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Abstract: This paper investigates the scheduling problem over a delayed channel. Different
from most existing documents, a novel hybrid model is proposed which combines both delay
and packet-loss to minimize the error covariance update at the estimator side. With the help
of this setup, a co-design problem between power consumption and estimation performance is
considered. We first derive out a globally optimal off-line schedule. Moreover, an on-line schedule
based on a designed threshold is proposed to further enhance the performance, which is aided
by feedback information. Comparisons between on-line and off-line strategies are illustrated by
numerical simulations, which has shown the superiority of on-line one to the off-line one.
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1. INTRODUCTION

The past few decades have witnessed the significant im-
provement in communication technologies, which leads to
a wide utilization for wireless sensor networks in control
systems. However, due to the limited wireless resources of
sensors, i.e., power or bandwidth Lyu et al. (2018), Chen
et al. (2015), Zhu et al. (2018), and etc, the quality of com-
munication can be seriously affected. This may result in
time-delay or even packet-loss, which indirectly degrades
the performance of the entire system. Consequently, it is
a key and urgent task to design a suitable transmission s-
trategy to ensure the performance of the system, especially
for resource-limited cases.

Numbers of works have been accomplished on the trade-
off between estimation performance and communication
resources in time or state domains. For example, in Shi
and Zhang (2012), an optimal time-triggered transmission
schedule of two Markovian systems is proposed under
bandwidth constraint. Scheduling problem of an energy
harvesting sensor is illustrated in Li et al. (2017), where
an approximately analytical form of optimal solution is
presented using dynamic programming algorithm. Qi et al.
(2016) have focused on the case over a time-varying
channel, where an optimal scheme is presented in a closed-
form. Li et al. (2018b) have discussed the scheduling
problem over relay-assisted wireless control systems, where
two different on-line strategies are designed with satisfying
performance. He also investigates the scheduling problem
over multiple power levels in Li et al. (2018a), where a
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dation of China (NSFC) under 61603251, 61773257, 61828301 and
61922058. Natural Science Foundation of Shanghai Municipality
under the grant 18ZR1419900 and 19XD1421800.

hierarchical event-triggered on-line scheduling scheme is
proposed. The above literatures mainly emphasize the
issues of possible packet-loss over data transmissions.
Other kinds of trade-off problems over lossy channels are
formulated via co-design manners in Gatsis et al. (2014),
Dey et al. (2017) and etc.

In the practical scenes, transmission delays often occur
in wireless communications, which is a non-negligible fac-
tor existing especially in resource-limited scenarios. Some
literatures have explored the scheduling problem under
delayed channel setup. For example, in Li et al. (2019),
a latency-aware virtual network embedding method is
proposed for IWNs, which guarantees the deadlines for
various industrial networks. In Shi et al. (2011), scheduling
problem over a delayed channel with one time-step delay
is investigated. In Ren et al. (2018), multi-hop scheduling
based on delayed network is investigated with the upper
and lower bounds of cost provided. However, how to ob-
tain and analyze the cost with a higher accuracy is an
intractable task under both delayed and power limitations.
Therefore, in this paper, we accomplish a wide research
on delayed networks for the power-constrained cases Our
contributions can be summarized as the following two
folds:

• A power-constrained delayed transmission mod-
el: We build up a more general model that combines
both time delay and packet drop-out, which mini-
mizes the update of covariance at the same time.
• Off-line and on-line strategies design: Under our
proposed delayed model, we design two different kinds
of scheduling schemes in infinite-time horizon, i.e., off-
line scheduling and on-line scheduling. Especially, for
the on-line scheduling scheme, we give the determina-
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tion process of proposed selection probabilities. Based
on these conclusions, we figure out the the optimal
solution of our co-designed problem in a closed-form,
where how the weighed parameter influences the final
results is analyzed.

The rest of this paper is organized as follows. In section
2, the proposed delayed models and main interests of
this paper are presented. Design of both off-line and on-
line scheduling schemes are shown in section 3, based on
which, the optimal solutions are derived out for the off-line
and on-line cases, respectively. Numerical simulations and
comparisons are accomplished in Section 4.

2. PROBLEM FORMULATION

In this paper, we consider a standard linear time-invariant
system with the dynamics described as:

xk+1 = Axk + wk, (1)

where A represents the state transfer matrix of system, xk
is the state of the system at time k, wk is a standard white
Gaussian noise with a known distribution wk ∼ N (0, Q).

