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Abstract: In this article, Stochastic Model Predictive Control (SMPC) is employed for optimal
perimeter control of traffic flow with uncertain Macroscopic Fundamental Diagram (MFD),
traffic accumulation and traffic demand of two regions. Two regions urban traffic networks
are described through the MFD. The MFD is a fundamental relation between average flow
(production) and density (accumulation) in urban regions. Although the MFD is often assumed
as a simple deterministic curve, possible heterogeneity in urban regions results in large scattering
of the MFD pattern. Traffic accumulation is considered uncertain due to limited sources of
measurements. Moreover, traffic demand is based on the stochastic nature of drivers. The
stochastic uncertainty is modeled through appropriate probability distribution functions for
MFD, traffic accumulation and demand. Simulation results show the superiority of the proposed
method compared to deterministic MPC in the presence of model mismatch.

Keywords: Macroscopic fundamental diagram, Predictive control, Uncertainty, Unscented
transform, Traffic control, Probabilistic models.

1. INTRODUCTION

Perimeter control of urban traffic regions have been pro-
posed to increase mobility and reduce travel times in
urban areas by controlling traffic flow through boundaries
of different urban regions. Macroscopic traffic models are
utilized for modeling and control of urban traffic. However,
performance of model-based control methods rely on ac-
curate description of model. Perimeter control is achieved
by manipulating allowed traffic flow between regions, an
example of this is reducing traffic flow by reducing effective
green light time.

Macroscopic fundamental diagram (MFD), described in
Daganzo (2005), is considered as a main tool for macro-
scopic modeling of the relation of large-scale traffic param-
eters such as density (accumulation) and flow or speed
(production). The relation has been used as a basis of
macroscopic modeling in traffic flow management in var-
ious studies such as Geroliminis et al. (2007), Ramezani
et al. (2015), Keyvan Ekbatani et al. (2015). However,
Geroliminis and Sun (2011) suggests that in a large-scale
scenario it is unlikely that such a relation will remain
constant across the network. Network clustering is used
in different traffic zones to minimize the effect of hetero-
geneity. However, traffic zone clustering might depend on
origin-destination (O-D) pairs as shown in Saeedmanesh
and Geroliminis (2017) and adaptive behavior of drivers as
shown in Aboudolas and Geroliminis (2013). As a result,
the inherent heterogeneity of traffic flow which is the
result of stochastic behavior of traffic flow suggests further
consideration of stochastic methods.

Previously robust worst-case perimeter control was con-
sidered for linear perimeter control problem without con-
sideration of optimality. In Ampountolas et al. (2017), a
worst-case control is achieved by solving a linear matrix
inequality (LMI). Moreover, set-based describing function
method is employed in Haddad and Shraiber (2014) for
robust control of traffic flow. On the other hand, optimal
controllers (nominal MPC) as suggested in Geroliminis
et al. (2012), Kouvelas et al. (2017a) are not robust to
uncertainties. We propose the Stochastic MPC (SMPC)
to achieve constrained, optimal control subject to the
uncertainty defined by probabilistic variables.

In this paper, we extend the MFD traffic flow model,
proposed in Geroliminis et al. (2012) to include uncer-
tainty. We assume uncertainty in MFD, measured traffic
accumulation and traffic demand between regions. We
consider fixed given uncertainty distributions. This as-
sumption may be relaxed by exploiting a Kalman filter
as previously introduced to estimate traffic flow variables
in Kouvelas et al. (2017b). The contribution of the paper
is proposing a new stochastic MPC that achieves higher
trip completion rate by perimeter control that takes into
account uncertainty in traffic variables.

Fundamental to SMPC is the choice of uncertainty prop-
agation method. There are different methods to propa-
gate a nonlinear model subject to uncertainty. For ex-
ample, Bayesian sampling and Monte Carlo methods are
applied in Scenario-MPC and Polynomial chaos expan-
sion is effective for chance constrained stochastic MPC
Harati and Noubari (2016). In this paper, we consider
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Fig. 1. R-region perimeter control method is defined for
MFD (θi), demand (qi) and accumulation (ni).

the unscented transform Julier and Uhlmann (1997) for
uncertainty propagation. Unscented transform is chosen
for efficient SMPC by formulating the problem in the
first two moments of the uncertainty distribution. Further
review on SMPC is provided in Mesbah (2016).

The paper is organized as follows: In Section 2, we in-
troduce the problem of traffic modeling in two-regions
urban traffic networks and optimal traffic control prob-
lem. In Section 3, we provide the background material
on deterministic MPC of the traffic flow problem. The
method for considering probabilistic uncertainty in traffic
flow is presented in Section 4. Unscented transformation is
shown in Section 5 for Unscented based SMPC. Section 6
shows the simulation results of the proposed methodology
as applied to the two-regions perimeter control problem.
Finally, the paper is concluded in Section 7.

