32.510

OVs 6.000 × 10−4 6.000 × 10−4 6.724 × 10−4 6.930 × 10−4

MVwr 3.300 × 10−3 3.300 × 10−3 8.200 × 10−3 2.570 × 10−2

OVw 1.205 1.205 4.409 3.629

ECRw 1.205 × 105 1.205 × 105 1.730 × 106 5.439 × 106

P 100 100 115 83

N 10 10 24 12

ISO2631 − 1 0.2485 0.2022

J 0.1202 0.0872

where MVs and MVwr are the manipulated variable scale
factor and weight rate respectively; OVs and OVw are
the output variable scale factor and weight respectively;
ECRw is the equal concern for relaxation weight while P
and N are the prediction and control horizons respectively,
the MPC sampling time was constant at 0.001s. Conver-
gence of the performance index is shown in Figure 2.

Fig. 2: Convergence history of the performance index with
number of iterations

The performance index value evolved 7 times to converge
to 0.0872 by the 11th iteration, optimisation is carried out
for each iteration. Figure 3 depicts the half-car control
structure.

Fig. 3: Half-car control structure

The mean and standard deviation were determined for the
convergence history of the MPC parameters, which are
given in Table 3.

Table 3. Mean and Standard Deviation for
MPC Paremeters

Station Front Rear

Entity Mean SD Mean SD

MVs 33.084 0.222 32.014 1.941

OVs 6.760 × 10−4 0.030 × 10−3 6.970 × 10−4 0.025 × 10−3

MVwr 8.200 × 10−3 1.800 × 10−3 2.580 × 10−2 3.8000 × 10−3

OVw 4.371 0.368 3.622 0.425

ECRw 1.732 × 106 0.182 × 106 5.256 × 106 0.738 × 106

P 115.033 1.529 85.960 11.255

N 23.800 1.217 12.027 0.229

4 Results and Discussion

Performance of the half-car AVSS was assessed as it
traversed a deterministic road disturbance at a constant
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velocity of 40km/h, the simulations were carried out in
Matlab/Simulink.

Figure 4 depicts the half-car suspension travel. Irrespective
of the control technique, addition of AVSS has a significant
impact on reducing suspension travel and lowering set-
tling time. PSO-MPC outperformed MPC by a noticeable
degree as far as suspension travel is concerned, resulting
in smaller peak-to-peak values and a substantially shorter
settling time.

Fig. 4: Suspension travel response for PVSS, MPC, and
PSO-MPC cases

Figure 5 depicts the half-car dynamic tyre force. Initially
the front PSO-MPC produces peak values that are slightly
larger than those of PVSS and MPC, midway through
the front transient response MPC and PSO-MPC both
perform noticeably better than PVSS, indicating improved
road holding in the latter part of the transient response.
Addition of AVSS to the rear caused deteriorated perfor-
mance irrespective of the control type.

Fig. 5: Dynamic tyre force response for PVSS, MPC, and
PSO-MPC cases

Figures 6 and 7 depict the half-car AVSS actuator force
and controller voltage. In some instances, the front PSO-
MPC produced peak forces which were almost twice as
large as MPC and all rear PSO-MPC actuation forces were
over twice as large as MPC. Settling time was improved
by using PSO-MPC, it was reduced from 3.5s to 2.8s for
the front and 3.4s to 2.6s for the rear respectively.

Fig. 6: Actuator force response for MPC and PSO-MPC
cases

Fig. 7: Control input voltage response for MPC and PSO-
MPC cases

The front actuator voltage for PSO-MPC contains a con-
siderable amount of chattering and spiking, despite this,
the actuator output force is substantially smoother and
only displays very slight chattering at its two most extreme
values. Smoothing out of the actuator voltage can be
attributed to the low-pass filter which forms part of the
actuator dynamics; it removes effects of high-frequency
changes in actuator input voltage.

Fig. 8: Sprung mass heave and pitch accelerations response
for PVSS, MPC and PSO-MPC cases
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Figure 8 depicts the sprung mass heave and pitch accel-
erations respectively. The initial peak heave acceleration
value is highest for PSO-MPC but thereafter PSO-MPC
manages to reduce peak heave acceleration values consid-
erably, outperforming both MPC and PVSS. PSO-MPC
also produced the smallest settling time for both sprung
mass heave and pitch accelerations respectively. Use of
AVSS resulted in increased peak pitch acceleration forces,
which resulted in deteriorated road handling abilities. Ta-
ble 4 gives the ISO2631 − 1 weighted RMS values of the
half car.

Table 4. ISO2631− 1 weighted RMS results

Technique Weighted RMS ISO2631 − 1 designation Difference ∆

PVSS 0.290 Not Uncomfortable −
MPC 0.249 Not Uncomfortable +14.14%

PSO-MPC 0.202 Not Uncomfortable +30.34%

The weighting factor which was utilised is 0.4, it cor-
responds to measurements taken at the passengers’ feet
as the half-car modelled in this paper does not have
seats. All three of the simulations resulted in low enough
weighted RMS heave acceleration values that they rank
in the ISO2631 − 1 highest level for comfort, which is
not uncomfortable. Despite ranking in the highest level
of comfort, the use of AVSS was able to further increase
comfort levels by +14.14% and +30.34% for MPC and
PSO-MPC respectively when compared to PVSS.

5 Conclusions

The main outcomes of this paper are as follows:

• Use of PSO-MPC resulted in the performance index J
being minimised and also improvements in ISO2631−
1 comfort levels.
• A decoupling of ride comfort and road holding was

observed at the front, both were simultaneously in-
creased.
• Future work should include a performance index

which is defined individually for the front and rear
suspension.
• Future work should also include the use of multiobjec-

tive particle swarm optimisation algorithm to select
the MPC parameters.
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