The observation equation of system is formulate by:

yk = Cxk + υk, (2)

where C is the measurement matrix, yk is the measurement
at time k, υk is another standard white Gaussian process
with a known distribution υk ∼ N (0, R).

Two pairs
(
A,
√
Q
)
and (A,C) are assumed to be con-

trollable and observable, respectively. The conventional
Kalman algorithm is run to obtain the optimal estimate
x̂sk, i.e.,

x̂s−k+1 = Ax̂sk,

P s−
k+1 = AP s

kA
T +Q,

Kk+1 = CP s−
k+1

(
CP s−

k+1C
T +R

)−1
,

P s
k+1 = (I −Kk+1C)P

s−
k+1,

x̂sk+1 = x̂s−k+1 +Kk+1

(
yk+1 − Cx̂s−k+1

)
.

The following two operators are defined on S+n → S+n to
simply denote the whole Kalman iterations:

h (X)
∆
= AXAT +Q,

g (X)
∆
= h(X)− h(X)CT

[
Ch(X)CT +R

]−1
Ch(X).

h(X) can be viewed as the prediction phase of Kalman
filter, and g(X) can be viewed as whole phase of Kalman
filter. In other words, when yk is unavailable, g (X) is
iterated; when the yk is unavailable, h (X) is iterated. The
steady-state error covariance of Kalman filter, denoted as
P , can be obtained by the equation g (X) = X.

After the sensor obtains x̂sk, it will send the estimate
over a delayed network through multiple power levels.
For the convenience of presentation, we denote dsk as
the sensor transmission delay at time k. It is assumed
that there are two optional power levels: the higher level
∆, and the lower level δ. When ∆ is used, the perfect
channel is used to transmit thus with no time delay, i.e.,
dsk = 0; however, when δ is used, in order to enhance the
arrival probability, the time varying packet-delay channel
is used with stochastic delays, where numbers of relays

Fig. 1. The basic block diagram of state estimation over a
time-delaying network.

or gateways are deployed as described in Shi and Zhang
(2012), i.e.,

dsk =


0, w.p. λ0,
1, w.p. λ1,
...

...
∞, w.p. λ∞,

(3)

where w.p.means “with the probability of”, dsk denotes the
transmission delay. However, at the estimator side, in order
to define the delay dk, we propose the following principle.

The Minimum Principle: In order to minimize the update,
at the estimator side, when there are more than one pack-
ets arrived simultaneously at time k, dk can be determined
by

dk , argmin
ds
i

{i+ dsi = k|k − dk−1 ≤ i ≤ k} . (4)

We always regard the remarkably large delays as packet-
loss in the practical scenes. Thus we introduce a parameter
d to represent the upper-bound of time delay. We conse-
quently denote the packet-loss at the estimator side as
dk =∞.

At each time of transmission, the sensor will decide on
which power level is used to transmit packet. Denote

θ = {ωk}T−1
k=0 as the transmission power sequence used

at each time. We have the state iteration as

x̂k =

{
Aix̂sk−i, dk = i,
Ax̂k−1, dk =∞. (5)

with the covariance update

Pk =

{
hi
(
P
)
, dk = i,

h (Pk−1) , dk =∞. (6)

The main goal of our paper is to design a proper transmis-
sion policy to optimize the following co-design problem in
a infinite-time scale, i.e.,

J (θ) = lim
T→∞

T−1∑
k=0

Tr {E [Pk]}+ µωk, ωk ∈ {δ,∆} . (7)

where µ ≥ 0 is the introduced factor which balances
the performance of estimation and the cost of power
consumption.

3. STRATEGIES DESIGN

In this section, we will design our proposed optimal strate-
gies from two different perspectives, i.e., the off-line and
on-line schedules, where arriving feedback information is
available for sensor to make decisions or not, respectively.

It is noticed that original problem (7) can be converted
into (8) as follows:
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J (θ) = min
ω

lim
T→∞

1

T

T−1∑
k=0

Tr {E [Pk]}+ µω,

s.t. lim
T→∞

1

T

T−1∑
k=0

ωk = ω, ω ∈ [δ,∆] .

