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Abstract: A novel model-free iterative learning control algorithm is proposed in this paper
to improve both the robustness against output disturbances and the tracking performance in
steady-state. For model-free ILC, several methods have been investigated, such as the time-
reversal error filtering, the Model-Free Inversion-based Iterative Control (MFIIC), and the Non-
Linear Inversion-based Iterative Control (NLIIC). However, the time-reversal error filtering has
a conservative learning rate. Other two methods, although with much faster error convergence,
have either a high noise sensitivity or a non-optimized steady-state. To improve the performance
and robustness of model-free ILC, we apply the time-reversal based ILC and recursively
accelerate its error convergence using the online identified learning filter. The effectiveness of
the proposed algorithm has been validated by a numerical simulation. The proposed approach
not only improves the transient response of the MFIIC, but achieves lower tracking error in

steady-state compared to that of the NLIIC.
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1. INTRODUCTION

Tterative learning control (ILC), which operates the same
task repeatedly and updates the control input according to
the previous trial data, has been applied to tracking con-
trol applications for many years [Ahn et al. (2007)]. Since
the learning operation can be non-casual, ILC has been
shown to achieve better tracking performance compared
to feedback control approaches [Bristow et al. (2006)].

To reduce the tracking error iteratively, the model-based
ILC [Lee et al. (1994)] uses the system inverse model as
the learning filter to conduct the learning process. For
model-based approaches, if the system model is identified
accurately, the learning process would converge within few
iterations [Teng and Tsao (2015)]. However, inversion-
based methods require delicate modeling process, which
is not practical for industrial applications. Thus, the
development of model-free ILC becomes more and more
popular in the ILC research community [Janssens et al.
(2011)].

For the model-free approaches, the PD-type ILC [Arimoto
et al. (1984); Chen and Hwang (2006)] is the simplest
way to implement. However, monotonic convergence con-
dition is not always satisfied by tuning the PD-parameters
[Moore et al. (2005)], and the tuning process may be time-
consuming and damage the system. Time-reversal based
ILC [Ye and Wang (2005)] uses the adjoint operator of the
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system as the learning filter. The control updating law is
implemented by filtering the reversed error signals by the
system itself. However, the learning rate is usually slow
[Chen et al. (2020)].

To achieve a fast error convergence rate, the model-free
inversion-based iterative learning control (MFIIC) [Kim
and Zou (2012)] applies the point-by-point division over
the frequency response function of the system input and
the output signals to estimate the inverse dynamics. Nev-
ertheless, the output disturbances present in the denomi-
nator of the computation. Once unpredicted output distur-
bances are introduced, the magnitude of the denominator
may be greatly influenced in the high-frequency range.
This unpredictable phenomenon leads to a poor tran-
sient learning behavior [De Rozario and Oomen (2018)].
To improve the learning transient performance, NLIIC
[de Rozario and Oomen (2019)] uses an adaptive learning
gain to avoid the division by small numbers. However,
since the adaptive learning gain shuts down the updating
for the high-frequency components, the tracking perfor-
mance in steady-state is degraded.

To overcome the difficulties mentioned above, a model-free
learning algorithm is proposed. The proposed algorithm
is based on the time-reversal based ILC, and we apply
a data-based learning filter to update the control input
every n iterations. This approach not only accelerates the
convergence rate of time-reversal based ILC. Compared to
the MFIIC and NLIIC, our method provides a more flexi-
ble updating law that gains the robustness against output
disturbances and the tracking performance in steady-state.
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The remainder of this paper is organized as follows: Section
2 illustrates the basic iterative learning control algorithm
and the existing model-free ILC approaches. Section 3
provides a derivation and analysis of the proposed model-
free learning algorithm. Section 4 presents the simulation
results to validate the effectiveness of the proposed algo-
rithm. Finally, Section 5 summarizes the main results and
contributions of this paper.

