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Abstract: This paper proposes a cascade control strategy for multi-rotor unmanned aerial
vehicle, where the inner-loop system is regulated by a sliding mode controller with disturbance
observer and the outer-loop controller is a PID controller. Operational constraints are incor-
porated in the implementation for safety protection of the electronics. Experimental results
are obtained to demonstrate the efficacy of the proposed design in comparison to a traditional
cascade PID control system.
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1. INTRODUCTION

Nowadays, unmanned aerial vehicles (UAVs) have been in-
creasingly developed in many applications such as remote
data collection, filming, monitoring, and other civilian
and military areas. Multirotor UAVs with more than four
rotors, such as hexacopters and octocopters, are able to
generate better flight stability with heavier payload than
quadcopters in a general term. However, the main draw-
back with extra rotors is that the flight time is reduced
due to the increase in drone size and weight. With the
consideration of all the above-discussed facts, hexacopter is
a good compromise between performance and flight time,
see Alaimo et al. (2013).

In recent years, many control methods have been devel-
oped on multirotor UAVs, such as PID and LQR control,
see Kuantama et al. (2018), Poksawat and Wang (2017),
Wang (2020), model predictive control (MPC), see Ganga
and Dharmana (2017) Ligthart et al. (2017) and many
other linear control methods. Although there are more
and more advanced linear control methods being proposed,
PID is still widely popular in UAV applications due to
its simplicity and practicality, see Mystkowski (2013). A
self-tuning PID design has been introduced to reduce the
design workload, see Babu et al. (2017). An auto-tuning
design on a GPS-based antenna tracker has been proposed
using Fuzzy PID logic, see Riyandi et al. (2018). A fuzzy-PI
controller has been developed for autonomous moving tar-
get tracking, see Rabah et al. (2019). Due to the system’s
nonlinearity, nonlinear control methods have gained an in-
creasing interest in recent years. Sumantri has developed a
least square method based sliding mode control (SMC) for
energy saving by chattering reduction, see Sumantri et al.
(2016). Orosco has presented a parameter tuning method
for SMC to improve the performance, see Orosco et al.
(2018). Alkamachi has tried the mixed approach between
the nonlinear SMC and linear PD control on overactuated

quadcopter, see Alkamachi and Erçelebi (2019). However,
all the aforementioned nonlinear control papers on UAVs
are focused on the simulation results. Only a few papers
have discussed the experimental results, see Elhennawy
and Habib (2018) and see Garcia et al. (2019).

There are also many challenges during the multirotor
controller design. The main purpose of the controller is
to achieve the desired performance in order to satisfy user
requirements. Due to several uncertainties problems in-
cluding unknown actuators and sensor dynamics, varying
nonlinear parameters and other measurement errors, it can
be very difficult to build simulation platforms representing
UAVs. Because of all these difficulties, a cascade control
structure is introduced for attitude control together with
automatic controller tuning strategies, which reduces the
risk and the workload, see Tesch et al. (2016) and Wang
(2020).

This paper differs from the existing control systems de-
veloped for the multi-rotor UAVs. It uses a cascade con-
trol system architecture, in which the inner-loop control
system deploys sliding mode control with disturbance es-
timation that has been developed recently by the authors
(Wang et al. (2019)), and the outer-loop control system
utilizes a PID controller with an automatic tuning func-
tion. The advantages of the sliding mode control with
disturbance estimation lead to a much faster inner-loop
dynamic response in comparison to a traditional PID con-
trolled system and an anti-windup mechanism for safety
protection of the electronic components in the event of
control signal exceeding its operational limits.

This rest of the paper is organized as follows. The math-
ematical model of a hexacopter is introduced in Section
2. Section 3 explains the cascaded control system with
mixed SMC and PID controllers. Experimental results are
discussed in Section 4. Section 5 concludes the research
findings.
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2. MODELLING OF HEXACOPTER

In this section, the mathematical model of hexacopter is
represented. The hexacopter under study comprises of six
individual rotors configured in 60 degrees apart. In order
to maintain the balance of hexacopter, half of the rotors
need to rotate in clockwise while the other halves have to
rotate in the anti-clockwise direction, as shown in Figure
1.