(8)

where the parameter ω is defined as an average power
budget over an infinite-time horizon. Besides, the following
definitions are given.

• State: We define i as the state Pk = hi
(
P
)
, i =

0, 1, 2, · · · .
• Steady-state probability: Denote πi as the steady-
state probability of state hi

(
P
)
; denote π (·) as the

steady-state probability of a specific state (·)
• Transition probability: Denote π (m,n) as the transi-
tion probability from the state n to m.
• Equivalent drop-out length: Define τk as the equiva-
lent drop-out length, i.e.,

τk ,
{
dk, dk <∞,
τk−1 + 1, dk =∞.

3.1 Model of Delay in Time Domain

In order to derive out the delayed model. We first provide
the following lemma.

Lemma 1. For the proposed minimum principle, we have
the transition relationship with respect to different values
of delay are

• For i ≤ d and j ≤ d, we have

π (dk+1 = j, dk = i) = λj ,

π (dk+1 = i+ 1, dk = i) = 1−
∑i

j=0
λj .

(9)

• For dk =∞ and j ≤ d, we have

π (dk+1 = j, dk =∞) = λj ,

π (dk+1 =∞, dk =∞) = 1−
∑d

j=0
λj .

(10)

where λ0, λ1, · · · , λd is defined in (3).

Proof. According to the minimum principle, we have

π (dk+1 = j, dk = i)

=
Pr
(
dsk−j+1 = j

)
Pr
(
ds
k−j+1

≥ j
) ∗

Pr
(
dsk−j+2 ≥ j

)
Pr
(
ds
k−j+2

≥ j − 1
) ∗ · · · ∗

Pr
(
dsk ≥ 1

)
Pr
(
ds
k
≥ 0
)

=Pr
(
dsk−j+1 = j

)
= λj ,

where the second equality is due to the independence of
distribution dsk for different instants, thus the first case is
proved. Similarly, the second case follows as long as we
take the upper-bound into account, which completes the
proof.

Lemma 2. For the sequence
{
Hi
(
P
)}∞

i=1
, for ∀i ≤ j, it

always holds that

Tr
[
Hi
(
P
)]
≤ Tr

[
Hj
(
P
)]
. (11)

where Hi
(
P
)
, E [Pi|ω0 = ∆, ω1 = ω2 = · · · = ωi = δ].

Proof. Rewrite Hi
(
P
)
as

Hi
(
P
)
= ci,0P + ci,1h

(
P
)
+ · · ·+ ci,ih

i
(
P
)
,

where ci,j denotes the relative coefficient. According to
Lemma 1, it holds that c1,0 < c0,0, c1,1 > c0,1 = 0, and

ci,j = ci−1,j , ci,i−1 < ci−1,i−1, ci,i > ci−1,i = 0 j =
0, 1, · · · , i− 2. Therefore, it follows that

Tr
[
Hi
(
P
)
−Hi−1

(
P
)]

= ci,iTr
[
hi+1

(
P
)
− hi

(
P
)]
≥ 0,

which completes the proof.

3.2 Optimal Off-line Strategy

Lemma 3. An optimal off-line schedule θ∗off under power
constraint ω over infinite-time horizon can be periodically
presented as follows:

θ∗off =

{
θ1∗off, w.p. p∗,
θ2∗off, w.p. 1− p∗ (12)

where θ1∗off and θ2∗off are defined as θ∗off: θ
1∗
off , (∆, δl), and

θ2∗off , (∆, δl+1). δx , (δ, · · · , δ) (x times), l =
⌊
∆−ω
ω−δ

⌋
,

p∗ = l + 1− ∆−ω
ω−δ .

Proof. Rewrite θ∗off = ⊕∞
i=1 (∆, δli). For ∀li, lj ≥ 0 (i ̸= j)

and lj ≥ li + 2, it follows that

J (∆, δli) + J
(
∆, δlj

)
− J (∆, δli+1)− J

(
∆, δlj−1

)
=Hj

(
P
)
−Hi

(
P
)
≥ 0,

which implies the property maxi ̸=j |li − lj | ≤ 1, and the
form of θ∗off must satisfy (13). The proof is now completed.

