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Abstract: Rapidly Oscillating Systems (ROS) is a class of perturbed dynamical systems with a small 

parameter that contains oscillating part with the period proportional to the parameter. These include a lot 

of classical perturbed systems that found wide applications in celestial mechanics, electronics, 

mechatronics, nanotechnology, etc. However, many important systems of the class cannot be treated 

classically. In recent years these non-classical ROS found important applications in control of bipedal 

walk, rapidly varying media, frequency demodulation, Atomic Force Microscopy, etc. A characteristic 

specific of the non-classical ROS is that oscillations depend not only on time, but also on phase variables. 

This allows to manipulate the oscillation functions and to use them for asymptotic control. The purpose 

of this paper is to illustrate non-classical ROS methods and their properties on simple, but representative, 

2D examples without technical details of real applications. In some cases these also provide a new 

technique to the classical systems. 
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1. INTRODUCTION 

The importance of perturbation techniques for modelling and 

control system design is described in [Bellman, R. (1966)]. In 

particular, Van der Pol equation is analysed in Chapter 2 of 

the book (p. 59-60) and in [Sanders, J.A., Verhulst, F., and 

Murdock, J. (2007): pp. 22-24]. This equation describes the 

multivibrator, and was one of the first successfully analysed 

systems in the field of electronic oscillators with megacycle 

frequency. Van der Pol proposed an empirical method of 

analysis, now called averaging. The small parameter  was 

proportional to the period of the oscillator. This method was 

significantly extended, rigorously proved [Bogoliubov and 

Mitropolsky (1961)] and widely used in numerous 

applications by the name KBM (Krylov-Bogoliubov-

Mitropolsky). In fact, the early averaging method is “going 

back to the founders of celestial mechanics and widely usable 

in all those areas of application, where a slow evolution has 

to be separated from fast oscillations” [Arnold (1988)]. In 

celestial mechanics the small parameter  is usually the ratio 

of the mass of the planet to that of the Sun. Recently the 

averaging technique found important applications in Atomic 

Force Microscopy (AFM) [Belikov, S., and Magonov, S.  

(2017)], [Belikov, S. et al (2016)]. AFM simulation based on 

asymptotic dynamics is reported in [Belikov S., and 

Magonov, S. (2019)].  In AFM the small parameter  is 

proportional to the inverse quality factor of the mode of the 

cantilever oscillation. Since the classic book [Bogoliubov, N., 

and Mitropolsky, Yu. (1961)] more modern survey on 

averaging has been published [Sanders, J.A., Verhulst, F., 

and Murdock, J. (2007)]. 

Multi-Resonant AFM is an important example of averaging 

in systems with several frequencies, where the so called 

resonance hypersurfaces [Arnold (1988), p. 154] may 

prevent the possibility of averaging. In this paper we define 

the weak resonances that do not prevent the averaging and 

illustrate them on classical and non-classical examples. 

The first example of non-classical systems, now called ROS, 

which does not satisfy KBM conditions and cannot be 

averaged by this method was presented in [Sari, T. (1983)]. 

The Sari’s equation is dy/dt=sin(t·y). In contrast to classical 

KBM system, the oscillation function depends not only on 

time t, but on combination of t and phase variable y. This 

example was generalized in [Belikov, S. (1989)] where 

theorems of non-classical (non-KBM) averaging have been 

formulated for some classes of perturbed systems. Finally, 

non-classical ROS was introduced in [Belikov, S., and 

Belikov, R. (1996)] followed by additional applications 

[Belikov, S., and Belikov, R. (1999)], [Belikov, R., and 

Belikov, S. (2001)]. 

This paper is the second in a sequence. The first was 

[Belikov, S., and Belikov, R. (1997)]. We illustrate non-

classical ROS methods and their properties on simple, but 

representative, 2D examples without technical details of real 

applications. In the first part [Belikov, S., and Belikov, R. 

