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Abstract:
Semidefinite programs (SDPs) are important computational tools in controls, optimization,
and operations research. Standard interior-point methods scale poorly for solving large-scale
SDPs. With certain compromise of solution quality, one method for scalability is to use the
notion of structured subsets (e.g. diagonally-dominant (DD) and scaled-diagonally dominant
(SDD) matrices), to derive inner/outer approximations for SDPs. For sparse SDPs, chordal
decomposition techniques have been widely used to derive equivalent SDP reformations with
smaller PSD constraints. In this paper, we investigate a notion of decomposed structured
subsets by combining chordal decomposition with DD/SDD approximations. This notion takes
advantage of any underlying sparsity via chordal decomposition, while embracing the scalability
of DD/SDD approximations. We discuss the applications of decomposed structured subsets
to semidefinite optimization. Basis pursuit for refining DD/SDD approximations are also
incorporated into the decomposed structured subset framework, and numerical performance
is improved as compared to standard DD/SDD approximations. These results are demonstrated
on H∞ norm estimation problems for networked systems.

1. INTRODUCTION

Semidefinite programs (SDPs) are a class of convex op-
timization problems with a linear objective, affine con-
straints, and an additional positive semidefinite (PSD)
constraint on the variable. SDPs include common opti-
mization problems such as Linear Programs (LPs) and
Second-order Cone Programs (SOCPs). A general conic
program has the following primal and dual forms:

p∗ = min
X

〈C,X〉
〈Ai, X〉 = bi, i = 1, . . . ,m, (1a)
X ∈ K,

d∗ = max
y,Z

〈b, y〉

Z +

m∑
i=1

yiAi = C, (1b)

Z ∈ K∗,

where C,A1, . . . , Am ∈ Sn and b ∈ Rm are problem data,
K is a proper cone with its dual as K∗, and 〈·, ·〉 denotes
the standard inner product. Semidefinite programming
occurs over the self-dual cone K = K∗ = Sn+ of positive
semidefinite matrices.
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Standard interior-point methods (IPMs) can solve an
SDP to arbitrary precision in polynomial time, scaling as
O(n2m2 + n3m) [Alizadeh, 1995]. When m is fixed, the
speed of IPMs can be greatly improved by reducing the size
of PSD cone Sn+. This motivates a variety of decomposition
methods, which exploit problem structures to break up
a large PSD constraint into a product of smaller PSD
constraints. For example, sparsity in problem data (C,Ai)
motivates a notion of chordal decomposition [Agler et al.,
1988, Grone et al., 1984], and symmetry/common *-
algebra structure of (C,Ai) restricts optimization to an
invariant subspace [Vallentin, 2009].

A notion of structured subset method is to restrict (1a) to
inner/outer cones Kinner ⊂ Sn+ ⊂ Kouter to form optima
p∗outer ≤ p∗SDP ≤ p∗inner. Typical subset sets for Kinner are
(scaled-) diagonally dominant (DD or SDD) matrices. Op-
timizing over structured subsets Kinner ⊂ Sn+ may lead to
computationally simpler problems such as LPs or SOCPs.
These approximations can be iteratively refined through
a change of basis scheme [Hall, 2018]. Majumdar et al.
[2019] provides an overview of decomposition methods
and structured subsets for solving SDPs. Note that stan-
dard structured subsets (e.g. DD/SDD matrices) ignore
any sparsity of the original problem. Large semidefinite
programs may run into numerical issues, and structured
subsets will retain the ill-conditioning. Exploiting chordal
sparsity can lead to an equivalent problem with a set
of smaller PSD constraints, but some PSD constraints
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may be still overly large and dominant the computational
complexity.

In this paper, we merge structured subsets with decom-
position methods to form decomposed structured subsets,
a cone where each decomposed block is a member of
a structured subset. In the framework of decomposed
structured subsets, we first apply possible decomposition
methods to exploit any underlying sparsity and structure
in the problem, leading to an equivalent problem with
smaller PSD constraints. Standard structured sets are then
used to approximate the large PSD constraints. We show
the notion of decomposed structured subsets is a strictly
improved approximation to sparse PSD cone as compared
to the standard structured sets, and that basis pursuit
schemes tend to yield tighter approximations when applied
to the decomposed problem. We note that this paper pri-
marily focuses on chordal structures. Symmetry/*-algebra
structure are applied in the sequel.