Fig. 1. Hexacopter Frame

where motors Mi (i = 1, 2, 3, 4, 5, 6) will generate a total
upward thrust vector against z axis. The hexacopter sys-
tem also has six degrees of freedom (DOF) in 3 dimensions.

For the purpose of attitude control of a hexacopter, its
dynamics consist of three subsystems: the subsystem for
actuators, the subsystem based on body coordinate frame
and the subsystem based on world coordinate frame.
Actuators
The input variables for the actuators are the directional
torques τx, τy and τz along the x, y, z, and the output
variables are the velocities of the six rotors (u1, u2, . . .,
u6). The relationships are determined by the solutions of
the following linear equations:
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where l is the distance from the Center-of-Gravity of the
UAV to the motors, and d is the drag coefficient. Clearly
the subsystem for the actuators has only steady-state
relations. When the dynamics (1) are investigated, it is
found that the average motor force that is imposed by the
motors does not influence the sum of torques that act on
the hexacopter’s body. For example, increasing all motor
forces does not affect the hexacopter’s attitude behaviour
when the hexacopter is designed with a balanced structure.
For that reason, Equation (1) can be rewritten as,[
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in which vi =

∑6

i=1
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6 such that,

6∑
i=1

ūi = 0. (3)

When the hexacopter’s dynamics are investigated even
more thoroughly, it is seen that the two motors in the so-
called motor pairs (1, 4), (2, 5), and (3, 6) impose opposite

body torques in all direction. The motors in each motor
pair are located at opposite sides of the hexacopter.
Therefore, only the difference in force between each of
these two motors has an effect on the hexacopter’s attitude
behaviour. For that reason, it is useful to impose the
following relation for the motor forces,

ū1 = −ū4

ū2 = −ū5

ū3 = −ū6.

(4)

With this definition, the total motor force can be defined
independently from the attitude behaviour. Therefore, the
motor forces can be controlled as such that these are
on average at an optimal distance from their saturation
boundary. This increases the hexacopter’s stability espe-
cially during intense manoeuvring.

By substituting the motor speed constraints proposed by
(4) into (2), we obtain the relationships for actuators are
described by the linear equations (Ligthart et al. (2017)),
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For calculation of the rotors’ speed, once the control
signals τx, τy and τz determined, the following equation
is used, [
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For safety protection, a maximum rotor speed umax is
imposed in the attitude control problem, which, in turn, is
converted into the maximum values for τx, τy and τz via
equation (5). As a result, the following operational con-

strains are imposed for the variables τmaxx = 2
√

3lumax,
τmaxy = −2lumax and τmaxz = 2dumax.
Subsystem based on the body coordinate frame
The input signals for the subsystem based on the body
coordinate frame are τx, τy and τz and the output signals
are rotational velocities, p, q and r in the body coordi-
nate frame. The dynamic relationship is governed by the
following differential equations:[

ṗ
q̇
ṙ

]
=

[
(Iyy − Izz)qr/Ixx
(Izz − Ixx)pr/Iyy
(Ixx − Iyy)pq/Izz

]
+

[
τx/Ixx
τy/Iyy
τz/Izz

]
. (7)

where Ixx, Iyy and Izz stand for the inertial moments
about x, y and z axes. It is clearly seen that these are
bilinear systems.
Subsystems based on the world coordinate frame
This is the coordinate frame with variables that define
the attitude of a hexacopter. The input signals to the
subsystems are the rotational velocities, p, q and r in the
body coordinate frame, and the output signals are three
Euler angles: roll φ, pitch θ and yaw ψ. The mapping
of between the input and output variables is given the
following differential equations:

φ̇θ̇
ψ̇

 =

RRPY︷ ︸︸ ︷[
1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)