2. PROBLEM FORMULATION
2.1 Iterative Learning Control

For a SISO, LTI system G(z), which is represented in z-
domain and assumed to be asymptotically stable, the ILC
learning algorithm can be written in the following form:

ujr1(k) = u;(k) + L(2)[r(k) — y;(k)] (1)
= u;(k) + L(2)e; (k)

where k is the time index of the discrete-time signal, the
sub-index j represents the jth iteration of learning process,
r is the trial-invariant reference to be tracked with time
interval N, u represents the control input of G(2), y is the
output of G(z), e is the tracking error to be reduced, and
L(z) is the learning filter to guarantee the stable learning.

Assumption 1. Since the z-transform and Fourier transfor-
mation of a time sequence is computed over an infinite time
interval, all the time signals in this paper are assumed to
have infinite length (i.e. N—00) to meet the requirement
of frequency-domain analysis .

The ILC stability condition in frequency domain is:

= G(2)L(2)ll <1 (2)

where ||-||, denotes Hoo-norm. It had been proven when
the learning filter L(z) satisfies Eq.2, the control input
and tracking error e, will converge and thus the learning
is stable [Norrlof and Gunnarsson (2002)] .

Remark 1. To meet the infinite long time signal assump-
tion, the zero-padding technique is applied to extend the
reference signal with sufficient long zeros on the both ends
to avoid leakage in frequency-domain computation.

2.2 Model-free ILC

To satisfy the stability criteria, there are several ways
to implement the model-free leaning law. Here the time-
reversal based ILC and MFIIC approaches are introduced.

Time-reversal based ILC

Consider the adjoint-based ILC [Ye and Wang (2005);
Owens et al. (2009)], the learning filter L(z) = aG*(2)
is chosen with a sufficiently small learning gain o > 0 to
guarantee the stability condition.

To realize the adjoint-based learning law:
ujr1(k) = u;j(k) + aG*(2)e; (k) (3)

the term aG*(z)e;(k) can be obtained by using the re-
versed time filtering technique as shown in [Ye and Wang
(2005)]:

(1) Reverse the error signal: eji (k) = e;(N — k);

(2) Feed the reversed error signal to the system: ejo(k) =
G(2)ej1(k);

(3) Reverse ejo(k) again, and multiply with a: e;3(k) =
Oéejg(N — k‘)

(4) Conduct the learning law: uji1 (k) = u;(k) + e;3(k);

For the adjoint-based learning approach, the robustness
can be improved compared with the inversion-based ap-
proach, especially considering the effect of high frequency
model uncertainty [Owens et al. (2009)]. However, since
the convergence rate is limited by the small learning gain,
this disadvantage leads to a critical issue of the time-
consuming learning process in real application.

Model-free Inversion-based Iterative Control

Consider the SISO, LTI and stable system y;(k) =
G(z)u;(k), the model-free inversion-based learning law can
be written as:

) Ui(e)
Ui (™) + Pji/j((zm))Ej(ej‘”),
if V() # 0 and R(e7*) £ 0; Y

U;j(e??); otherwise

Uja(e’) =

where U;(e’*) and Y;(e’*) is the frequency-domain repre-
sentation of u;(k) and y; (k) respectively; and the learning
gain p; is equal to 1 for MFIIC [Kim and Zou (2012)]
and p; = f([Y;(e7*)]) is a function of |Y;(e/*)| for NLIIC
[de Rozario and Oomen (2019)] to improve the robustness.

For this approach, since the estimated learning filter is
inversion-based, the learning will converge after few itera-
tions. However, due to the learning filter is constructed
by measured data, while the unpredicted disturbances
dominate the output signal, the updated control input may
be dramatically amplified in some frequency components
[De Rozario and Oomen (2018)]. Moreover, since the noisy
learning filter is conducted iteration by iteration over the
whole learning process, while the adaptive learning gain is
introduced [de Rozario and Oomen (2019)], the tracking
performance in steady-state is limited.