(1997)] so called rapid bifurcations have been described and 

demonstrated. Rapid bifurcations by the name of canards 

have been introduced in [Benoit, E., et al (1981)] for 2D 

singularly perturbed ODE, surveyed in [Zvonkin, A.K., and 

Shubin, M.A. (1984)], and described in monographs 

[Albeverio, S., et al. (1986)] and [O’Malley R.E. (2016)]. 

The extension to singularly perturbed systems of arbitrary 

dimension with a single slow variable was reported in 

[Belikov, S., and Samborskii, S. (1989)] and described with 

detailed proofs in [Belikov, S., and Samborskii, S. (1991)]. 
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“Canard” rapid bifurcation for ROS was demonstrated in 

[Belikov, S., and Belikov, R. (1997)]. The name rapid is 

justified by the fact that canards exist in exponentially small 

(order of exp(1/)) interval of the  parameter –the related 

theorem is called “A canard’s life is short” [O’Malley R.E. 

(2016): p. 171]. 

Simulation of a rapid bifurcation in ROS is demonstrated in 

[Belikov, S., and Belikov, R. (1997)]. Although, the pictures 

of ROS phase portraits during the rapid bifurcations, in 

contrast to singularly perturbed systems, do not remind flying 

ducks, the phenomenon is similar and a life of ROS rapid 

bifurcation is also short. 

Section 2 of this paper provides the necessary background 

and theorems formulated for 2D systems that are simpler than 

in general case [Belikov, S., and Belikov, R. (1996)] –this 

background is partly intersects with [Belikov, S., and 

Belikov, R. (1997)].  

Section 3 formulates the weak resonance condition for ROS. 

Although formulated in terms of non-classical ROS, it is 

applicable to simplify analysis and provide additional insight 

to some classical systems. 

Section 4 illustrates the unique property, especially valuable 

for control science and engineering, called asymptotic control 

[Belikov, S., and Belikov, R. (1996)]. One can manipulate 

the oscillation functions that depend on both fast and slow 

variables at “fast” or “micro” level to control the “slow” or 

“macro” level dynamics. A motivating example is a walking 

machine (or a living creature) that manipulates the step 

dynamics (micro level) to control the walking trajectory 

[Belikov, S., and Belikov, R. (1996)]. In Section 4 we 

demonstrate a simple asymptotic control that can be designed 

using classical optimal control methods [Boltyanskii, V.G. 

(1971)]. The purpose of the section is to illustrate the 

technique of the asymptotic control without technical details 

of a particular application and relate it to the classical 

example [Boltyanskii, V.G. (1971): p. 204]. 

2. BACKGROUND 

Let us remind that one of the basic results of classical 

averaging is the following theorem (rigorous formulation and 

proof can be found in [Sanders, J.A., Verhulst, F., and 

Murdock, J. (2007): pp. 74-75] ). 

Theorem of KBM Averaging: Consider the initial value 

problem 

    axtxfx  0,,                          (1) 

with f : RnRRn and 

    azzfz  0,                          (2) 

where 

   dttxf
T

xf

T

T 


0

,
1

lim                          (3) 

Suppose 

1. f (x,t) is a KBM-vector field, i.e. the limit (3) exists and f 

satisfies some technical conditions [Sanders, J.A., Verhulst, 

F., and Murdock, J. (2007): p. 69], [Bogoliubov, N., and 

Mitropolsky, Yu. (1961)]. 

2. t belongs to the interval of time scale 1/. Then 

    0lim
0




tztx


                                (4) 

 Introducing slow time t, Eq.(1)-(2) can be written as 

    axxfddx   0,,/ 1                          (5) 

    azzfddz  0,/                           (6) 

and  belongs to the interval of time scale 1. 

Unfortunately, in many important applications f(x,t) is not a 

KBM vector field. A simple example is the following. 

Example 1. Let us consider the following system of type (1): 

a. 

b. 