][
p
q
r

]
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Attitude control
For attitude control of an unmanned aerial vehicle, the
outputs are the roll and pitch Euler angles and yaw angular
velocity, φ, θ and r respectively. The control objective
is that for given reference signals φ∗, θ∗ and r∗, the
roll, pitch Euler angles and yaw rate will follow their
respective reference signals and reject disturbances caused
by turbulence and the payload of the UAV. The maintain
stable flight, the common reference signals are chosen to
be φ∗ = 0 and θ∗ = 0 while r∗ is manually determined and
transmitted through a remote transmitter.
Cascade control structure
The three subsystems mentioned above naturally yield to
the choice of cascade control structure for the hexcopter.
Figure 2 shows the cascade control structure used in this
paper. From this figure, it is seen that the outer-loop
control system achieves the final control objective with
two PID controllers to generate the control signals, which
are also the reference signals to the inner-loop systems p∗

and q∗. Together with r∗, three sliding mode controllers
with disturbance observer are used to generate the control
signals τx, τy and τz. With the relationship between the
rotor speed and the control signals τx, τy and τz, the
reference signals to the first three rotors are calculated
based on the linear equations described by (6), and the
rest of the three rotors’ speed equals to the first three but
with an opposite sign.

Fig. 2. Cascaded Attitude Control Structure

3. INNER-LOOP AND OUTER-LOOP CONTROL
SYSTEM DESIGN

This section describes the cascaded control configuration
of the attitude control system, as shown in Figure. Further-
more, from (7), it is clearly seen that the inner-loop has
coupled nonlinearity and integrator dynamics. In order to
stabilize the hexacopter, a mixed PID and SMC cascaded
structure is chosen. The inner-loop controls the angular
rates by using an improved SMC controller to deal with
the system nonlinearity while the outer-loop controls the
Euler angles by choosing an autotuned PID method.

3.1 Angular Rates Loop Design

Due to the cascaded control configuration, the reference
signal to the inner-loop controller is the control signal of
the outer-loop controller and the feedback signal is directly
coming from the inner-loop output signal, as shown in Fig-
ure 2. Comparing with the traditional PID controller, the
proposed SMC controller with estimated observer design
is more robust in handling the system nonlinearities, un-
known factors and disturbances, see Wang (2020). Because
of the symmetric structure in hexacopter, the controller
parameters of roll and pitch angles can be the same.

In order to design the SMC controller, the differential
equation of Euler angle φ can be expressed as,

φ̇(t) = b(uφ(t) + dφ(t)) (8)

where uφ(t) and φ(t) are input and output variables, b =
1
Ixx

depends on hexacopter, and dφ(t) is the disturbance.

Here, the linearization of the nonlinear model (7) leads to
the integral linear model (8). Assuming that disturbance
dφ(t) is a constant turbulence, we have:

ḋφ(t) = 0

Assuming the first order SMC control equation is,

ũφ(t) = −K1signφ(t) (9)

where K1 > 0, ũφ(t) = uφ(t) + dφ(t).

Since the hexacopter has coupled nonlinear dynamics, a
first-order SMC controller is not able to deal with all un-
known parts without having input saturation. Therefore,
it is necessary to design an extra observer to estimate and
compensate these nonlinearities in order to make the mag-
nitude of the controller output smaller. The disturbance
dynamics can be written as follows by rearranging (8),

bdφ(t) = φ̇(t)− buφ(t). (10)

Let us define the estimated disturbance signal as d̂φ(t).

The error between dφ(t) and d̂φ(t) can be expressed as,

εφ(t) = bdφ(t)− bd̂φ(t) = φ̇(t)− buφ(t)− bd̂φ(t). (11)

The unknown disturbance dφ(t) can be estimated by the
proposed observer as,

dd̂φ(t)

dt
= K2(φ̇(t)− buφ(t)− bd̂φ(t)) (12)

where the observer gain K2 = α2

b is selected to ensure the
convergence of the disturbance estimation error

d̃φ(t) = dφ(t)− d̂φ(t) (13)

Now, the control signal is computed using,

uφ(t) = −K1signφ(t)− d̂φ(t). (14)

To implement the proposed algorithm to the hexacopter,
there is a derivative term in the equation of output signal,
as shown in (12). In order to eliminate this term, an
intermediate variable ẑφ(t) is defined as,

ẑφ(t) = d̂φ(t)−K2φ(t). (15)

As Wang (2020), the computation of the disturbance
estimation becomes:
ẑφ(ti+1) =

ẑφ(ti)− (K2bẑφ(ti) +K2
2bφ(ti) +K2buφ(ti))∆t.