Theorem 4. (Optimal off-line schedule). For different val-
ues of µ, the optimal θ∗off over infinite-time horizon can be
explicitly given as

• For µ ≤ Tr[h(P)]−Tr(P)
∆−δ ,

θ∗off = (∆,∆,∆,∆, · · · ) ,
with ω∗ = ∆.
• For µ ∈ (µi, µi+1],

θ∗off = (∆, δi,∆, δi, · · · ) ,
with ω∗ = 1

i+1 (∆ + i ∗ δ), where l is the same as

that denoted in Lemma 3 and the sequence {µi}∞i=0
is defined as

µi ,
(i+ 1)Tr

[
Hi+1

(
P
)]
− Tr

[
i∑

j=0

Hj
(
P
)]

∆− δ
.

Proof. The proof is omitted because of the limited space.

3.3 On-line Strategy Design

In this subsection, we will discuss a different scheduling
framework, i.e., the on-line policy. For the on-line case,
at each instant, the feedback information can be used to
make decisions, which is shown in Fig. 2.

Aided by this feedback framework, how to design a proper
schedule to switch between different power levels is a
challenging task because of the intractability brought by
the stochastic delay characteristics. Inspired by the idea
of event-triggered scheme illustrated in Demirel et al.
(2019) and Demirel et al. (2018), considering the power
consumption for feedback is regarded to be relative small
Ren et al. (2018), we propose an on-line scheduling scheme
based on a designed threshold, which additionally cut the
communication cost.
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Fig. 2. The framework of on-line scheduling.

Algorithm 1 On-line Scheduling Scheme

Parameters: λ1, λ2, · · · , λd, τk, d, α, β.
Initiation: ω0 = δ, k = 0.

1: τ̃th =

{
τth, Pr (τ̃th = τth) = α,
τth + 1, Pr (τ̃th = τth + 1) = β.

2: while τk ̸= τ̃th do
3: if dk =∞ then
4: τk+1 ← τk + 1, ωk+1 = δ;
5: else
6: τk+1 ← dk, ωk+1 = δ;

7: end if
8: k = k + 1, jump to Line 2;

9: end while
10: ωk+1 = ∆, k = k + 1, jump to Line 1;

Algorithm 1 has clearly shown the main concept of our
proposed scheme, where the parameters τth and τth + 1
represent the thresholds. Moreover, α and β are introduced
triggering probabilities for τth and τth+1, respectively. The
sensor will use δ level to transmit until the value of equiv-
alent length is equal to τth or τth + 1. At the same time,
and feedback signal is transmitted from the estimator to
sensor for the change to ∆. Based on Algorithm 1, the
expect cost can be accurately calculated by the following
analysis.

The whole process can be formulated as a Markovian chain
model. Two different sets of states are defined as follows

ϵi , {Pk =hi
(
P
)
, τ̃th = τth}, i ∈ [0, τth] ,

ψi , {Pk =hi
(
P
)
, τ̃th = τth+1}, i ∈ [0, τth+1] .

Based on this definition, we first derive out an important
proposition that is fundamental in our following analysis.

Proposition 5. For any feasible scheduling scheme that
shares the same power constraint ω, it always holds that

π0 =
1

∆− δ
[λ0∆+ (1− λ0)ω−δ] .

Proof. Consider a feasible schedule θ∗on = (ω0, ω1, ω2, · · · )
with the constraint

∑∞
i=0 πi = 1, due to the transition

relations, π0 can be determined by

π0 =
1

T
lim

T→∞

T−1∑
i=0

Pr
(
Pi = P

)
= Pr

(
Pi = P |ωi = ∆

) limT→∞
∑T−1

i=0 Pr (ωi = ∆)

T

+Pr
(
Pi = P |ωi = δ

) limT→∞
∑T−1

i=0 Pr (ωi = δ)

T

=
1

∆− δ
[λ0∆+ (1− λ0)ω−δ] ,

which completes the proof.

Proposition 5 reveals the fact that π0 is an constant
independent of the specific schedules under an given power
budget, which provides an accessible way to compare
performance between different proposed schedules.

Based on the above proposition, we accomplish our deriva-
tions of J (θon) by the following two different cases. For the

explicit presentation, we introduce the notation λ∞,i , 1−∑i
j=0 λj , and πT as the probability of triggering.