Fig. 1. Trajectories x() of Eq. (7) with  = 0.2 (a.) and 

 = 0.1 (b.) 
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    12sin/2sin  xddxtxx        (7) 

Indeed, if f in (7) was a KBM field the averaged system (2) 

would be dz/dt0, while simulation of (7) in Fig. 1 

demonstrates it is not the case –trajectories are far from 

constants. 

This observation and demands of applications motivates 

considering averaging of the systems of the form 

     axxxfddx   0,,,,/ 1                   (8) 

and looking for -independent averaged system of the form 

    azzfddz  0,)(;,/                      (9) 

where  )(;,  zf  is an operator of ( ). This approach 

provides a very important bonus for control systems –the 

systems can be controlled by ( ) that becomes a feedback. 

Unfortunately not all systems of the class (8) can be 

averaged, and [Belikov, S., and Belikov, R. (1996)] 

introduces the class of Rapidly Oscillating Systems (ROS), 

proves theorem of averaging, and demonstrates applications. 

We consider the following system of ODEs: 

 
 

    iiii

l

i

l

kk

yxtyxtyxtgdtdy

yxtfdtdx

ii
,,,,,,,/

,,/

1 


              (10) 

],,[ 1 nxxx  , 
Ti

m

ii

i
yyy ],,[ 1  ; k1,...,n; li1,...,mi; 

i1,...,N; and i is periodic on the fourth argument with the 

period 1. System (10) is called (n, N) ROS with n non-

(rapidly)-oscillating (or “macro”) blocks and N rapidly 

oscillating (or “micro”) blocks. 

Here we reproduce the theorems for two-dimensional ROS, 

i.e. n+N=2, (mi≤1). In this case (10) is reduced either (1,1) or 

(0,2) ROS with either one or two rapidly oscillating blocks. 

2.1  Averaging of (1,1) ROS 

The (1,1) ROS is the following  

    yxtyxtyyxtfx ,,,,,,,, 1            (11) 

where  ,,, yxt  is periodic on  with period one. Let us 

define function 

 
     

 yxt

yxtfyxtyxt
yxtu

y

xt

,,

,,,,,,
,,








           (12) 

and  

Non-Resonance Condition for (1,1) ROS: numerator and 

denominator of (12) do not vianish simultaneously. 

With technical conditions formulated in [Belikov, S., and 

Belikov, R. (1996)], including the non-resonance condition 

The averaging of (1,1) ROS described by (11) is 

 

      yxtudyxtyxtuy

yxtfx

,,,,,,,

,,

1
1

0

1

















 



     (13) 

Example 2. Eq. (7) can be presented in the following (1,1) 

ROS form 

 xyyx 12sin,1                            (14) 

and applying formulas  (12)-(13), the averaging is 

xyu

uu

uuuu
yx

/

1,

1,1sgn
,1

2















 if

 if
              (15) 

Remark. To prove (15), use [Dwight, H.B. (1961): 436.00]. 

Example 3. Let us consider a pendulum perturbed by a 

rapidly oscillating torque that depends on both velocity and 

time 

   ytaxyyx  1sinsgn,          (16) 

where the parameter a is proportional to both the strength of 

the torque as well as inverse moment of inertia. Applying 

formulas (12)-(13), the averaging is 

  12 1,


 xaxyyx                   (17) 

that is a Hamiltonian system with 

 

 


















axaxy

ax

axayx

yxH

1,12

1

,/1ln2

2

1
,

22

22

 if

 if

  
            (18) 

The evolution of the perturbed system (16) is graphed in Fig. 

2 for the initial condition (0,0), that is the steady state of 

unperturbed pendulum, with a0.1 and the trajectory is 

graphed from t0 to t10. Heavy oscillation is clearly shown 

in Fig. 2a (0.1). One interesting aspect of that trajectory is 

that it does not oscillate around the fixed point (0,0), but 

rather has acquired an orbit that winds around another point. 

In Fig. 2b the same simulation is repeated for 0.01. One 

can see a significant reduction in oscillation but the 

perturbation still cause the orbit to wind around in less than 

perfect circles. Finally, Fig. 3 shows the averaged trajectory 

of Eq. (17). As expected, all the oscillations had been 

averaged out of the system, and the curve winds around in a 

closed circle defined by the Hamiltonian (18).  

