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Abstract: In this paper, surrogate modelling and optimization is investigated for use in large
scale chemical processes. A novel CryoMan cascade liquefied natural gas (LNG) refrigeration
cycle is selected as the case study which has been highlighted for potential use within industry.
Given its high nonlinearity and dimensionality (31 input variables and 20 output variables
with a number of physical constraints) and short time horizon for real-time decision-making,
an time-efficient optimization scheme must be developed to maximize process performance.
Therefore, various supervised and unsupervised learning techniques as well as surrogate model
structures are explored in order to accurately capture the behaviour of this highly complex and
interrelated process flowsheet. Optimal solutions identified by the surrogate models are validated
against the rigorous process model. Following from the challenges encountered by artificial
neural network based surrogate models, Gaussian processes were adopted and combined with
partial least squares to simultaneously reduce dimensionality and capture the nonlinearity of the
underlying chemical process. Through this innovative surrogate modelling strategy, overall time
to optimize the LNG production process was reduced by orders of magnitude compared to the
rigorous model based optimization methodology, hence significantly facilitating the industrial
application of this new process.
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1. INTRODUCTION

Developing disruptive digital technology to enable the
design and operation of cost-effective and energy-efficient
manufacturing systems is one of the grand research themes
under the context of the 4th Industrial Revolution. Given
the large amount of data accumulated from process indus-
tries, building data-driven models to enable rapid decision-
making is of critical importance in order to guarantee the
process performance and safety (Bhosekar and Ierapetri-
tou, 2018).

Specific to the chemical industry, rigorous process models
derived from mass and energy balances allow for accurate
determination of states of a system, and can be directly
constructed using multiple computer-aided software pack-
ages such as Aspen (Bhosekar and Ierapetritou, 2018).
However, due to their complexity, the computational time
to evaluate a rigorous model can be relatively large (e.g.
potentially weeks), hence limiting their applications for
process control and optimization (McBride and Sund-
macher, 2019). As a result, surrogate models have been
adopted to replace rigorous models and help with identi-
fying optimal operating conditions.

At this moment, surrogate models are predominantly used
to replace single unit operations (Henao and Maravelias,
2011; Quirante et al., 2015), whilst their applicability in
terms of substituting more complex systems such as entire
process flowsheets has not been well explored. Therefore,
in this study, different cutting-edge surrogate models are
tested to simulate and optimize a novel liquefied natu-
ral gas (LNG) refrigeration cycle, with their performance
thoroughly compared against the optimal solution identi-
fied by the rigorous model. The structure of this paper is
organized as follows. Section 2 introduces the investigated
LNG production process. The approach to optimize the
rigorous model and the associated primary challenges are
also explained. Section 3 details the construction and opti-
mization of different surrogate models. Section 4 summa-
rizes the results of these surrogate models and compares
them with the rigorous model’s verification. A thorough
discussion regarding the advantages of combining Gaus-
sian processes and partial least squares for large scale
complex chemical process simulation and optimization is
presented in the Results and Discussion section.
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2. INTRODUCTION TO THE CRYOMAN CYCLE

Commercial scale production of LNG involves the use of
large, complex and energy-intensive refrigeration cycles.
The costs associated with the energy for refrigerant com-
pression (shaft work energy) dominate the overall operat-
ing costs of the LNG plant.

The CryoMan Cascade cycle recently developed by
Almeida-Trasvina and Smith (2018) (shown in Figure 1)
is a novel refrigeration configuration option, potentially
able to bring significant savings in shaft work demand
compared to current processes in the LNG industry. In this
process, within the precooling cycle, a ‘heavy’ mixed refrig-
erant provides cooling in a series of two multi-stream heat
exchangers (MSHEs); three stages are employed for re-
frigerant compression. In the liquefaction cycle, the ‘light’
mixed refrigerant is first fed into a liquid-vapour separator.
The resulting outlet streams are partially mixed with each
other to create the two refrigerant streams that provide
cooling in a series of two MSHEs.