2. PROBLEM DEFINITION

Consider two urban regions with traffic accumulation in
region i denoted by ni(k) for (i = 1, 2). Traffic flow
is transferred within the boundary at time kTs, where
Ts is the sampling time. For macroscopic modeling of
transfer flows, the MFD Gi(ni(k)) is defined as the trip
completion rate (production) for region i at ni(k) . We
assume average trip length in region i to be constant
Li. The accumulation ni(k) (veh) is further divided by
vehicles at region i with final destination in the source
region i (nii) or destination region j (nij), i.e. n1 = n11 +
n12. The perimeter control problem is to design uij(k)
(ulb ≤ uij(k) ≤ uub), for j = 1, 2, by manipulating

the transfer flows qij = uij(k)
nij(k)
ni(k)

Gi(ni(k), where the

value uij corresponds to control inputs modifying the
permissible percentage of vehicles that can pass the region

boundaries. Moreover, qIi = qii, q
O
i = nii(k)

ni(k)
Gi(ni(k).

For simplicity, we will remove the index term (k) for
accumulation nij(k), qij(k) unless we wish to emphasize
the time of consideration. We arrive at

n11(k + 1) = n11 + Ts(q11 −
n11
n1

G1(n1) + u21
n21
n2

G2(n2)),

n12(k + 1) = n12 + Ts(q12 − u12
n12
n1

G1(n1)), (1)

n22(k + 1) = n22 + Ts(q22 −
n22
n2

G2(n2) + u12
n12
n1

G1(n1)),

n21(k + 1) = n21 + Ts(q21 − u21
n21
n2

G2(n2)),

Hereafter, we consider the dynamics of (1) compactly

as n(k + 1) = f(n(k), u(k), q(k), θ(k)) where n =
[n11, n12, n21, n22], q = [q11, q12, q21, q22] and u = [u21, u12],
and θ corresponds to the MFD parameters defined as

Gi(ni) = θi,3n
3
i + θi,2n

2
i + θi,1n

1
i , for i = 1, 2. (2)

Notice that the MFD is a simplification of a complex phe-
nomenon. The MFD is approximated through a nonlinear
3rd order polynomial, i.e. The MFD is depends on the het-
erogeneity of regions and adaptive behavior of drivers, etc.
To account for uncertainty, we consider uncertain values
for the polynomial coefficients in (2). The uncertainty is
introduced by assuming

θ̃i(k) = θi(k) + ξi(k). (3)

where for each region ξi is a three dimensional vector.

2.1 Estimation and Control

In practice, uncertainty originates from stochastic behav-
ior of drivers, heterogeneity in traffic flow and restricted
sources for measurement of traffic variables. The MFD
parameters θ are considered stochastic by the inherent
nature of traffic flow. On the other hand, optimal control
problem formulation requires estimated values of the traf-
fic demand q, and the accumulation n which are perturbed
by stochastic disturbance. We use θ̃ for uncertain θ, n̂ for
n and q̂ for q to stress that. We consider that the values
of qij given by

q̂ij(k) = qij(k) + ηij(k). (4)

Moreover, in the assumed plant model it is reasonable to
assume uncertainty on the estimated number of vehicles
inside a region ni. Consequently, the estimated values of
nij are given by

n̂ij(k) = nij(k) + ζij(k). (5)

Similar to n and q the parameters ηij , ζij(k) are com-
pactly written as η, ζ. As a result, the corresponding
uncertain traffic flow dynamics is given by n̂(k + 1) =

f(n̂(k), u(k), q̂, θ̃). Notice that for each realization of un-
known values [η, ζ, ξ] the model f is completely determin-
istic and given by (1).

We consider constant and known distributions Gaussian
prior distribution for uncertain terms, estimation methods
such as Kouvelas et al. (2017b) may further be combined
for more realistic definition of uncertain parameters. The
uncertain terms are defined by Gaussian distribution with
zeros mean value and known variance, such as for demand
η = N (0,Σq), MFD parameters ξ = N (0,Σθ) and
measured accumulation by ζ = N (0,Σn). More compactly

written, uncertain terms are combined as x = [n̂, q̂, θ̃] that
is distributed according to a distribution given by x ∼ Dx.

We consider the optimal control problem (OCP) by max-
imizing the TTD from the start time (0) to the final
time (Tf ) subject to uncertainty. The OCP is defined
to maximize Total Traveled Distance (TTD) defined as
follows

max
u

TTD = Ts

Tf∑
k=0

2∑
i=1

LiGi(ni(k))),

subject to : n̂(k + 1) = f(n̂(k), u(k), q̂, θ̃)

ulb ≤ u ≤ uub (6)
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3. MODEL PREDICTIVE CONTROL OF TRAFFIC
FLOW

In this section, we approximately solve the OCP using
model predictive control by considering the nominal model

(equivalently n̂ = n, q̂ = q and θ̂ = θ). A performance
index (J) is maximized over hypothetical future inputs
resulting in predicted future outputs. The optimal control
is fed to the plant and the MPC will be formulated at
the next sampling time with the arrival of new measured
states.