2.2 Averaging of (0,2) ROS 

The (0,2) ROS is the following 
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   .2,1,,,,, 1

21   iytyyty iiii                   (19) 

where both  ,,, 21 yyti  are periodic on  with period one. 

Let us define the functions 

 
 
 iyi

iti
ii

yt

yt
ytu

i
,][

,][
,







                              (20) 

and  

Non-Resonance Condition for (0,2) ROS: numerator and 

denominator of (20) do not vanish simultaneously. 

With technical conditions formulated in [Belikov, S., and 

Belikov, R. (1996)], including the non-resonance condition, 

The averaging of (0,2) ROS described by (19) is the 

following 

   
  2,1,,

,,,,

1
1

0 21















 iytu
yytytu

d
y ii

iii

i



  (21) 

We will consider example of (0,2) ROS in Section 4. 

3. WEAK RESONANCE CONDITIONS 

A lot of unusual things may happen when non-resonance 

condition for (1,1) ROS (11) or for (0,2) ROS is not satisfied. 

Recall that these are the conditions that the numerator and 

denominator of (12) for (1,1) ROS or (20) for (0,2) ROS, do 

not vanish simultaneously, i.e. the fractions belong to the 

projective space RP1=(R2\0)/(R\0) [Arnold, V.I. (1988): p. 

20]: 

 
     

 
1RP

,,

,,,,,,
,, 






yxt

yxtfyxtyxt
yxtu

y

xt



  

 
 
 

1RP
,][

,][
, 






iyi

iti
ii

yt

yt
ytu

i


  

Hence the averaging formula (13) for (1,1) ROS is only valid 

outside the set defined by equations 

     

 







0,,

0,,,,,,

yxt

yxtfyxtyxt

y

xt




                 (22) 

and the averaging formula (21) is only valid outside the set 

defined by equations 

 

 







0,][

0,][

iyi

iti

yt

yt

i



                         (23) 

Let us assume the following: 

The solutions of Eq. (22) for (1,1) ROS, and Eq. (23) for (0,2) 

ROS form stratified manifolds  

as illustrated in Fig. 3 for (1, 1) ROS with φ(x,y) and f(x,y). 

Recall that a stratified manifold M [Arnold, V.I. (1988): p. 

230] (or stratified subvariety of smooth manifold) is a finite 

 

a. Numerically calculated trajectory of Eq. (16) with 

a=0.1 and =0.01 

 

 
b. Numerically calculated trajectory of Eq. (16) with 

a=0.1 and =0.001 

 

c. Asymptotic (0) solution described by averaged 

system (17). 

Fig. 2. Trajectories of perturbed pendulum and its 

averaging system 
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union of mutually disjoint smooth manifolds (strata) 

satisfying the following condition: 

The closure of every stratum consists of the stratum itself and 

a finite union of strata of smaller dimensions. 

The stratified manifold for (1,1) ROS with (x,y) and 

f=f(x,y) is shown in Fig. 3a. It consists of only zero-

dimensional strata where the curve   0,  yxy intersects 

either   0,  yxx or   0, yxf . 

We illustrate the concept on examples of the following (1,1) 

ROS: 

  xyxy

yx

 1,, 






                   (24) 

For this system,     0/, xyyxu   and the resonance set is 

described by 

  0 xy                          (25) 

Remark. When denominator of u(t,x,y) is zero, as in (24), 

calculations in (13) should be made for u: 

  




























  udu
u

1
1

0

1
lim    





























  11
1

lim

1
1

0

1

0
 dv

vv

  
0

1
1

0

1
1















 

v

dv
dv

d
  

1

0

 d
 

This is the closest to KBM averaging (3) for periodic 

functions. In this case the averaging does not depend on . 

The stratified manifold for (1,1) ROS (24) is shown in Fig. 