(16)

Finally, the estimated disturbance signal at sample ti
becomes

d̂φ(ti) = ẑφ(ti) +K2(φ(ti)− φ∗(ti)). (17)

Then, the control signal equation can be written by

uφ(ti) = −K1sign(φ(ti)− φ∗(ti))− d̂φ(ti) (18)

while d̂φ(ti+1) need to be updated in each sample.

Because the integral action is introduced through the
estimation of a constant, constraints can be naturally
incorporated in the implementation of the sliding mode
control.
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3.2 Outer-Loop Controller Design

Once the inner-loop sliding mode controllers are imple-
mented, the outer-loop PID controllers are to be designed.
The parameters to be determined for a PID controller
are the proportional control gain Kc, the integral time
constant, τI and derivative gain τD. These parameters are
auto-tuned using the auto-tuner presented in Wang (2020)
and the implementation of the controllers is performed
using velocity discrete-time form with anti-windup mech-
anism. More details of the auto-tuner and the implemen-
tation can be found in Wang (2020).

An experimental feedback relay test is designed for hexa-
copter so that the input and output data can be collected
to estimate its dynamics. Because the outer-loop system
has integrating dynamics, a known gain Kt is chosen to
maintain the overall stability such that the system output
exhibits a sustained oscillation. Figure 6 shows the testing
results of the relay control system.

The closed-loop frequency response can be approximated
by the input and output data obtained from the relay test
as,

T (jω1) =
KtG(jω1)

1 +KtG(jω1)
(19)

where G(jω1) is the open-loop frequency response at the
fundamental frequency ω1. A Fourier transform analysis
can be applied here. According to (19), the closed-loop
frequency response T (ejω) can be expressed as,

T (ejω) =
1

Kt

T (ejω)

1− T (ejω)
(20)

where ω = 2π/T and T is the oscillation time period.

Assuming the outer-loop system dynamics equal to an
integrating function with a time delay model, we can write

G(s) =
Kpe

−ds

s
(21)

where,

Kp = ω |G(jω)|

d = − 1

ω
tan−1 Image(jG(jω))

Real(jG(jω))
.

(22)

Those two coefficients are used to calculate the PID
controller parameters, see Wang.L (2000). The desired
controller parameters are computed by the specified phase
margin and gain margin as,

Kc =
K̂c

dKp

τI = τ̂Id

τd = τ̂dd

In addition,

K̂c =
1

0.5080β + 0.6208

τ̂I = 1.9885β + 1.2235

τ̂D =
1

1.0043β + 1.8194

(23)

where β is the performance parameter that leads to the
desired time constant as βd, phase margin and gain margin
of the system, see Wang (2020).

4. EXPERIMENTAL RESULTS

The hexacopter onboard microcontroller is operated with
a sampling interval of ∆t = 0.008(sec). Firstly, the inner-
loop system is operated with the improved SMC controller,
followed by the outer-loop autotuned PID. Due to the
symmetrical structure of the hexacopter, roll and pitch
axis are allowed to share the same controller parameters.
A comparison study will be performed under the extra
wind turbulence between the proposed method and the
traditional cascade PID control method. All input refer-
ences are programmed as groups of step-change signals
including roll, pitch, and yaw.