Figure 1. The CryoMan Cascade LNG refrigeration cycle.

2.1 Implementation of rigorous model

The models employed for the MSHE units are based on
energy balances; feasible heat transfer is assessed given
a practical value for the minimum approach temperature
between hot and cold composite curves across the length
of each MSHE. The compressors and pumps are modelled
isentropically.

The rigorous model of the CryoMan Cascade cycle was im-
plemented in Aspen HYSYS v8.2 and subsequently linked
to MATLAB. The inputs include the refrigerant mass
flowrates, refrigerant compositions, discharge pressure, re-
frigerant evaporating pressures, MSHE outlet tempera-
tures, compression ratios and refrigerant split fractions
(where applicable) for both precooling and liquefaction
cycles. The outputs from the process are eight values of
shaft work demand, four MSHE approach temperatures,
vapour fractions of four streams (to assess wetness at inlet
of compressors), and four compression ratios.

2.2 Optimization of the rigorous model

The optimization problem for the rigorous model is defined
as follows:

min

(
N∑
i=1

Wi

)
/mLNG (1)

s.t. ∆Tmin ≥ 2oC (2)

Prat ≤ 3.5 (3)
m∑
j=1

xj = 1 xj ∈ XMR (4)

V F ref = 1.00 (5)

lb ≤ φ ≤ ub (6)

The specific shaft work, defined as the sum of the individ-
ual shaft works Wi divided by the mass flow rate of LNG
mLNG, is the objective function to be minimized. The 31
inputs to the rigorous model are represented by φ with the
set of inputs having corresponding upper and lower bounds
ub and lb, respectively. Constraints include minimum ap-
proach temperatures for MSHEs ∆Tmin, maximum com-
pression ratios Prat to discourage mechanical damage to
compressors, valid molar compositions represented by xj ,
and no wetness within compressors by constraining vapour
fractions at the inlet of compressors V F ref to zero.

An evolutionary algorithm (EA) is first employed for the
optimization of the rigorous model. The way in which con-
straints are dealt with in stochastic optimization is by ap-
plying penalties to invalid solutions. Successive Quadratic
Programming (SQP) is next used to identify a local opti-
mal solution around the best candidate resulting from the
stochastic optimization.

3. DEVELOPMENT OF SURROGATE MODELS

Directly optimizing the rigorous model is time consum-
ing (over 17 hours per run). This approach is not ex-
tremely computationally expensive, however, the real-
time decision-making of a commercial LNG plant is often
around once per 4 hours. Thus, using the Aspen based
rigorous model cannot fulfill this practical constraint. As
a result, surrogate models are adopted as a competent
alternative to resolve this challenge. More importantly, if
different configurations of LNG cycles are to be consid-
ered in parallel for operational optimization, being able to
reduce the optimization time for each configuration will
allow for more rapid evaluation of different case studies
and structural modifications, and will lead to a reduced
overall project execution time.

Different from using surrogate models to substitute a unit
operation, building a surrogate model to replace an entire
process flowsheet is more challenging due to the high
nonlinearity of the underlying process and high dimen-
sionality of the involved design variables. Therefore, in
order to guarantee success, a number of surrogate model
structures were proposed with different hypothesise and
their performance was thoroughly compared in this work.
Furthermore, taking advantage of both supervised (dealing
with nonlinearity) and unsupervised (dealing with dimen-
sionality reduction) machine learning techniques is another
strategy proposed in this work, as this may greatly simplify
the process complexity for surrogate model construction
whilst obtaining high quality optimal solutions.
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3.1 Construction of Artificial Neural Network based
surrogate models

Artificial neural networks have been widely used as sur-
rogate models to replace rigorous models for unit oper-
ation simulation (e.g. distillation columns) (McBride and
Sundmacher, 2019; Abdul Jaleel and Aparna, 2019). ANNs
provide a flexible structure to simulate nonlinear systems
when given sufficient amounts of data. When an ANN is
used for regression, its training procedure is to minimize
the difference between model prediction and the given
output, by optimizing the weights (wij) and biases (bj)
that connect the neurons between different layers.