In this paper. we propose a novel method to remedy
the difficulties for the model-free ILC mentioned above.
Specifically, the proposed method is expected to

(1) Improve the learning transient against output distur-
bances;
(2) Achieve lower tracking error in steady-state.

3. MODEL-FREE ILC WITH RECURSIVE
CONVERGENCE ACCELERATION

The main idea of the proposed algorithm is to formulate
the ILC recursive equation (Eq. 1) into a closed-form,
namely an equation describes recursive convergence rate
acceleration. By exploiting such the equation, the learning
rate of any stable learning law can be further accelerated.

The derivation of the proposed algorithm will be discussed
in section 3.1, and the stability and robustness of the
proposed algorithm will be analysed in section 3.2 and
3.3.
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Fig. 1. The control architecture of the proposed algorithm.

The learning is switched to the acceleration filter [g((zz))

for every n € N iterations; otherwise, the control input
is updated by the time-reversal based ILC.

3.1 Algorithm Formulation
Since the ILC learning law is a recurrence relation, given

the initial term ugp = L(z)r(k), Eq. 1 can be reformulated
as the following form:

R (IO

ej-1(k) = [1 = G(2) L(2))r(k) (6)

Assume all the discrete time signals are with infinity
length, the time-domain signal z(k) can be transformed
into the z-domain representation:

Y k) (7)

k=—o0

As a result, Eq. 5 and Eq. 6 can be rewritten as:

Uj-1(2) = L _GL(S)G(Z)]J

Bj-1(z) = [1 = G(2)L(2)/ R(2) 9)

R(z) (®)

where U;_1(z) denotes the z-domain representation of
uj—1(k), and R(z) and E;_1(z) are as so on. Inspired by
the recursive equation, if the sub-index j is replaced with
27, then Eq. 8 becomes

1-[1- L(z)G(2)]”

Uzj-1(2) = G0 R(z) (10)
Combine Eq. 9 and Eq. 10,
_1Ei-1(2)q2
Usj_1(2) = WR(Z) (11)
= 20105 - S (12)

Reformulate Eq. 12 into the ILC updated form, we can
obtain

Usj-1(2) = Uj-1(2) +

Uj7(1 ()Z)
R(z
learning rate will be dramatically improved.

Eq. 13 implies if the learning filter is assigned, the

To implement this observation, consider the SISO, LTI
and pre-stabilized system G(z), and the initial learning
filter Lo(z) is chosen to satisfy the stability criteria (Eq.
2). The proposed control input updating approach utilizes
Eq. 13 to update the control input every n € N iterations,
and the rest iterations update the control input via Ly (2).
The control architecture is as shown in Fig. 1, and the
procedure of the proposed algorithm is summarized below:

Algorithm 1 Model-free ILC with Recursive Convergence
Acceleration

1: Initialize j = 0, ug(k) = r(k), Lo(z) = aG*(2).

2: Feed u;(k) to G(z) to obtain the output data y;(k);
Record the tracking error e;(k) = r(k) — y;(k); If
tracking error is small enough within the tolerance,
then stop the learning; otherwise, go to the next step.

3: If j =0 or (j mod n) # 0, go to step 4; otherwise, go
to step 5;

4: Conduct the time-reversal based ILC: w;yqi(k) =
uj(k) + aG*(2)e;(k); Set j < j + 1, go to step 2;

5: Apply DFT to obtain the frequency-domain signal
R(e’%), U;(e’*) and E;(e’*);

6: Conduct the proposed updating law (Eq. 13) over the
discrete-frequency interval:

U;(e’) + []Jg((g:)) Ej(e),

if |R(e’¥)| > threshold;
U;(e?*); otherwise

Do inverse DFT to obtain the time-domain sequence
uj+1(k); Set j < j + 1, go to step 2;

Ujsr () = (14)

Note that the learning threshold of Eq. 14 must be set
if the output disturbances are considered. How to set the
learning threshold to maintain the stable learning will be
discussed and analysed in Section 3.3.

