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Abstract: Accelerated degradation testing (ADT) is used to efficiently assess the reliability and lifetime of 

a high reliable products under normal stress. In general, it is common in practice to build stochastic models 

of degradation under a single failure mechanism based on the ADT data. However, in real applications, 

multi-failure mechanisms may influence the degradation process. Motivated by this, a mixed stochastic 

process model for ADT is proposed in this paper. The mixed stochastic process combines two single- 

stochastic processes with weights determined by a quantitative method that establishes the relationship 

with accelerated stress. After the unknown parameter estimation, the proposed model under normal stress 

level can be obtained. The results show that the proposed model can be used for ADT modeling under 

multi-failure mechanisms. 

Keywords: Accelerated degradation testing (ADT), Multi-failure mechanisms, Degradation, Mixed 
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

1. INTRODUCTION 

Unexpected failures in engineering systems can cause serious 

accidents (E. Zio, 2009, Y. Li et al., 2018, D. W. Coit et al., 

2018, X. L. Wang et al. 2018). For example, the Japanese 

“Fukushima nuclear power plant accident” in 2011 caused 

serious casualties, environmental pollution and economic 

losses. The Chinese “7.23 Yong-Wen line major railway 

accident” in 2011 was caused by a design flaw in the signal 

control subsystem and resulted in 40 deaths and more than 

200 injuries. As a result, the safety and reliability of complex 

systems increasingly appeals to the concern of the worldwide 

researchers in recent years (S. Woo et al., 2020, Y. Li et al., 

2019).  

With the development of reliability technology, a large 

number of long-life, high-reliability products have been 

equipped in various systems. The degradation process for 

such products is slow, so it will cost a long time and money to 

obtain sufficient run-to-failure degradation data; traditional 

reliability testing techniques under normal stress conditions 

are not adequate. Therefore, accelerated degradation testing 

(ADT) was proposed and has attracted much attentions (Z. S. 

Ye, 2015, C. Park et al., 2005). 

ADT can obtain sufficient degradation data in a short time 

period by accelerating the degradation process. According to 

these data, the reliability and lifetime can predicted under 

normal conditions. When one considers to construct the 

degradation model, it is necessary to analyze the essence of 

the failure mechanism and the ADT data. Failure mechanism 

models obtained from physics and chemical reaction laws are 

widely used to design ADT. For example, based on analysis 

of the failure mechanism of indium tin oxide film, Yun et al. 

(2006) used the diffusion mechanism of oxide to model the 

degradation of product performance and to predict the product 

lifetime by accelerating degradation experiments. J. G. Surles 

et al. (2001) studied the stress-intensity model based on the 

scale-type Weibull distribution. C. Park et al. (2005) 

established a generalized cumulative damage model using a 

stochastic process and used this model to analyze the failure 

of a carbon fiber product.  

Although ADT based on failure mechanism model has good 

credibility, it is difficult to achieve the models. A common 

methodology is to assume the failure process subjecting to a 

known and deterministic stochastic model and then to identify 

the model parameters. General references for this model are 

M. A. Freitas et al. (2009), X. L. Wang et al. (2018) and 

(2019), N. Gebraeel (2006), X. X. Yuan et al. (2009), M. 

Marseguerra et al. (2003). However, when using a 

deterministic stochastic model, it is difficult to get the closed 

expression of the first hitting time (FHT). In addition, one 

must assume the failure process subjecting to a certain time-

invariant probability distribution model. it may be applicable 

to products with single structure. It is not adequate for 

complex systems such as the complex systems in modern 

industry, energy, aerospace and transportation fields. For 

these complex systems, the degradation behaviors often 

change with time, operation conditions and environments (Q. 

Sun et al., 2012; W. Huang et al., 2005; R. Jiang et al., 2008). 

Time-varying stochastic models or mixed stochastic models 
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can be two possible solutions to have better performance in 

describing the degradation process. 

In the existing literatures, Wiener process, Gamma process, 

and Inverse Gaussian process are widely used for degradation 

modeling in recent years (AD Kalafatis et al., 1997). To solve 

the small sample problem, Wiener process was used to 

construct a degradation model based on the fuzzy theory (X. 