3b. It consists of the zero-dimensional strata 

  0M0  xy  , one dimensional (horizontal) strata 

  0&0M1  xyh   and one-dimensional (vertical) 

strata   0&0M1  xyv  . Now, we formulate 

Weak Resonance Condition for (1,1) ROS. At every point 

(t,x,y) of the stratified manifold M associated with Eq. (22) 

and every [0,1] the vector (t,f(t,x,y),(t,x,y,)) does not 

belong to the tangent hyperplane T(t,x,y)M to the appropriate 

stratum. 

Let us review the (1,1) ROS (24). The weak resonance 

condition for M0 is     :01,0  ii xx   

    0,0,0,,0  ix , i.e.   0,0,  ix for these  and xi. 

The weak resonance condition for M1h is 

    :01,0  xx   

     axis xTx h

x

1

0, M,0,,0  , i,e. (x,0,)0 for 

[0,1]. The weak resonance condition for M1v is 

     :001,0  yxx ii 

      axis yTyxy v

yxi i

1

, M,,,  , that is satisfied 

automatically because the x-component of   ,,, yxy i  is 

y0 on M1v. Analyzing these results we conclude that the 

Weak Resonance Condition for (1,1) ROS (24) is 

  10,,0,0,   xx         (26) 

Now, imagine a system that does not satisfy the non-

resonance condition but does satisfy the weak resonance 

condition. Then all the trajectories of averaged system 

intersect the resonance set M transversely and spent time of 

measure 0 (as 0) on it. Since M is also a boundary of non-

resonance sets (on which the averaging does exists), the 

limiting space trajectories of (1,1) ROS (11) must be 

piecewise composed of the solutions to the averaged system 

(13) on the non-resonant sets. This justifies the following 

theorem: 

Averaging of (1,1) ROS satisfying the Weak Resonance 

Condition. If the Weak Resonance Condition is satisfied for 

(1,1) ROS governed by Eq. (11), then any limiting as 0 

solution of (11) does not spend time on the resonance set M 

and any limiting trajectory is a closure of the union of some 

phase trajectories of the averaged system (13) on the non-

resonance sets. 

Example 4. The following perturbation of an integrable 

Hamiltonian system in coordinates (I,) –(action, angle) has 

been analized in [Arnold, V.I. (1988), p. 156] using classical 

technique for a1: 

  22112121 ,,cos, IIIaI         (27) 

The simplest classical resonance condition is equality of the 

frequencies, i.e. I1 I2. It has been shown in [Arnold, V.I. 

(1988)] for a1, that the averaged dynamics { 0, 21  II   } 

approximates the evolution of (I1, I2) on the time interval of 

a. 

b. 

Fig. 3. Stratified manifolds: of (1,1) ROS described by 

Eq. (11) with (x,y), f f(x,y) –only red circled dots 

(dim 0) (a.) and with (y), f(t,x,y)y –dots (dim 0) 

and open vertical and horisontal segments (dim 1) (b.) 
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the order of 1/ outside of the resonance set I1 I2. However, 

the system may be “caught by resonance”, and it is definitely 

happened if 1 2 at the time when I1 I2. In this case the 

averaged dynamics 02 I does not approximate the real 

solution of   0cos2I  on the interval of the order of 

1/ε. 

By the change of variables t, xii Eq. (27) becomes 

  









21

1

2

12211

cos/

,/d,/d,/

xxddI

adIIdxIddx




 

It is (3,1) ROS with x1x2, and 

    0/0/ 2121 21
IIIIu xx   . Thus, the ROS 

resonance condition I1 I20 coincides with the classical one. 

Using the variables x x1x2 and yI1 I2, we get the 

following (1,1) ROS of the type (24): 

 xaddyyddx 1cos/,/                    (28) 

For (28), x, uy/0, and the ROS resonant set is {y0}. The 

Weak Resonant Condition is not satisfied for this ROS with 

|a|1, and as a result we have the problem of approximating 

the evolution of (I1, I2) on the time interval of the order of 

1/. However, the condition is satisfied for |a|>1. 