The rest of this paper is organized as follows. Section 2
introduces preliminaries regarding chordal decomposition
and structured subsets. Section 3 unites these concepts
with decomposed structured subsets and performs a con-
tainment analysis. Section 4 discusses how to apply decom-
posed structured subsets to semidefinite programs and the
change of basis algorithm. This approach is demonstrated
through H∞ norm estimation of networked systems in
Section 5. We conclude this paper in Section 6.

2. PRELIMINARIES

2.1 Structured Subsets

A basic structured subset of the PSD cone Sn+ is diagonal
PSD matrices D. Two additional subsets are the cones of
diagonally dominant (DD) [Barker and Carlson, 1975] and
scaled diagonally dominant (SDD) matrices [Boman et al.,
2005]:

Dn = {A ∈ Sn : A = diag(a1, . . . , an), ai ≥ 0},
DDn = {A ∈ Sn : aii ≥

∑
j 6=i

|aij |, i = 1, 2, . . . , n},

SDDn = {A ∈ Sn : ∃D ∈ Dn | DAD ∈ DDn}.

(2)

It is known that Dn,DDn, and SDDn are inner approxi-
mations to Sn+, i.e.

Dn ⊂ DDn ⊂ SDDn ⊂ Sn+. (3)
Linear optimization over Dn and DDn (i.e., setting K =
Dn or K = DDn in (1a)) is an LP, and over SDDn (i.e.,
setting K = SDDn in (1a)) is an SOCP [Ahmadi and
Majumdar, 2017]. As there exist very efficient solvers for
LPs and SOCPs, these inner approximations to SDPs can
scale to very large-dimension problems. Figure 1 shows a
PSD-representable feasible set (black), along with inner
approximation found by optimizing over the cone DD
(red). An outer (gray) LP approximation is also shown,
corresponding to the dual cone DD∗. This example is
discussed further in Section 3.2.

Factor width matrices also form a structured subset of Sn+.
A matrixM ∈ FWn

k if ∃U such thatM = UUT where each
column of U has cardinality at most k [Boman et al., 2005].
An intuitive interpretation is that factor width-k matrices
are the sum of k × k PSD matrices that are embedded

Fig. 1. Cone slices of Eq. (7) showing DD ⊂ S+ ⊂ DD∗

in n × n larger matrices. Factor width matrices can be
extended to partitions of indices; see [Zheng et al., 2019b]
for details about block factor-width matrices. In Section 5,
Bk is defined as the set of block factor-width 2 matrices
where each block is of size k.

Change of Basis Change of Basis is an iterative method
that refines an existing structured subset approximation
for SDPs [Ahmadi and Hall, 2017]. The underlying idea is
that a matrix X may not be a member of a structured
subset K in one basis, but may have the correct form
in another basis. Given a matrix L and a cone K, a
basis-changed cone is K(L) = {X | LXLT ∈ K}. After
finding an optimum X0 of the conic optimization (1a),
form a matrix factorization X0 = L0L

T
0 , and then solve

the modified problem:
X1 = argmin

X
〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X ∈ K(L0).

(4)

This modified problem (4) has a new feasible region, where
X = I is an initial feasible point. Change of Basis proceeds
as long as desired, forming the accumulated basis matrix
L̂ = L0L1 . . . Lt−1Lt. An analogous process can occur on
the dual side; see Hall [2018] for details. This method
may reduce objective values between iterations, but is
not guaranteed to converge to the true SDP optimum. If
K = DDn (orK = SDDn), then each step requires solving
an LP (or SOCP) rather than an SDP.

2.2 Chordal Decomposition

In sparse SDPs, only a small number of entries of X are
used in the cost C and constraints Ai. All other entries of
X can be set arbitrarily to ensureX is PSD. The aggregate
sparsity pattern of (C,Ai) can be encoded by a graph
G(V, E), where there is an edge between vertices i and j if
any of C,A1, . . . , Am is nonzero at indices (i, j). A chord in
a graph is an edge between two non-consecutive vertices in
a cycle, and a graph is chordal if every cycle of length 4 or
more has a chord [Vandenberghe et al., 2015]. Graphs that
are not chordal can be chordal-extended by adding edges.
A clique C is a set of vertices that forms a complete graph:
∀vi, vj ∈ C, (vi, vj) ∈ E . Maximal cliques are cliques that
are not contained in any other cliques. The cardinality of a
maximal clique is denoted as |C|. Figure 2 shows a chordal
graph and its maximal cliques Ck, k = 1, . . . , 4.