Case 1(τth < d): Because of the transition relations, we
have the equations

π (ϵk) =


απ0, k = 0,

λk

τth−1∑
i=k

π (ϵi) + λ∞,k−1π (ϵk−1) , k = 1, 2, · · · , τth − 1,

λkπ
(
ϵτth−1

)
, k = τth,

and

π (ψk) =


βπ0, k = 0,

λk

τth∑
i=k

π (ψi) + λ∞,k−1π (ψk−1) , k = 1, 2, · · · , τth,

λkπ (ψτth ) , k = τth + 1.

with the solutions provided in the following cases.

• For τth = 0, π1 = 1− π0.
• For τth ≥ 1, we can obtain the solutions of π1 to
πτth+1 recursively, i.e.,

π1 = λ∞,0π0 + (1− π0 − πT )λ1,
π2 = λ∞,1π1 + (1− π0 − π1 − πT )λ2,

...
...

πτth−1 = λ∞,τth−2πτth−2 +

(
1−

τth−2∑
i=0

πi − πT

)
λτth−1

,

πτth = λ∞,τth−1πτth−1 +

(
1−

τth−1∑
i=0

πi − πT

)
λτth ,

πτth+1 = 1−
τth∑
i=0

πi.

Case 2(τth ≥ d): Similarly,

π (ϵk) =


απ0, k = 0,

λk

τth−1∑
i=k

π (ϵi) + λ∞,k−1π (ϵk−1) , k = 1, 2, · · · , d,

λ∞,dπ (ϵk−1) , k = d+ 1, · · · , τth
and

π (ψk) =


βπ0, k = 0,

λk

τth−1∑
i=k

π (ψi) + λ∞,k−1π (ψk−1) , k = 1, 2, · · · , d,

λ∞,dπ (ψk−1) , k = d+ 1, · · · , τth + 1.

The solution is similar to that of case 1 and thus omit-
ted. Combining the above two cases, the overall cost is
calculated as

J (θon) =

τth+1∑
i=0

πiTr
[
hi
(
P
)]

+ µω.

3.4 Parameters Determination

In this subsection, we make discussions of the parameters
determination of τth defined in the last subsection. We
have
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πT =
ω − δ
∆− δ

.

Based on the definitions, we first calculate the value of τth
by the following statement

τth , argmax
i

{
i∑

k=0

πk ≤ 1− πT

}
+ 1

= argmax
i

{
i∑

k=0

πk ≤
∆− ω
∆− δ

}
+ 1.

Then we can determine the values of α and β by the
following cases.

Case 1(τth = 0): It is obvious that π1 is only related with
π0, we have

β =
π1
π0
, α = 1− β.

Case 2(τth = 1):

• For τth < d, solve the equation of π (ϵ1)+π (ψ2) = πT ,
i.e.,

αλ∞,0π0 + (1− π0 − πT )λ∞,1 = πT ,

and obtain the solutions

α =
(1 + λ1)πT − (1− π0)λ∞,1

λ∞,0π0
, β = 1− α.

• For τth ≥ d, as the value of d is either 0 or 1, thus it
follows that

β =
π2

π2|β=1
=

1− π0 − π1
λ∞,1π1

, α = 1− β.

Case 3(τth ≥ 2):

• For τth < d,

β =
πτth+1

πτth+1|β=1

=
1−

∑τth
i=0 πi

λ∞,τthπτth + (1−
∑τth

i=0 πi − πT )λτth+1
.

• For τth ≥ d,

β =
πτth+1

πτth+1|β=1
=

1−
∑τth

i=0 πi

λτth−d
∞,d πτd

.

Based on these analysis, we present the optimal on-line
schedule in a closed form as follows.

Theorem 6. (Optimal on-line schedule). The optimal on-
line schedule θ∗on over infinite-time horizon with respect
to µ is explicitly given as follows:

• For µ ∈ (0, µ0], ω
∗ , ∆.

• For µ ∈ (µi, µi+1] (i ≥ 0),

ω∗ , argmax
ω
{τth = i+ 1} ,

where {µi}∞i=0 is determined by

µi , −
i+1∑
k=0

dπk
dω

Tr
[
hk
(
P
)]
.

Proof. The proof is omitted because of the limited space.

Based on the above conclusions, we will present the con-
vergence condition shown as the following corollary.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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Fig. 3. Stability analysis with λ∞,2 = 0.7 and 0.85.