8.2 Stability Analysis

To prove the proposed ILC algorithm is stable, some
assumptions and definitions are stated below:

Definition 1. (Error Convergence Rate) Consider the
stable system G(z) and the learning filter L(z), the error
convergence rate of ILC is defined as:

7= I - G(2)L(z) (15)
The smaller the value of 7 is, the faster the tracking error
converges.

oo

Definition 2. (Symbol Convention) The learning filter
updated at each pn iteration is denoted as Ly, (z), where
p € N is the number of updating times.

Assumption 2. The initial learning filter Ly(z) is stable,
e, v =1 —G(2)Lo(2)| o, <1

Theorem 1. (Stability of Algorithm 1.)

Assume the learning filter conducted at each pn iteration
by algorithm 1 is:

(16)
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where Uy, () is the control input applying algorithm 1 at
pn iteration in z-domain representation, p,n € N | then:

Yon = I = G(2) Lpn(2) ]l o, < (70)? (17)
Proof:

T o

According to Eq. 8 and Eq. 13, the control input conducted
by algorithm 1 at each pn iteration can be written as:

1—[1 = Lo(2)G(z)] @ ~Dnt2""!

Upn(z) = R 18
() e () ()
Hence the learning filter Ly, (%) becomes:
Upn 1—[1— L(2)G(z)] @ ~Dn+2"""
R(z) G(2)
Combine Eq. 2 and Eq. 19, the stability criteria becomes:
Yon = [T = G(2) Lpn () (20)
< |1~ G(2)Lo (=) 02 (21)
Since 2P — 1 > 2P~! for p € N, therefore
(20 —Dn 4207t > 207t p 2P~ = 2P (n 4 1) (22)
From Eq. 21 and Eq. 22,
P_1\n p—1 p—1 n
Yon < (10)FTIFET < () ) <1 (23)
|

Theorem 1 implies if the pre-selected learning filter Lg(z)
is stable, then the acceleration learning filter L,,(z) not
only satisfies the stability criteria, but also accelerates the
learning rate exponentially at each pn iteration, p,n € N.

3.8 Robustness Analysis

To guarantee the tracking error conducted by the pro-
posed learning algorithm converges monotonically when
the output disturbances are considered, assume the system
dynamics of a stable G(z) becomes:

y;i(k) = G(2)u;(k) + d(k)
where d(k) is the output disturbance.

(24)

Assumption 3. The output disturbance d(k) is trial-
invariant, and can be represented in z-domain and
frequency-domain as D(z) and D(e’) respectively. | D(e/*)]
is bounded by d, i.e., § :== max(|D(e’*)|) Vw € (—m, ).

Theorem 2. (Learning threshold of Algorithm 1.) Con-
sider the system dynamics of SISO, LTI system G(z)
in frequency-domain: Y;(e/¥) = G(e?¥)U;(e’*) + D(e’%),
where |D(e’*)| is bounded by 4, i.e., § := max(|D(e?¥)])
Yw € (—m, ). The necessary condition for the monotonic
convergence of the learning law Eq. 14 is

[R(e7)| > | Bj(e”)| + 6 (25)
where R(e/*) is the reference trajectory and Ej(e’*) :=
R(e7¥) — Y;(e’*) is the tracking error.

Proof:
Since the tracking error at jth iteration is:

Ej(e*) = R(e) = G()U,(") = D) (26

100 Hz Chirp Reference

il —
. i
E
8.
0 05 1 1 5 2 25 3
Time [s]
Fig. 2. The chirp reference with the amplitude of 100 mm

and a maximum frequency component of 100 Hz.

the tracking error at (j + 1)th iteration conducted by the
learning law Eq. 14 becomes:

Ey1(67) = R(e) — G(e)Uza(e) — D) (27)
= [Ej(ej;)&g(e]w)1Ej<eﬂ'“> (28)
Define
_ Ej(e’Y) + D(e*)
Kji= R{e™) (29)
then
Ejn(e’) = ki Ej(e¥) (30)
Therefore,
|Bj1(e)] < [r5]| Ej(e)] (31)

To guarantee the tracking error is monotonically decaying,
the following condition must be satisfied:

_ 1 Bj(e’*) + D(e7)
|’%j| T | R(ej“’)
Hence the necessary condition for the monotonic conver-
gence of learning law Eq. 14 is:

| <1 (32)

|R(e7)| > | E;(e7*) + D(e'))] (33)

Since
B (7)) + 6 > | B; ()] + |D(e™)] > |E;(e) + D(e7)
(34)

If the NSR condition Eq. 25 is hold, the monotonic
convergence of updating law Eq. 14 is guaranteed.

From Theorem 2, the learning threshold to maintain
the stable learning at each pn iteration can be derived.
Theorem 2 implies if the learning threshold (Eq. 25) is
set, the tracking will be shut down when the frequency
components do not reach the threshold. However, since
the rest iterations use time-reversal based ILC to reduce
the tracking error, these frequency components can still
be learned. Such a dual-mode learning not only provides
a more robust learning algorithm than MFIIC, but also
achieves better steady-state tracking performance com-
pared to [de Rozario and Oomen (2019)].

4. SIMULATION RESULTS
4.1 Simulation Set-up

To verify the effectiveness of the proposed algorithm,
a numerical example of the system G(z) is performed.
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Convergence of the Tracking Error (no disturbance)
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Fig. 3. The convergence of the ILC tracking error. (a) The
case with no output disturbance. (b)The case with the
output disturbance d(k) € N(0,1).

As mentioned previously, G(z) is pre-stabilized, and the
system applied in the simulation is

Glz) = 0.2(z — 0.9)(z — 0.995)
~ (2 +0.1803)(22 — 1.9822 + 0.9824)

(35)

The chirp signal (linear swept-frequency cosine) is chosen
as the reference trajectory in the simulation. Here the chirp
trajectory with the amplitude of 100 mm and a maximum
frequency component of 100 Hz is applied as the illustrated
example in this paper, as shown in Fig. 2. Note that to
reduce the influence of the frequency leakage as pointed
out in Sec. 2, the chirp reference is padded with sufficient
long zeros on the both ends.

To compare the performance of each model-free ILC, there
are 4 cases are performed, each case is performed the
updating law for 1000 iterations, and all the initial control
inputs are set as ug(k) = r(k). The first case is to conduct
the time-reversal based ILC, where Lo(z) = oG*(z),
a = 0.1 is chosen; the second case is to conduct the
MFTIIC; the third case is to apply the NLIIC [de Rozario
and Oomen (2019)] to enhance the robustness of MFIIC;
and the fourth case is to perform the proposed algorithm,
where the initial learning filter Lo(z) is same as the case
1, and the updating period n = 5, i.e., the acceleration
updating occurs at 5th, 10th,..., 1000th iterations.

4.2 Ideal Case Without Output Disturbance

Consider the ideal case, where the output disturbance
is neglected in this section. The only factor impacts
the unideal learning for the disturbance-free case in the
simulation is the frequency-leakage problem as pointed out
in section 2.

Fig. 3(a) shows the error convergence of each learning law
with no output disturbance. From the simulation result,

Convergence of the Tracking Error (with large disturbance)

120 Time-reversal based
MFIIC

'E NLIIC
£ "o Proposed
2 100
)
2
s 90

80

10° 10' 102 10°
iteration number

Fig. 4. The convergence of the ILC tracking error when
the output disturbance d(k) € N(0,80). Both MFIIC
and NLIIC do not converge.