An ANN consists of a number of hidden layers which
can be connected through different manners. As this work
does not involve image-reading or time-events, a feedfor-
ward neural network is selected. To construct an accurate
feedforward neural network, choosing a suitable activation
function is an important step. There exists many possible
activation functions such as the sigmoid, tanh (Eq. 7),
and ReLu functions, all of which have their situational
benefits. As the current ANN falls into the category of
regression, a tanh (hyperbolic tangent) activation function
is preferred given its heuristic advantages. Training data
was standardized through the standard procedure to take
advantage of the nonlinear region within the activation
function, and 20% of the data was reserved for model cross-
validation to prevent overfitting (del Rio-Chanona et al.,
2017).

yj = tanh

(∑
i

xi · wij + bj

)
(7)

To take into account the nonlinearity of this highly inter-
connected process flowsheet, different structures of ANN
based surrogate models are constructed as shown in Fig. ??
and 3. These include: (1) a single ANN directly simulating
the entire process (31 inputs and 20 outputs); (2) an ANN
framework comprising 2 independent ANNs, one simulat-
ing the 8 shaft works, 4 compression ratios and 4 vapour
fractions given the 31 inputs, and the other simulating
the 4 temperature differences given the same inputs; (3)
an ANN framework comprising 5 separate ANNs, one
simulating the 8 shaft works, 4 compression ratios and
4 vapour fractions, and the other 4 each of which only
simulating a specific temperature difference. The reasoning
behind constructing different surrogate model structures
is discussed in the Results and Discussion section. It is
worth mentioning that the current ANNs were constructed
through a thorough hyperparameter selection framework
and a k-fold cross validation method. The optimal com-
bination of essential key hyperparameters was identified
to balance the model training and testing performance.
A detailed explanation of the ANN model construction
procedure is demonstrated in our recent publication (del
Rio-Chanona et al. (2017)).

Figure 2. ANN based surrogate model structure 1.

Figure 3. ANN based surrogate model structure 3.

3.2 Construction of Gaussian process based surrogate
models

In contrast to an ANN which is a regression model, a Gaus-
sian process (GP) is an interpolation model developed by
Krige (1951) and popularized by the machine learning
community since mid 2000s (Rasmussen and Williams,
2006). GPs aim to describe an unknown function f :
Rnu → R using noisy observations, y = f(u) + ν, where
ν ∼ N (0, σ2

ν) is Gaussian distributed measurement noise
with zero mean and a unknown variance σ2

ν .

GPs consider a distribution over functions, and they
can be seen as a generalization of multivariate Gaussian
distributions,

f(·) ∼ GP(m(·), k(·, ·))
where the mean function m(·) can be interpreted as the
deterministic part of the function; and the covariance func-
tion k(·, ·) accounts for correlations between the function
values at different points.

The focus therefore is on a constant mean function,
m(u) := c, along with the squared-exponential (SE) co-
variance function (Rasmussen and Williams, 2006) based
on the assumption that the real system function f is
smooth and stationary:

k(u,u′) := σ2
n exp

(
−1

2
(u− u′)TΛ(u− u′)

)
where σ2

n is the covariance magnitude; and Λ :=
diag(λ1 · · ·λnu

) is a scaling matrix.