Corollary 7. (Convergence analysis). For ω = δ, the esti-
mator converges if λ∞,d <

1
ρ2(A) , where ρ (A) represents

the spectral radius of matrix A.

Proof. According to Lemma 2, Hi
(
P
)
can be rewritten

as

Hi
(
P
)
=

∞∑
i=1

(
Hi
(
P
)
−Hi−1

(
P
))

=

∞∑
i=1

ci,i
(
hi
(
P
)
− hi−1

(
P
))
,

where ci,i equals to

ci,i =

{∏i−1
j=0 λ∞,j , i ≤ d,

λi−d
∞,d

∏d−1
j=0 λ∞,j , i > d.

Thus we consider the convergence of
{
Hi
(
P
)}∞

i=0
, it is

noticed that for ρ (A) > 1, we have to ensure

lim
i→∞

Tr
[
Hi+1

(
P
)
−Hi

(
P
)]

Tr
[
Hi
(
P
)
−Hi−1

(
P
)]

= lim
i→∞

λ∞,d ∗
Tr
[
hi+1

(
P
)
− hi

(
P
)]

Tr
[
hi
(
P
)
− hi−1

(
P
)]

=λ∞,dρ
2 (A) < 1 ⇒ λ∞,d <

1

ρ2 (A)
,

which derives out the property.

4. NUMERICAL SIMULATIONS

Parameter setup: A =

(
1 0.4
0.2 0.5

)
, C = (0.5 0.8), Q =(

0.15 0
0 0.1

)
, R = 0.1, d = 2. The higher level ∆ = 4 and

the lower level δ = 1.

We first verify the convergence condition presented in
Remark 7. It is obvious that the convergence can be
satisfied if λ∞,2 <

1
ρ2(A) ≈ 0.78. We choose λ∞,2 = 0.7

and 0.85 as examples for simulations shown in Fig. 3. From
the result, when λ∞,2 = 0.7, the estimator converges; when
λ∞,2 = 0.85, the estimator diverges.

Next, we compare the performance of different proposed
schedules under the same power budget. Let the param-
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Fig. 4. Stability analysis with λ∞,2 = 0.7 and 0.85.

eters λ0 = 0.2, λ1 = 0.3 and λ2 = 0.3. We plot J (θ∗off)
and J (θ∗on) versus different πT with the step size 0.05
from range 0-1. The simulation results are shown in Fig. 3.
When πT = 0, as λ∞,2 = 0.2, the convergence condition in
Corollary 7 is satisfied, thus two schedules are equivalent
and it holds that J (θ∗off) = J (θ∗on) < +∞. The gap
between l and τth is relatively high when πT is small,
and they tend to the same when πT approaches 1, i.e.,
J (θ∗off) − µω = J (θ∗on) − µω → Tr

(
P
)
. It should be

pointed out that when πT ≥ 0.5, we have the state domain
including only 0 and 1, which leads to J (θ∗off) = J (θ∗on).

At the same time, the relative parameters, i.e., πT , l, τth
and β are listed in Tab. 1. From the table it can be seen
that, both l and τth decrease as the power budget πT
increases. Moreover, τth is smaller than l for all range of
πT , which is consistent with our former analysis.

Based on the above results, we finally validate the global
optimality with respect to different values of µ. Let µ =
0.05, 0.1, 0.15 and 0.2. We plot the global optimal J (θ∗off)
and J (θ∗on) with ω

∗ as shown in Tab. 2. It is conspicuously
seen that J (θ∗on) is superior to that of J (θ∗off) with the
smaller cost.

Table 1. Parameters with respect to different
πT

πT 0 0.05 0.1 0.15 0.2 0.25 0.3
l +∞ 19 9 5 4 3 2
τth +∞ 3 2 2 2 1 1
β - 0.187 0.784 0.475 0.093 0.824 0.605

πT 0.35 0.4 0.45 0.5 0.55 0.6 0.65
l 1 1 1 1 0 0 0
τth 1 1 0 0 0 0 0
β 0.391 0.182 0.982 0.833 0.703 0.588 0.486

πT 0.7 0.75 0.8 0.85 0.9 0.95 1
l 0 0 0 0 0 0 0
τth 0 0 0 0 0 0 0
β 0.395 0.313 0.238 0.170 0.109 0.052 0
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