Given a graph G(V, E), let E∗ be an edge set E augmented
with self-loops. The cone of sparse symmetric matrices

Sn(E , 0) = {X ∈ Sn | Xij = 0, ∀(i, j) 6∈ E∗},
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Fig. 2. Left: A 6×6 PSD completable cone Sn+(E , ?). Right:
corresponding chordal graph G(V, E) with maximal
cliques {Ck}4k=1.

and its subcone of sparse PSD symmetric matrices is
Sn+(E , 0) = S(E , 0) ∩ Sn+.

The dual space Sn+(E , ?) = [Sn+(E , 0)]∗ are matrices with
entries on E∗ that can be completed into PSD matrices.
Let ECk ∈ R|Ck|×n be 0/1 entry selector matrices that
index out entries in clique Ck. For sparse PSD matrices,
we have the following two decomposition results.
Theorem 1 ([Grone et al., 1984]). Let G(V, E) be a
chordal graph with a set of maximal cliques {C1, C2, . . . , Cp}.
Then, X ∈ Sn+(E , ?) if and only if

Xk = ECkXE
T
Ck ∈ S|Ck|+ , k = 1, . . . , p.

Theorem 2 ([Agler et al., 1988]). Let G(V, E) be a chordal
graph with a set of maximal cliques {C1, C2, . . . , Cp}. Then,
Z ∈ Sn+(E , 0) if and only if there exist Zk ∈ S|Ck|+ , k =
1, . . . , p, such that

Z =

p∑
k=1

ET
CkZkECk .

Theorem 1 breaks up a large sparse PSD constraint X ∈
Sn+(E , ?) into a series of smaller coupled PSD constraints
Xk � 0, k = 1, . . . , p. This result can be applied to primal
SDPs with a chordal sparsity pattern E , i.e., problem (1a)
with K = Sn+(E , ?) can be decomposed as

min
X

〈C,X〉
subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

ECkXE
T
Ck ∈ S|Ck|+ , k = 1, . . . , p.

(5)

Analogous results can be obtained for sparse dual SDPs,
with a characterization of the dual variable Z ∈ Sn+(E , 0)
using Theorem 2. These decomposed SDPs can be solved
using first order methods via variable splits ECkXET

Ck =
Xk (see [Zheng et al., 2019a] for details), but interior
point methods may suffer from the increase of the equality
constraints introduced by the decomposition. Conversion
utilities such as SparseCoLO [Fujisawa et al., 2009] inter-
nally perform domain and range space decompositions to
take advantage of the chordal sparse structure.

3. DECOMPOSED STRUCTURED SUBSETS

This section introduces a natural idea to combine struc-
tured subsets with existing decomposition methods. Con-
sider problem (1a) with K = S6+(E , ?) where E is the
sparsity pattern shown in Figure 2. Theorem 1 poses an
optimization problem over the cliques {Xk ∈ S3+}4k=1.
Now consider a structured subset restriction. If we re-
quire X = [xij ] ∈ DD6, this constraint requires x11 ≥

∑6
i=2 |x1i|. Instead, if we consider a decomposition and

impose structured subset restriction on the cliques, e.g..
X1 ∈ DD3, then it requires x11 ≥ |x12| + |x16|, which is
less restrictive than competing against all variables in the
same row/column. Decomposed Structured Subsets arise
from performing decompositions before applying struc-
tured subsets, and are presented in detail in this section.

3.1 Definition of decomposed structured subsets

Let G(V, E) be a graph with maximal cliques C1, . . . , Cp.
We define sparse DD and SDD matrices

DDn(E , 0) = DDn ∩ Sn(E , 0),
SDDn(E , 0) = SDDn ∩ Sn(E , 0).

It follows that
DDn(E , 0) ⊂ SDDn(E , 0) ⊂ Sn+(E , 0).

We therefore have the following decomposition result:
Proposition 1. Let G(V, E) be a (not necessarily chordal)
graph with a set of maximal cliques {C1, C2, . . . , Cp}. Then,
(1) Z ∈ DDn(E , 0) if and only if

Z =

p∑
k=1

ET
CkZkECk , Zk ∈ DD|Ck|, k = 1, . . . , p.

(2) Z ∈ SDDn(E , 0) if and only if

Z =

p∑
k=1

ET
CkZkECk , Zk ∈ SDD|Ck|, k = 1, . . . , p.

The proof is omitted for space reasons, but can be obtained
by contacting the authors or from arxiv.org/abs/1911.
12859. These results hold for an arbitrary clique edge
cover that covers all maximal cliques, given that finding all
maximal cliques is an NP-hard problem for generic graphs.