Example 5. The following equation of the pendulum with 

small parameter  was analyzed in [Arnold, V.I. (1988), p. 

157]:     sina  with a>0. It can be written as 

 yayy   sin,   

Remark. As shown in [Arnold, V.I. (1988), p. 157], by using 

time t  and denoting by the prime the derivation with 

respect to , this equation describes a pendulum with small 

friction   sina . 

Classical resonance is y0. By the change of variables t, 

x, the equation becomes the following (1,1) ROS of the 

type (24): 

 xyaddyyddx 1sin/,/                (29) 

For (29), as for (28), x, uy/0, and the ROS resonant set is 

{y0}. The Weak Resonant Condition is not satisfied for this 

ROS with |a|1, and as a result we have the problem of 

approximating the evolution of (ψ, y) on the time interval of 

the order of 1/. However, the condition is satisfied for |a|>1. 

These examples demonstrate that ROS approach can unify 

and simplify the analysis of some classical systems –in 

[Arnold, V.I. (1988)] these examples were analyzed by 

different model-specific approaches. The following example 

presents Weak Resonance in a non-classical ROS. 

Example 6. Let us consider the following (1,1) ROS: 

  axyddyddx   
 12cos/,1/       (30) 

with 1. The system depends on parameter a. We have 

   
yy

xx
yxuxyyx

sgn

sgn
,,

1

1











         (31) 

The resonant set contains the origin (x,y) (0,0). The weak 

resonance condition is satisfied (dx/d=1≠0), and limiting 

trajectory is a closure of the union of some phase trajectories 

of the following averaged system on the whole plane 

excluding the origin: 













1,

1,1sgn
,1

2

uu

uuuu
yx

 if

 if
           (32) 

Although the averaged system (32) does not depend on the 

parameter a, the phase portrait does, as shown in Fig. 4 for 

different values of the parameter. Thus, a non-unique 

possibility of connecting the limiting trajectories at the 

resonant point (0,0) does depend on the parameter. Fig. 4 also 

suggests that at a certain value of the parameter canards 

should be observed as discussed in Introduction. 

a. 

b. 

Fig. 4. Phase trajectories for the (1,1) ROS (31) with 

2; a0 (a.) a (b.) 
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4. ROS ASYMPTOTIC CONTROL 

As shown in previous sections, non-classical ROS has a 

unique feature that allows to control macro-system 

(averaged) by manipulating the functions (x,y) at micro-

level. A method of designing ROS asymptotic control has 

been developed in [Belikov, S., and Belikov, R. (1996)] and 

illustrated in the bipedal walk problem. Other applications are 

described in [Belikov, S., and Belikov, R. (1999)] and 

[Belikov, R., and Belikov, S. (2001)]. The aim of the 

following example is to illustrate the method on the (0,2) 

ROS and connect it to a classical optimal control example 

[Boltyanskii, V.G. (1971): p. 204]. 

Example 7. Let us consider the following (0,2) ROS: 

  
  22

1

2

11

1

21

,2sin

,2sin

yty

ytyy















                  (33) 

Associated functions ui(t,yi), i1,2, are calculated by (20) and 

according to equation (21) the averaged system is 

  

  222

21121

,

/,

ytuvy

yytuvyy








                   (34) 

where (see remark after formula (15)) 

 












1,

1,1sgn 2

uu

uuuu
uv

 if

 if                   (35) 

and |v(u)|1 by definition. 

Let us consider an asymptotic time-optimal control problem 

for the system (33). According to [Belikov, S., and Belikov, 

R. (1996)], the asymptotically time-optimal control functions 

i(t,yi), i1,2, can be calculated by solving equations (20) 

with ui(t,yi), i1,2, equal to the time-optimal controls for the 

averaged system (34).  

Time-optimal controls for system (34) can be found by using 

Pontryagin maximum principle [Boltyanskii, V.G. (1971)]. 