4.1 Angular Rate Loop

In Comparison to the traditional PID controllers for the
inner-loop system, the proposed SMC controllers are more
robust for handling the system nonlinearity and minimiz-
ing the design workload. The controller gain (K1) of roll
and pitch axes are selected as 0.5. The observer gain (K2)
is chosen as 0.2. As mentioned before, the yaw axis does
not have an outer-loop. The SMC and observer gains of
yaw axis are Kyaw

1 = 2.44 and Kyaw
2 = 0.92. According

to Figure (3)-(5), the inner-loop is perfectly tracking its
reference.
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Fig. 3. The Response of Roll Rate with SMC controller
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Fig. 4. The Response of Pitch Rate with SMC controller
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Fig. 5. The Response of Yaw Angle with SMC controller

4.2 Outer Loop Control System

Once the inner-loop is tuned, the outer-loop controller
parameters are selected by an automatic tuning method.
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For the inner-loop feedback relay test, a known gain Kt is
selected as 1 and the relay amplitude value is selected as
30 degrees (ε = 30). The amplitude of hysteresis has to be
smaller than the value of relay amplitude, therefore, it has
been chosen as half of the relay amplitude.

The input and output sustained oscillation are shown in
Figure 6
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Fig. 6. Outer Loop Relay Test

The closed-loop frequency response is calculated from the
estimated data

T (ejω1) = −0.1029− 0.3324i

where the fundamental frequency ω1 = 2π/(N∆t). Then
the estimated frequency response of the outer-loop is

T (ejω) = 0.0198− 0.3631i.

We obtained the estimated outer-loop dynamics equation
as

G(s) =
0.9675e−0.108s

s
.

Based on (22), it is very easy to calculate the outer loop
controller parameters, such as Kc = 3.61, τI = 0.2, and
τD = 0.0019.
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Fig. 7. The Response of Roll Angle
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Fig. 8. The Response of Pitch Angle

From Figure 8 and Figure 7, it is obviously seen that
the hexacopter is capable of following the desired refer-
ence signals. Those overshoot parts are produced by a
programmed rapidly step change which supposes be the
way slower in manual operating conditions. In addition,
the three Euler angles are able to maintain their stability
during the real flight test.

Table 1. MSE with different controllers

Controllers Attitude Angles (MSE)

Proposed Method 9.1661
Traditional PID 21.4221

4.3 Comparison Study Under External Wind Turbulence

The mean squared error(MSE) values are evaluated with
the performance of the proposed control algorithm. The
external wind turbulence is generated by a high-velocity
floor fan in which the rotating speed is 1350 RPM. The
input reference signal is programmed with anti-windup
constraints at 15 degrees. The MSE values are calculated
from the following form,

MSE =
1

n

n∑
1

(Response−Reference)2 (24)

where n is the data length.

The proposed method includes an improved SMC con-
troller in the inner loop and an automatic tuning PID
controller in the outer loop while the traditional PID has
a cascaded PID controller.

Table. 1 represents the MSE values of the proposed
method and the traditional PID method. Table. 2 rep-
resents the corresponding the controller gain values. It is
also clearly seen that the proposed method is tracking the
reference signal better than traditional PID, as shown in
Figure 9. According to Table. 1 and Figure 9, this proposed
method is much stronger than the traditional PID in the
presence of external wind turbulence.

Table 2. Controller Parameters

Proposed Method Traditional PID

K1 = 0.5 Kin
c = 0.11

K2 = 0.2 τ inI = 0.65
Kc = 3.61 τd = 0.009
τI = 0.2 Kout

c = 1.9
τd = 0.0019 τoutI = 0.7037

nan τoutd = 0.0526
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Fig. 9. Controller Comparison

4.4 Gain Variations

In the SMC control with disturbance observer, there are
five cases of K1 applied in the inner-loop controller varying
from 0.2 to 0.8 as shown in Table. 3. From Table. 3, the
hexacopter is generated the smallest MSE value (MSE =
9.1661) when K1 = 0.5.

5. CONCLUSION

This paper discusses a mixed approach that consists of an
improved SMC controllers and autotuned PID controllers
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Table 3. Controller Gain Variations

SMC Gains Attitude Angles (MSE)

K1 = 0.8 9.7441
K1 = 0.6 9.3796
K1 = 0.5 9.1661
K1 = 0.4 9.9129
K1 = 0.2 10.0205
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Fig. 10. Gain Comparison

where the disturbance observer implementation and exper-
imental relay test are demonstrated. Experimental results
have shown that the proposed method stabilizes the hex-
acopter with attitude tracking.
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