Motivated by Theorems 1 and 2, and Proposition 1, we let
E be a sparsity pattern, K = {Kk}pk=1 be a set of cones
corresponding to a clique edge cover C1, . . . , Cp, where each
individual cone Kk is some structured subset in S|Ck|. We
define two decomposed structured subsets:

K(E , 0) :=
{
Z ∈ Sn | Z =

p∑
k=1

ET
CkZkECk ,

Zk ∈ Kk, k = 1, . . . , p.
}
,

K(E , ?) :=
{
X ∈ Sn | ECkXET

Ck ∈ Kk, k = 1, . . . , p.
}
.

(6)
The decomposed structured subset K(E , 0) is a generaliza-
tion of DDn(E , 0),SDDn(E , 0) and Sn+(E , 0):
K(E , 0) = DDn(E , 0), if Kk = DD|Ck|, k = 1, . . . , p.

K(E , 0) = SDDn(E , 0), if Kk = SDD|Ck|, k = 1, . . . , p.

If E is chordal, the additional results hold for PSD cones:

K(E , 0) = Sn+(E , 0), if Kk = S|Ck|+ , k = 1, . . . , p

K(E , ?) = Sn+(E , ?), if Kk = S|Ck|+ , k = 1, . . . , p.

The notion of decomposition structured subsets (6) gives
more freedom to choose the individual cones Kk. We give
a detailed analysis below.
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K1 = {S+,DD} K2 = {DD, S+}

Fig. 3. Mixing cones broadens feasibility regions for
M(a, b) ∈ K(E , ?) in (7).

3.2 Containment Analysis

In Theorems 1 and 2 and Proposition 1, the cones cor-
responding to each clique are of the same type, i.e., Kk

are all either S|Ck|+ or DD|Ck|. Additional freedom can be
gained by allowing cliques to reside in different cones.

Given a graph with clique edge cover C1, . . . , Cp, we con-
sider two sets of cones K = {Kk}pk=1 and K̃ = {K̃k}pk=1,
where Kk or K̃k is a cone in S|Ck|. We define the partial
ordering ⊆ on decomposed structured subsets:

K ⊆ K̃ iff Kk ⊆ K̃k ∀k = 1 . . . p.

Then, we have the following proposition.
Proposition 2. Given two sets of cones K = {Kk}pk=1,
and K̃ = {K̃k}pk=1, if K ⊆ K̃, then we have

K(E , 0) ⊆ K̃(E , 0) and K(E , ?) ⊆ K̃(E , ?)

The result is true by definition. In the context of opti-
mization, DD/SDD constraints offer scalable computation
while PSD constraints are close (or exactly meet when
the underlying graph is chordal) the true feasible region.
Proposition 2 suggests some flexibility of choosing the
individual conesKk. As an example, consider the following
matrix parameterized by (a, b):

M(a, b) =

 1 1/2 + a ? ?
1/2 + a 2 −2a a+ b

? −2a 5 b/2
? a+ b b/2 2

 , (7)

where ? denotes unspecified entries. The sparsity pattern
of M(a, b) has two maximal cliques: {2, 3, 4} and {1, 2}.
By Theorem 1, M(a, b) ∈ S4+(E , ?) if its two cliques are
PSD:

M1(a, b)=

[
2 −2a a+ b
−2a 5 b/2
a+ b b/2 2

]
︸ ︷︷ ︸

�0

,M2(a, b)=

[
1 1/2 + a

1/2 + a 2

]
︸ ︷︷ ︸

�0

.

We can define feasibility sets for a cone-set K as {(a, b) |
M1(a, b) ∈ K1 and M2(a, b) ∈ K2}. Figure 3 compares
feasibility sets when both cliques are DD (blue) and when
both are S+ (black). As expected, the blue set is contained
within the black set since DD4(E , ?) ⊂ S4+(E , ?). The
orange set in the right panel has M1(a, b) ∈ S3+ and
M2(a, b) ∈ DD2. Note how the orange set includes the
blue set (all DD) and expands to nearly fill the left side of
the black set (all S+). The green set in the left panel has
M2(a, b) ∈ S2+ instead, which expands the all DD blue set
with a small rightward bump.

DD ⊂ DD(E, ?) ⊂ S+ SDD ⊂ SDD(E, ?) ⊂ S+

Fig. 4. M(a, b) feasibility sets and containments.