Applying it to the time-optimal problem for the system 

2,1,1;, 22121  ivvyvyy i
            (36) 

gives the following solution [Boltyanskii, V.G. (1971): p. 

204]: 

 

 

 









315321

42642121

211

,,1

,,1

,









VVyy

VVVVyy

yyv
      (37) 

 

 

 









2165121

4343221

212

,,1

,,1

,









VVVyy

VVVyy

yyv
              (38) 

where i, i=1,2,3,4, are the branches of parabolas shown in 

Fig. 5 that separate the areas Vi, i=1,2,3,4,5,6, on the plane 

(y1, y2). Union of i, i=1,2,3,4, is a stratified manifold where 

at least one of vi, i1,2, changes sign, and inside each Vi, 

i1,2,3,4,5,6, v1 and v2 are constant (1 or 1). Arrows in 

Fig. 5 indicate the directions of the time-optimal trajectories 

inside Vis. 

From equations (34)-(38), we have 

       21222221111 ,,,,, yyvytuyyyvytu     (39) 

Eq. (39) gives the solution in the form of full feedback 

control law. The requirements that u1 depends explicitly only 

on t and y1, and u2 depends explicitly only on t and y2 can be 

satisfied by substituting wherever necessary y1, and y2 for the 

solutions    tyty 21 , of the system governed by equations 

(36)-(38), i,e. 

      

    







21222

221111

,,

,,

ytyvytu

tytyyvytu                (40) 

This means that ui(t,yi), i1,2, depend also on initial states 

   0,0 21 yy . 

Having u1 and u2 calculated by (40), time-optimal asymptotic 

control functions   2,1,, iyt ii , can be calculated by 

solving partial differential equations of the first order (20) by 

the method of characteristics [Arnold, V.I. (1988)]. 

From (20) and the first equation of (40) we have 

           
 

 
0

,,

1

11
21

11 









y

yt
tyv

t

yt                (41) 

where v1 calculated by (37) is constant in every Vi, i=1,…,6, 

and σi, i=1,…,4, and from (36) 

    tvyty 222 0                             (42) 

where v1 is calculated by (37) and v2 is calculated by (38). 

 

Fig. 5. Definition of sets V1,..., V6, and 1,..., 4, used in 

equations (37)-(38). 
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Then a solution of (41) inside the Vi or σi that contains 

    0,0 21 yy  is 

     11

2

2211 2/0, yvtvtyyt            (43) 

From (20) and the second equation of (40) we have 

             
0

,,

2

22
2

22 









y

yt
v

t

yt                (44) 

where v2 calculated by (38) is constant in every Vi, i=1,…,6, 

and σi, i=1,…,4. A solution of (44) inside the Vi or σi that 

contains     0,0 21 yy  is 

  2222 , yvtyt                          (45) 

5.  CONCLUSIONS 

Understanding specifics and techniques of Rapidly 

Oscillating Systems (ROS), both classical and non-classical 

is important in applications. We demonstrated typical 

methods on the ROS on the plane, classified as (1,1) and 

(0,2) ROS. 

There are many interesting properties that are virtually 

unique to non-classical ROS, such as weak resonance 

conditions, rapid bifurcations (canards in ROS), and 

asymptotic control. However, non-classical ROS technique is 

often useful in analysis of classical problems as illustrated in 

the paper. 

The technique of asymptotic control is to find the control of 

the perturbed system by solving the control problem on its 

averaging (“macro” system), and then calculate the control 

functions of the perturbed system (“micro”) that give the 

same optimal averaged dynamics when the small parameter 

converges to zero. This has already been applied to several 

engineering tasks. 

Among challenging unsolved problems is an extension of the 

averaging of (0,2) ROS governed by (19) to a system    

    .2,1,,,,,, 21

1

21   iyytyyty iii       (46) 

where the functions i, i=1,2, depend on the state variables y1 

and y2 of both oscillating blocks. There are important 

applications, including Atomic Force Microscopy, that 

require this extension. 
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