Tracking Error in the Steady State (no disturbance)
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0.02+
E
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(a)

Tracking Error in the Steady State (with disturbance)

Error [mm]

0 0.5 1 1.5 2 25 3
Time [s]

(b)

Fig. 5. The ILC tracking error in steady-state. (a) The
case with no output disturbance. (b) The case with
the output disturbance d(k) € N(0,1).

it can be observed the convergence rate of time-reversal
based ILC is the slowest. The convergence rate of the
proposed learning law is accelerated every 5 iterations
compared with time-reversal based approach, hence the
learning rate is further improved. Although the conver-
gence rate of MFIIC is faster than time-reversal based ILC,
however, the unpredictable learning transient may appear
in some iterations. NLIIC solve the robustness issue of
MFIIC, however, the tracking is limited by the adaptive
learning gain, hence the tracking performance in steady-
state is much worse than MFIIC and proposed algorithm.

On the other hand, although the convergence rate of
the proposed learning law is slower than MFIIC and
NLIIC, however, the learning transient is improved by
avoiding the noisy signal division. Moreover, the proposed
algorithm provide better tracking performance in steady-
state compared to NLIIC. From Fig. 5(a), it can be
observed the NLIIC is suffered from the influence of
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Table 1. The tracking error obtained from
different methods

No Disturbance With Disturbance

Method RMSE MaxE | RMSE MaxE
[mm] [mm] [mm] [mm]

Time-reversal 2.33 6.13 2.54 8.15
MFIIC 1.64e-06  1.75e-06 1.24 9.61
NLIIC 0.00410 0.0339 1.22 13.8
Proposed 6.25e-06  1.64e-05 1.12 4.52

frequency leakage problem. The dual-mode learning of
the proposed algorithm further reduces the tracking error
caused by the frequency leakage, hence the steady-state
performance is improved. The RMS error and maximum
error of each learning law at the 1000th iteration with no
output disturbance is shown in Table 1.

4.8 Output Tracking with Trial-variant Disturbances

Consider the trial-variant normally distributed random
time sequences (the MATLAB function: randn) are ap-
plied as the output disturbances, the tracking result of
each model-free learning law is shown in this section.

Fig. 3(b) shows the error convergence of each learning
law with the output disturbances, where the standard
deviations of the disturbances are 1 mm and the mean
values are 0 mm (i.e., d(k) € N(0,1)). From the simulation
results, it can be seen the convergence rate of the proposed
algorithm is dramatically improved compared with time-
reversal based ILC, and the learning transient is also
reduced, hence the robustness is improved. Moreover,
the tracking performance at the 1000th iteration of the
proposed algorithm is supreme, as shown in Table 1.

To show the robustness and the steady-state performance
of the proposed algorithm outperforms that of the MFIIC
and NLIIC, consider the extreme situation that the output
disturbances with the standard deviations of 80 mm and
the mean values of 0 mm (i.e., d(k) € N(0,80)) are
applied to track the 100 mm chirp reference, as shown
in Fig. 4. Although NLIIC provides a smoother learning
curve than MFIIC approach, however, the tracking error
doesn’t converge to a lower level. On the other hand, since
the proposed algorithm is based on time-reversal based
ILC, the robustness and the limited steady-state tracking
performance problems can be remedied.

From Fig. 5(b), it can be observed the maximum tracking
error of MFIIC and NLIIC occur at around 2.5 sec, i.e.,
the high-frequency components of the chirp reference. The
proposed algorithm not only further reduces the tracking
error in high-frequency, but also provides a more robust
and flexible updating law compared with MFIIC and
NLIIC, hence the tracking performance is improved if the
output disturbances are considered.

5. CONCLUSION

In this paper, a novel model-free iterative learning control
algorithm is proposed. Applying the recursive relation
of the ILC control updating law, the proposed method
accelerates the learning rate of the time-reversal based
ILC every n € N iterations. The stability and robustness
of the proposed algorithm is analyzed and discussed.

According to the numerical simulation, the robustness and
tracking performance of the proposed method outperforms
that of the other model-free inversion-based ILC. The
implementation of the proposed algorithm is left as the
future work.
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