Maximum likelihood estimation is usually used to estimate
the unknown hyperparameters Ψ := [c σn σν λ1 . . . λnu ]T,
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including σν in case the measurement noise variance is also
unknown. Other distinct characteristics of GPs compared
to ANNs include: (1) GPs are Multiple Input Single
Output (MISO) model whilst an ANN is a Multiple Input
Multiple Output (MIMO) model; (2) GP is particularly
efficient when learning from small sizes of data whilst ANN
thrives from large sizes of data (Bradford et al., 2018).
To investigate the efficiency of GPs for complex system
simulation, in this work, a GP based surrogate model
superstructure is constructed comprising of 7 independent
GPs, each of which predicting a specific output including
the 4 temperature differences, the total shaft work, 1
specific compression ratio and 1 specific vapour fraction.
This superstructure also embeds an unsupervised learning
algorithm - partial least squares (PLS) for dimensionality
reduction. The detailed explanation of this superstructure
is explained in the next section.

3.3 Introduction to Kriging Partial Least Squares

Partial Least Squares (PLS) is an unsupervised learning
algorithm that seeks to find the multidimensional direction
in input space X that minimizes the variance in the output
dimension Y (Guido and Mueller, 2016). PLS allows for
the reduction of input dimension whilst maintaining the
majority of meaningful information within the data, by
projecting both X and Y to new smaller dimensional
spaces. In the method described by Bouhlel et al. (2016)
to integrate PLS into GPs, PLS is performed over the
data and the PLS weights (projected spaces of inputs
and outputs) are used to construct a lower dimensional
covariance matrix K(U) over which a Gaussian process
model is constructed. By reducing the model dimensional-
ity it allows for easier determination of the minimum log-
likelihood L(Ψ) resulting in a lower computational time
cost, and more accurate mapping of between the input
space and the output space for large dimensional systems.

This integrated modelling strategy (embedding PLS into
GP), namely KPLS, is adopted in this research to com-
plete the construction of the GP based surrogate model
superstructure mentioned in Section 3.2. The structure of
this surrogate model is shown below in Figure 4.

Figure 4. KPLS surrogate model superstructure with re-
spect to the 7 independent GPs.

3.4 Data generation and selection

Three different datasets were generated with differing
qualities and time costs in order to create the surrogate
models:

• Dataset 1: 5000 random, bounded data points. Taking
10 minutes to generate, however are mostly infeasible.

• Dataset 2: 500 refined data points, generated within
slightly restricted bounds.

• Dataset 3: 350 high-quality data points. Consisting of
valid solutions after discarding invalid solutions, with
an associated high time cost (3̃ hours).

As the accuracy of a surrogate model heavily relies on the
data quality, Dataset 1 was found incapable of providing
useful information for data-driven model construction,
hence was discarded. However, having a sufficient amount
of data is also a prerequisite to build an accurate surrogate
model, thus purely using Dataset 3 is not able to meet this
requirement. Therefore, Datasets 2 and 3 were combined
in order to provide global representation of the rigorous
model as well maintain a relatively large proportion of
valid solutions, such that the surrogate model would be
sufficiently accurate in promising valid areas.

For a highly interconnected system with 31 inputs and
20 outputs, 850 data points is not necessarily large. As
a result, it is difficult to pre-determine which machine
learning technique, ANN or GP, is more suited in this
task. Although extra high quality data can be generated,
the overall surrogate model construction time will be
increased, diminishing its advantage over the rigorous
model. The approach of limiting the data used to create
a surrogate model may seem counter intuitive, however it
places the emphasis on efficient and smart model creation
with respect to the rigorous model, which can then be
supplemented with additional data after construction.

3.5 Optimization of surrogate models

The optimization problem for surrogate models remains
the same for the rigorous model. Specific to data-driven
based surrogate models, stochastic optimization is the
standard approach because of its ability to efficiently ex-
plore global search spaces, particularly when the function
being optimized is highly nonlinear. Another advantage
of stochastic optimization is that it does not rely on
the derivative of the function being optimized, meaning
that it is the only option able to optimize models where
information about the gradient is unavailable or difficult
to deduce (e.g. large artificial neural networks).