Y. Li et al., 2018). Bayesian model averaging was adopted to 

solve model uncertainties of the Wiener process, Gamma 

process, and Inverse Gaussian process (L. Liu et al., 2017). 

The effects of model mis-specification for predicting the 

product’s mean-time-to-failure (MTTF) were considered in (C. 

Y. Peng, 2009). Multiple degradation paths were also 

considered in (P. Wang, 2004; W. W. Peng, 2016), and the 

variance-covariance matrix and copula functions were used to 

address the dependent or independent problems, respectively. 

However, all these methods need to assume the degradation 

data obeying a certain single stochastic process. 

In reality, performance degradation of a system may be 

caused by multiple failure mechanisms. Single stochastic 

process model cannot describe the degradation behaviors 

exactly for complex systems. Aiming at this issue, a novel 

ADT model based on finite mixed stochastic processes 

strategy under constant-step ADT (CSADT) is studied in this 

paper. The degradation data is no longer assumed to be single 

form of stochastic process, but a mixture of finite stochastics 

processes. On the basis of this strategy, the main contributions 

of this work are summarized as follows: (1) multiple failure 

mechanisms are considered in a complex system; (2) it can 

solve the model mis-specification problem. (3) a quantitative 

method is developed to determine the weights of different 

stochastic process models to achieve a more accurate ADT 

strategy. 

The paper is organized as follows. In Section 2, mixed 

stochastic modeling method is proposed for ADT. Estimation 

of the unknown parameters is given in Section 3 by MLE, 

using a quantitative weighting method. Section 4 shows the 

performance of the proposed method. And Section 5 draws 

some conclusions. 

2. FINITE MIXED STOCHASTIC PROCESS MODEL FOR 

ADT 

2.1  Mixed stochastic process model 

The conventional ADT model assumes the degradation path 

X(t) following a single stochastic process, such as Wiener 

process, Gamma process, etc. Here, one define X(t) following 

a mixed stochastic process, and has the formulation as follows: 

1 1 2 2

1

( ) ( ) ( ) ( )

( ).

Q Q

Q

q q

q

X t X t X t X t

X t

  




   


            (1) 

where q 1 2{ , , ,  }Q     contains nonnegative, weights of 

Xq(t) (q=1, 2,…, Q), subjecting to
1

1
Q

q

q




 . If one of weights 

q  equals to 1, the mixed stochastic process becomes a single 

stochastic process. 

Considering that Wiener process and Gamma process are 

widely used in practice. For simplicity, the mixed stochastic 

process in this paper considers these two processes, which can 

be expressed as: 

1 1 1 2( ) ( ) (1 ) ( )X t X t X t                        (2) 

where X1(t) and X2(t) represent Wiener process and Gamma 

process respectively. 

The Wiener process {X1(t), t≥0} with mean value 
1 ( )t  and 

standard deviation 
1 ( )t  is denoted as 

2

1( ) ( ( ),  ( ))X t N t t   , where ( )t is a nonnegative 

increasing function and also an approximate description of 

time t. The probability density function (PDF) of an Gaussian 

distribution for 2

1( ) ( ( ),  ( ))X t N t t   is 

2

1

1 22

( ( ))1
( ) exp

2 ( )2 ( )
Gau

x t
f x

tt





  
  

  
         (3) 

Similarly, the Gamma process {X2(t), t≥0} is denoted as 

2 ( ) ( ( ),  )X t Ga t  where  is the shape parameter,  is 

the scale parameter. The PDF of X2(t) is 

( )
( ) 1 2

2 2( ) exp( )
( ( ))

t
t

Gam

x
f x x

t




 

 
  

 
               (4) 

where ( ) represents the Gamma function. 

Through the above definitions, the PDF of the mixed 

stochastic process X(t) can be formulated as: 

( )2
( ) 11 1

22

(1 )( ( ))
( ) exp exp( )

( ( ))2 ( )2 ( )

t
t

Mix

x t x
f x x

ttt


  

 

 

    
    

   

 (5) 

Remark 1. The Wiener process and Gamma process both 

have the property of independent increments, then the mixed 

process has the same property. 