Given X ∈ DDn(E , ?), we say X is DD-completable if
∃Xc ∈ DDn such that X and Xc agree on entries in E .
A similar definition applies to X ∈ SDDn(E , ?). These
generalize the concept of a PSD completion. For such
an X with entries in E , we write X ∈ Kn if X is K-
completable, and X ∈ Kn(E , ?) if each maximal clique Ck
has ET

CkXECk ∈ K |Ck|. Under this definition:
Proposition 3. Let Kn ⊂ K̃n be cones in Sn. Given
a sparsity pattern E outside of which are entries ‘?’, the
following containment holds:

Kn ⊆ Kn(E , ?), K̃n ⊆ K̃n(E , ?), (8)

and Kn(E , ?) ⊆ K̃n(E , ?).
Note that by Theorem 1, a matrix X can be PSD-
completable if and only if X ∈ Sn+(E , ?).
Figure 4 illustrates and compares feasibility sets for
M(a, b) ∈ K(E , ?) (cliques of M(a, b) in K) and M(a, b) ∈
K (M(a, b) has a K-completion). The blue DD4(E , ?) and
black S+(E , ?) feasibility set are the same in Figure 4 as in
3. The left panel additionally shows feasible regions for the
set DD4 (red) and DD4(E , ?). Constraining that M(a, b)
has a DD-completion is stricter than restricting cliques to
be DD, so the feasibility sets will have DD4 ⊂ DD4(E , ?).
The right plot echoes the left plot, where imposing that
M1(a, b) ∈ SDD,M2(a, b) ∈ SDD yields a broader feasi-
bility set than M(a, b) ∈ SDD.

4. APPLICATIONS TO SEMIDEFINITE
OPTIMIZATION

Inner and outer approximations of semidefinite programs
can be developed through decomposed structured subsets.
A semidefinite program in primal form (1a) with (X ∈ Sn+)
and dual form (1b) (Z ∈ Sn+) will have matching optima
p∗ = d∗ when strong duality holds. By complementary
slackness, 〈X,Z〉 = 0. Assume this semidefinite program
has an aggregate sparsity pattern E . With an optimization
problem (1a) over Sn+(E , ?) and a cone set K = {Kk}pk=1,
an upper bound is attained by imposing X ∈ K(E , ?), and
a lower bound is found by restricting Z ∈ K(E , 0) in the
dual form. Lower bounds may also be found by setting
X ∈ K∗(E , ?), where K∗ = {K∗k}pk=1.

The conic optimization problem for a decomposed struc-
tured subset K(E , ?) is:

min
X

〈C,X〉
subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

ECkXE
T
Ck ∈ Kk, k = 1, . . . , p.

(9)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7467



4.1 Certifying Optimality

An outer structured subset approximation over Z ∈ K∗ ⊃
S+ is tight (lower bound has the same optimum as the
original SDP) if Z ∈ S+. Given an optimal (X, y) ∈
(K,Rm) for an inner approximation, this upper bound is
likewise tight for if the optimal dual variable Z ∈ S+ for
Z = C −∑m

i=1 yiAi [Ahmadi et al., 2017].

SDP-optimality of decomposed structured subsets can be
certified in the same framework given a set of clique cones
K. When finding lower bounds to semidefinite programs,
the clique cones K have Kk ⊇ S+. Tightness is certified
if each Xk ∈ S+. Upper bounds have Kk ⊆ S+. For each
clique Ck in the clique cone K, check if the corresponding
dual block Zk ∈ S+. The dual clique blocks Zk can be
obtained by computing Zk = Ck −

∑m
i=1 yi(Ai)k.

4.2 Decomposed Change of Basis

The change of basis algorithm in 2.1.1 can be extended to
decomposed structured subsets. Let X0 be the solution
to Problem (9), and let L = {Lk}pk=1 be Cholesky
factorizations such that LkL

T
k = ECkXE

T
Ck . The first

iteration of change of basis will solve:
min
X

〈C,X〉
subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

Xk = EkXE
T
k

LkXkL
T
k ∈ Kk

(10)

As before, an accumulated change of basis L̂k can be
formed for each clique, forming the agglomerated L̂. Dif-
ferent basis matrices L̂k may cover the same entries due
to clique overlap constraints, and this freedom may lead
to better quality optima.

Start from DD Start from DD(E, ?)