An evolutionary algorithm was employed to optimize the
surrogate models, taking advantage of tournament selec-
tion and single point crossover. A mutation rate of 3% and
selection percentage of 98% were used over a population
size of 100. The optimization scheme was chosen to run
for 500 generations. Whilst simply applying a constant
penalty for any violation is feasible, the nature of the
solution space specific to this case study results in mostly
infeasible areas. Therefore, a linear penalty is implemented
in order to guide the optimization initially towards a valid
solution space. This linear penalty also contains a constant
term in order to mathematically remain greater than the
objective function for all invalid solutions.
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Finally, the ANN based surrogate models were imple-
mented using PyTorch 1.2.0 and the KPLS based sur-
rogate models were implemented using the SMT toolbox
by Bouhlel et al. (2019), both within Python 3.7.3 on a
Windows 10 operating system. Total construction of the
KPLS models takes on average 2 minutes using 850 data
points, and that for the ANN based surrogate models takes
approximately 5 minutes.

4. RESULTS AND DISCUSSION

4.1 Results of the single ANN surrogate model

Table 1. Results of the single ANN surrogate
model. The optimal solution predicted by this
surrogate model is validated against the rigor-

ous model.

SW1 SW2 SW3 SW4

(MW)
Prediction 12.26 21.43 9.93 0.38
Validation 10.56 21.14 11.94 0.28

SW5 SW6 SW7 SW8

(MW)
Prediction 16.13 37.80 45.93 0.00
Validation 15.2 35.82 50.15 0.00

V F1 V F2 V F3 V F4

(-)
Prediction 1.00 1.00 1.00 1.00
Validation 1.00 1.00 0.97 1.00

P rat
1 P rat

2 P rat
3 P rat

4
(-)

Prediction 2.07 2.89 1.56 2.61
Validation 2.12 2.70 2.25 1.80

∆Tmin1 ∆Tmin2 ∆Tmin3 ∆Tmin4

(K)
Prediction 3.24 2.43 12.80 2.32
Validation -0.04 -5.35 2.82 1.19

First of all, results of the single ANN (31 inputs, 20
outputs) are summarized in Table 1. The prediction results
show the expected output as determined from the ANN
model, and the validation results show the actual output
when this ’optimal’ solution is rigorously simulated. From
the table, it is observed that this model has encouraging
results with respect to predicting the individual shaft
works. However, as shown in Figure 5, after validation
with the rigorous model, it is found that MSHE approach
temperatures (i.e. practical temperature constraints) are
infeasible for the ANN predicted optimal solution. The
single large ANN is here unable to capture the nonlinearity
of the process, and its accuracy is verified to be low.

Fig. 5 shows the validated ∆T approach temperatures
when results from the respective data-driven models are
validated on the rigorous model. The two most simple
ANN structures are shown to be unable to capture the
nonlinear nature of the approach temperatures and both
produce false optimal solutions that are infeasible (< 2oC,
below the red line).

Figure 5. Plot of validated approach temperatures for 4
different surrogate model structures. Infeasible MSHE
approach temperatures have values below the dotted
red line.

4.2 Results of the ANN based surrogate model frameworks

A straightforward improvement to the single ANN surro-
gate model is to split this large ANN into a two separate
ANNs to deal with the nonlinear temperature constraints.
In other words, a surrogate model framework can be built
to include two independent ANNs, one only predicting
the four highly nonlinear MSHE approach temperatures
and the other estimating the remaining sixteen outputs.
It should be noted that whilst these approach tempera-
tures do not directly contribute to the specific shaft work
being optimized, they act as highly important practical
constraints within the optimization problem and thus need
to be accurately predicted.

Breaking a surrogate model up into a series of parallel
sub-models may increase accuracy in capturing specific
nonlinearities that are particularly prominent in a highly
interrelated process flowsheet. Based on this hypothesis,
a second surrogate model framework is constructed to
further separate the MSHE approach temperature ANN
into four separate ANNs, each trained to predict an indi-
vidual approach temperature. This will allow the overall
surrogate model to gain better accuracy still with regards
to the individual approach temperatures, and ensure that
a prediction made using the surrogate model remains fea-
sible when validated with the rigorous model.