2.2  Accelerated model for ADT 

In ADT modeling, the accelerated model is used to describe 

the relationship between the degradation rate R and the 

accelerated stress S. Usually, the three main used accelerated 

models are Arrhenius model, power law model, and 

exponential model. The formulation between the degradation 

rate R and S are shown as follows (X. Y. Li et al., 2018): 

1

1 0 exp( )R
S


                                       (6) 

1

2 0R S
                                            (7) 

3 0 1exp( )R S                                        (8) 

where 0 and 1 are both constant parameters; R1, R2, R3 

denote the outputs of Arrhenius model, power law model, and 
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exponential model respectively. Through log-transformation, 

an unified expression can be formulated as : 

0 1ln ( )R L S                                       (9) 

when 
0 0ln( )  , 

1 1   , ( ) 1/L S S , Eq. (9) becomes the 

Arrhenius model;  

when
0 0ln( )  , 

1 1  , ( ) ln( )L S S , Eq. (9) becomes the 

power law model; 

when
0 0ln( )  , 

1 1  , ( )L S S , Eq. (9) becomes the 

exponential model. 

Accordingly, the linear hypothesis can be applicable for the 

three widely used models. , 2 and  vary with the change of 

stress. Then, the following linear hypothesis for , 2 and  

are formulated as 

1 1ln ( )a b L S                            (10) 

2 1ln 0.5 ( )a b L S                         (11) 

1 1ln ( )u v L S                            (12) 

 in equation (5) does not vary with the change of stress. Then, 

a1, b1, a2, u1, v1,  are the parameters to be estimated. 

Remark 2. The equations (10), (11), (12) are derived based 

on the equation (9) and the “acceleration factor constant” 

principle (H. W. Wang et al., 2016). 

3. LIFETIME DISTRIBUTION FOR ADT MODEL 

3.1 Lifetime distribution of proposed model 

Let  represent the critical failure threshold for degradation 

path of the proposed mixed model. Then the lifetime T can be 

defined as the time when the degradation process X(t) first 

crosses the failure threshold , i.e., the first hitting time (FHT), 

that is, 

inf{ : 0 | ( ) }T t t X t                          (13) 

Therefore, as the ( )t is monotone increasing function, the 

PDF and cumulative distribution function (CDF) of FHT for 

the proposed model are formulated as follows: 

2

1

22 3

1 3
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( ( ))( ) ( )
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

 
 

 


 (14) 
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1
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( ) [ ( ) exp( ) ( )]

( ) ( )

1 ( )
(1 ) [ ( )]

( )

T

t t
F t

t t

t n

m n t

    


 



   
    

 


   



 (15) 

where ( ) denotes the standard normal distribution; 

m   , and n   . In addition, the exponential form 

of ( ) ct t  can be used for time-scale transformation. Then, 

the reliability function for the proposed degradation model is 

given by 

( ) 1 ( )T TR t F t                                   (16) 

As is well known, MTTF is another important reliability 

index, and can be expressed as follows: 

 
0

MTTF E ( )T R t dt


                          (17) 

Remark 3. The PDF and CDF of sub-Gamma process are 

difficult to compute. In order to address this problem, the 

Birnbaum-Saunders (BS) distribution is used to approximate 

the distribution of sub-Gamma process. 

3.2 Unknown parameters estimation 

In CSADT, there are n samples and L accelerated stress levels. 

We assume that X(tkij) denotes the jth degradation value of 

unit i under the kth stress level, and tkij is the corresponding 

measurement time, where k = 1,2, …, L, i = 1, 2, …, nk, j = 1, 

2, …, mki. Let ( 1)( ) ( )kij kij ki jt t    be the degradation 

measurement and ( 1)( ) ( )kij kij ki jx X t X t   is the corresponding  

degradation increment. 