Fig. 5. Decomposed vs. Standard Change of Basis on (7)

Figure 5 illustrates the change of basis technique on a
standard (left) and decomposed (right) structured subsets
in the direction of 〈C,X〉. The intermediate costs are
recorded in the below table for the first three iterations:

Change of Basis Iteration
0 1 2 3

DD -1.41 -2.50 -3.08 -3.15
DD(E, ?) -1.41 -3.02 -3.13 -3.17

A similar process can be done over the sparse cone Z ∈
K(E , 0) (dual SDP), where bases L = {Lk}pk=1 are tracked
for each clique component Zk forming the clique-sum
Z =

∑
k E

T
CkZkECk for Z ∈ K(L)(E , 0).

5. H-INFINITY NORM ESTIMATION FOR
NETWORKED SYSTEMS

Consider a state-space stable dynamical system G(s):
ẋ = Ax+Bu,

y = Cx+Du.

The Bounded Real Lemma can establish an upper bound
on H∞ norm of G(s): [Boyd et al., 1994]:
Theorem 3 (Bounded Real Lemma). The following two
statements are equivalent:

(1) ‖G‖∞ < γ
(2) There exists a P � 0 such that[

PA+ATP + CTC PTB + CTD
BTP +DTC −γ2I

]
≺ 0.

If the dynamical system is sparse (has a network struc-
ture), a dense P � 0 will give the tightest H∞ approx-
imation but will destroy the sparsity pattern. Choosing
a P structure to be compatible with the LMI sparsity
pattern will form a computationally tractable upper bound
of ‖G(s)‖∞. One such structure is a block-diagonal P
where the size of each block is the corresponding agent’s
number of states [Zheng et al., 2018].

As an example of applying decomposed structured subsets
to H∞ estimation, we present the ‘sea star’ networked
system. The sea star system is composed of a set of
agents clustered into a head and a set of arms. Each
agent has internal linear dynamics (ni states,mi inputs, di
outputs), and they communicate and respond to a sparse
selection of other agents. Figure 6 shows a sea star network
with 70 densely connected agents in the head and other
agents distributed into 12 arms. Each arm is composed
of 2 densely connected ‘knuckles’. Each knuckle has 10
agents, and every knuckle in the arm communicates with
4 agents in the next and previous knuckle (or the head as
appropriate). The individual agent dynamics combine to
form global dynamics [A,B,C,D], where A is Hurwitz.

Estimating ‖G(s)‖∞ = ‖C(sI −A)−1B+D‖∞ can be ac-
complished by using the bounded real lemma to minimize
γ2. The resultant LMI has two semidefinite variables, as
displayed in Figure 6. The top left corner of the Bounded
Real LMI shows a structure induced by the network inter-
connections. On their own, the two semidefinite blocks are
of size 1760 and 2691. This LMI system strongly exhibits
chordal sparsity with edges E , and can be posed as an
optimization problem over the cone S+(E , 0).
Results of H∞ norm estimation of the sea star system are
presented in Figures 7 and 8. Columns are cones K where
K = DD or K = Bq if q is an integer 2.1. Rows are

Fig. 6. Sea Star network topology and LMI sparsity
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Fig. 7. Time to find γ by upper bound K (minutes)
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Fig. 8. γ found by lower bound K∗

size thresholds: the cone K(E , 0) has all cliques in K, and
K60(E , 0) is a mixed cone where cliques with |C| ≤ 60 are
PSD and |C| > 60 are in K. All experiments were written
in MatlabR2018a and performed on Mosek [Andersen and
Andersen, 2000] on a Intel i7 CPU.

Times in Figure 7 were measured solving the primal
program over K. All displayed values achieved the SDP
optimal solution, as certified in Section 4.1. The cones DD
with size thresholds 0 and 11 were primal infeasible, other
non-displayed values did not attain the optimal γ = 1.137.
The cone B5 was fastest at 1.84 minutes. Figure 8 displays
lower bounds for γ by over the dual cone K∗(E , 0). Lower
bounds tighten as cone complexity and size thresholds
increase. The true γ is obtained with a block-size of 55
and size-thresholds of 60 and 100 taking 34.8 and 34.0
minutes. The computer running experiments ran out of
memory attempting to solve the LMI over S+(E , 0).

6. CONCLUSIONS

Decomposition methods can break down large structured
SDPs into simpler problems. Structured subsets allow
for inner and outer approximations of dense SDPs to
be quickly estimated. This paper combines the two ap-
proaches into decomposed structured subsets, which allow
flexibility in choosing cones and form tighter objective
approximations. Applications to semidefinite and network
optimization are highlighted, specifically with an H∞
norm estimation problem.
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