Indeed, through rigorous model verification, both of the
ANN frameworks can well predict the shaft works and
vapour fractions. From Figure 4, it is seen that although
the first ANN framework (consisting of 2 ANNs) still
violates the temperature constraints, the second frame-
work (consisting of 5 ANNs) successfully meets all the
constraints, hence resulting in feasible solutions. Nonethe-
less, the optimal total shaft work identified in the third
surrogate model is 160 MW, much higher than the optimal
solution (144 MW) identified using the rigorous model.
Hence, the surrogate model is still not efficient in terms of
process optimization. Overall, the results from the three
ANN based surrogate models strongly suggest that due to
the high nonlinearity and dimensionality of the underlying
process and limited amount of data, it may not be an
ideal approach using ANNs to directly construct surrogate
models to simulate a whole process flowsheet.
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Table 2. Results of the KPLS surrogate model
superstructure. The optimal solution predicted
by this surrogate model is validated against the

rigorous model.

SWtotal V F3 P rat
3

(MW) (-) (-)
Prediction 146.3 0.994 3.01
Validation 147.4 0.983 3.05

∆Tmin1 ∆Tmin2 ∆Tmin3 ∆Tmin4

(K)
Prediction 2.60 3.99 2.52 2.82
Validation 2.73 2.92 2.10 2.23

4.3 Results of the KPLS superstructure model

Due to the system in question having a relatively large
number of inputs and outputs, unsupervised learning tech-
niques are adopted in order to reduce the dimension of
the solution space (i.e. reducing the impact of the curse
of dimensionality) for the construction and optimization
of surrogate models. As there exists no constraint on each
individual shaft work, these outputs are grouped into a
single output representing the sum of the shaft works,
simplifying the structure of the surrogate model. Likewise
with reducing the shaft works into a total shaft work,
it was observed from the ANN based surrogate models
that the majority of data regarding 3 out of the 4 vapour
fractions and 3 out of the 4 shaft works exist in feasible
solution space all the time (i.e. redundant constraints).
Due to this fact, it is decided to neglect to model these
outputs in the first place to further reduce the dimension
of the outputs.

The results of the KPLS superstructure model (consisting
of 7 GPs) is presented in Table 2. From the table, it can be
concluded that the total shaft work (147.4 MW) has been
predicted well, and is comparable to the optimal result ob-
tained using the rigorous optimization (144.4 MW). In ad-
dition, individual shaft works are found to be feasible after
verification. All the constraints including vapour fractions
and MSHE temperatures are satisfied. Most importantly,
the full time to train and optimize this surrogate model
only takes around 10 minutes (i.e. 2 minutes for model
construction and 8 minutes for stochastic optimization) as
opposed to 17 hours spent when optimizing the rigorous
model. This directly demonstrates the superiority and
practical advantages of using the integrated KPLS mod-
elling strategy for the optimization and real-time decision-
making of high dimensional complex chemical systems
(e.g. entire process flowsheet).

5. CONCLUSIONS

To conclude, Gaussian processes and artificial neural net-
works can be used as building blocks in parallel to con-
struct time-efficient surrogate models to represent highly
nonlinear systems such as a highly interacted chemical
process flowsheet. However, selection of surrogate model
structure, fidelity of available data, and amount of data
can greatly affect the accuracy and efficiency of surrogate
models. To guarantee the success of surrogate model con-
struction, knowledge of the real world system is required.
Moreover, unsupervised learning techniques can also be

taken advantage of in order to reduce the high dimen-
sionality encountered in large scale processes simulation.
Through the use of data-driven models and stochastic
optimization algorithms, it is possible to reduce the com-
putational time cost and meanwhile identify a high quality
optimal solution for the operation of complex systems.
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