From the definitions of equation (5), the unknow parameter 

vector is 1 1 1 2 1 1[ , , , , , , ]a b a u v   , then, the log-likelihood 

function of x is given as 

 
2

1

22
1 1 1

( )

( ) 11

( ( ))
| ln exp

2 ( )2 ( )

(1 )
+ exp( )

( ( ))

k kin mL

k i j

t

t

x t
l x

tt

x
x

t




 




 

 

  

 

 

   
   

  


 

  


  (18) 

The unknow parameters in the proposed model cannot be 

directly estimated by the maximum likelihood method (MLE) 

due to the complexity of its log-likelihood function. In 

addition, accuracy of the weight can improve the performance 

of the proposed model. Therefore, the Gradient Descent (GD) 

algorithm is used to estimate the unknown parameters. Then, 

the weight estimation in GD is regarded as the initial value to 

calculate the accuracy weight under real condition. The key 

equation of GD is shown as follows,  

( )next now nowl                                 (19) 

where next and now represent the parameters value in the next 

and current time respectively;  denotes the learning rate; 

( )nowl  means the derivative of  |l x at now . 

3.3 Weight estimation 

In the real condition, the weight estimation should consider 
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the stress influence since the accelerated stress can impact the 

physicochemical process of a product. One can define Rqk is 

the reaction speed of the qth failure mechanisms under the kth 

stress level. After the exponential transformation, Rqk can be 

defined by equation (9) as 

exp( ( ))qk q q kR L S                      (20) 

Equation (20) keeps consistency with equation (9). In our 

work, q{1,2}. Then, an assumption can be described as 

follows (W. Gao et al., 2006), 

Assumption. The mixing ratio of each sub distribution in the 

proposed model to the ratio of reaction speed of its 

corresponding failure mechanism is consistent, and can be 

expressed as 

1 1

2 2

k k

k k

R
d

R




                             (21) 

where d denotes the proportional constant, and 1k, 2k 

represent the mixing ratio of the first and second failure 

mechanisms under kth stress level. 

Theorem. Let 10 denote the mixing ratio of the first failure 

mechanism under normal stress level. The relation between 

1k and 10 can be formulated as, 

1

10

1(1 )

k

k k k




  


 
                     (22) 

where  0 1 2exp ( ( ) ( ))( )k kL S L S     . 

Proof. From equation (21), one can obtain, 

1 1 10 10

2 2 20 20

1 10 1 10

2 20 2 20

1 2 1 2

10 20 10 20

k k

k k

k k

k k

k k k k

R R

R R

R R

R R

R R

R R

 

 

 

 

 

 



 

 

                   (23) 

The following formulation can be obtained from equation (20), 

 

 

1 1 1

1 0

10 1 1 0

2 2 2

2 0

20 2 2 0

exp( ( ))
exp ( ) ( )

exp( ( ))

exp( ( ))
exp ( ) ( )

exp( ( ))

k k

k

k k

k

R L S
L S L S

R L S

R L S
L S L S

R L S

 


 

 


 


     


      

 (24) 

Then, from equation (24), 1 2

10 20

k kR R

R R
can be expressed as, 

   1 2
0 1 2

10 20

exp ( ) ( )k k
k k

R R
L S L S

R R
       

 

The following equation can be formulated from equation (23), 

1 2

10 20

k k
k

 


 
  

Due to 
1

1
Q

q

q




 , in each stress level, one has
1 2 1k k   . 

Then,  

1 2 1

10 20 10

(1 )

(1 )

k k k

k k

  
 

  


 


, 

and equation (22) can be derived. 

For each stress level, 1k can be estimated by the estimated 

parameters ̂ , and
1̂ is regarded as the initial value for each 

stress level. As a result, we can obtain a corresponding 10, 

and can be marked as 10

k . Then, the terminal estimation of the 

weight can be obtained from the following equation, 

10

1

1

1

=

L
k

k

k

L

k

k

n

n



 






                                (25) 

4. THE PERFORMANCE OF THE PROPOSED METHOD 

4.1 Stress relaxation data 

The stress relaxation is the stress loss of a component under a 

constant strain over time. For example, the excessive stress 

relaxation can cause a failure for the contacts of electrical 

connectors. The stress relaxation data are originated from (G. 

Yang, 2007) and used in (Z. S. Ye, et al., 2014) and (L. Liu, et 

al., 2017). The degradation data are shown in Figure 1. The 

CSADT strategy are used to generate these data. Three 

constant accelerated temperature stress values include 65oC, 

85oC, 100oC have been considered in ADT, and normal 

temperature stress is 40oC. When the stress relaxation exceeds 

30%, i.e.,  = 30, the electrical connector can be said to have 

failed. 

 

Fig. 1. Stress relaxation data under accelerated stresses 

4.2  Results analysis 

The unknown parameters estimated in Section 3.2 and 3.3 are 

shown in Table 1.  

Considering the mixed stochastic process, the PDF and CDF 

of the FHT for the proposed model are shown in Figure 2, and 
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Figure 3 respectively. Through the estimation of the unknown 

parameters, the parameters , ,  in normal stress level can 

be formulated in equation (26). 

Table 1.  Unknown parameters estimation 

Model 

parameters 

Models (parameters estimation) 

MSPM WPM GPM 

1 

a1 

0.462 

-2.7743 

* 

-2.1031 

* 

* 

b1 

a2 

u1 

v1 

 
c 

0.3630 

-2.4258 

-2.6465 

1.5807 

1.6310 

0.4915 

1.2553 

-0.8981 

* 

* 

* 

0.4561 

* 

* 

-2.6954 

1.6968 

0.4328 

0.5682 

 

0 1 1 0

0 2 1 0

0 1 1 0

=exp( + ( ))

exp( 0.5 ( ))

exp( ( ))

a b L S

a b L S

u v L S










 
  

                       (26) 

Substituting equation (26) into equations (14) and (15), the 

PDF and CDF of FHT for the proposed model under normal 

stress level can be obtained directly. 

 

Fig. 2. PDF of FHT under MSPM, WPM, and GPM  

 

Fig. 3. CDF of FHT under MSPM, WPM, and GPM  

The MSPM, WPM and GPM represent the mixed stochastic 

process model, Wiener process model and Gamma process 

model respectively. The reliability curves of MSPM, WPM 

and GPM are shown in Figure 4. 

The WPM and GPM both obey a single distribution, in real 

condition, considering the influence of multi-failure 

mechanisms, the degradation data assumed can be fitted by 

both WPM and GPM. Then, the mixed stochastic process  

obeying a bimodal distribution is reasonable.  

 

Fig. 4. Reliability curves of MSPM, WPM and GPM  

According to equation (18), the MTTF of the proposed model 

can be obtained, and compared to the WPM and GPM, the 

performances are listed in Table 2. 

Table 2.  MTTF of MSP, WPM and GPM 

 MSPM WPM GPM 

MTTF (105) 1.8147 1.8512 2.0399 

A like-transient process can be found in the CDF curves, as 

well as in the reliability curves of Figures 3 and 4. With the 

emergence of the degradation processes, the reliability of 

MSPM begins to decrease. Both WPM and GPM have the 

similar initial decreasing trends, although the trend of MSPM 

starts earlier. A possible reason of this phenomenon is that, 

the multi-failure mechanisms considered result in a combined 

impact on MSPM that accelerates the occurrence of 

degradation. As the degradation continues, the reliability of 

WPM and GPM are gradually reduced. However, there is a 

like-transient process during the decrease of the reliability of 

MSPM. It may better reflect an impact of the multi-failure 

mechanisms on reliability of a product, as which has been 

listed in Table 3, the MTTF of the MSPM is less than that of 

WPM and GPM. Probably, to model the ADT, MSPM is a 

better choice at the used condition by considering the multi-

failure mechanisms. 

5.  CONCLUSION 

Considering the multi-failure mechanisms, a mixed stochastic 

process is proposed to model the ADT in this paper. Two 

widely used stochastic processes (Wiener process and Gamma 

process) are fused by the weights in the proposed model. 

Therefore, it can avoid the mis-specification problem of the 

two models in some real application. As the weights take an 

important role during the fused process, to determine the 

weights, a quantitative method is proposed to construct a 

relationship with the accelerated stress. The reliability and 

MTTF results show that, the proposed method can combine 

the characteristics of the two processes under multi-failure 

mechanisms in some real conditions.  
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