The MPC approximates the OCP problem (6) at sampling
time k defined by

max
u

J(k) = PTD
(k+H)
k

subject to : ulb ≤ u ≤ uub (7)

n(k + 1) = f(n(k), u(k), q(k), θ(k))

where H is the prediction horizon and Predicted Traveled
Distance (PTD) is defined as

PTD
(k+H)
k = Ts

k+H∑
τ=k

2∑
i=1

LiGi(ni(τ)). (8)

In this work, the nonlinear MPC problem is approximated
by linear time-variant MPC in Harati (2011). The Linear
Time-Variant MPC (LTV-MPC) is a convex approximate
solution to the original non-convex OCP. In this manner,
the MFD is linearized about the trajectory of the system.
This is more accurate than previously suggested methods
such as Kouvelas et al. (2017a) where macroscopic funda-
mental diagram is approximated with a pre-defined piece-
wise linear function. The optimization problem is defined
in Appendix A.

The following proposition is fundamental for development
of proposed Stochastic MPC from nominal MPC.
Proposition 1. The LTV-MPC approximates (7) as a
linear programming problem, and the performance index

can be written as J = PTD
(k+H)
k = yTu, where y is a

linear function of x = [n, q, θ].

Proof. See appendix A.

Although the nominal deterministic MPC yields near to
optimal results when there is no model mismatch between
the model and the true physical plant, the controller per-
forms poorly in the case of model mismatch (Kouvaritakis
and Cannon (2016)). In the next section, we introduce the
proposed method to account for the uncertainty in MPC
formulation.

4. STOCHASTIC MODEL PREDICTIVE CONTROL
OF TRAFFIC FLOW

Consider that the uncertain parameter x = [n, q, θ] may
take any distribution in Dx with known mean E(x) and
variance V ar(x) at time k + i. The Stochastic MPC
(SMPC) problem consider the probability distribution of
uncertain variables in performance function or constraints.
Motivated by probabilistic constraints in Camacho and
Bordons (2016), we consider maximizing the worst pre-

dicted traveled distance PTD
(k+H)
k that might happen

with probability (1− ε) as

max
u

Jε (9)

subject to :Prob{PTD(k+H)
k (x) ≥ Jε} ≥ 1− ε

ulb ≤ u ≤ uub
n̂(k + 1) = f(n̂(k), u(k), q̂(k), θ̃(k))

x := [n̂, q̂, θ̃] ∼ Dx
The first two lines states that we are minimizing the worst
case lower bound of PTD that happens with probability of
1− ε, it is followed by definition of model and distribution
of uncertainty. The SMPC problem may be formulated
efficiently, considering the following theorem on distribu-
tionally robust chance constraint Calafiore and El Ghaoui
(2006).
Theorem 1. The distributionally robust chance constraint

Prob{yTu ≥ J} ≥ 1− ε (10)

subject to : y ∼ Dy
is equivalent to the convex second-order cone constraint for
any ε ∈ (0, 1).

E(yTu) + kεV ar(y
Tu) ≥ J, kε =

√
(1− ε)/ε (11)

Notice that y is a function of aggregated uncertain traffic
variables x with a modified distribution but known mean
E(y) and variance V ar(y) known as Dy. The proposed
method for defining the Stochastic Model Predictive Con-
trol follows immediately since the previously defined deter-
ministic model predictive control problem is formulated as
a linear programming problem which follows from Propo-
sition 1 and Theorem 1.
Corollary 1. The problem SMPC (9) is equivalent to

max
u

J(k) = E(PTD)
(k+H)
k + kεV ar(PTD)

(k+H)
k

subject to : ulb ≤ u ≤ uub (12)

n(k + 1) = f(n(k), u(k), q(k), θ(k))

As a result, the stochastic model predictive control corre-
sponds to the maximization of upper (1 − ε) quantile of
the probability distribution for the cost of nominal MPC
with various realizations of uncertainty. In other words,
the joint maximization of the expected value and variance
of the PTD is equivalent to maximization of the (1 − ε)
quantile of uncertain parameters. In this direction, we
will consider computation of E(Gi) and V ar(Gi) which
requires propagation of the probability distribution of the
uncertainty.

In this paper, we consider the Unscented Transform in
Julier and Uhlmann (1997) to determine the first two
moments of stochastic variations of traffic flow. We are in-
terested in predicting EMij(k) and V ar(Mij(k)) to arrive
at the performance index for the SMPC (9). Unscented
transform is used since it accurately propagates the first
two moments (mean and variance) of a random variable.

5. UNSCENTED TRANSFORM BASED
STOCHASTIC MPC

Uncertainty propagation is fundamental problem in non-
linear dynamic models and it is important for SMPC algo-
rithms. We have shown that the problem of SMPC requires
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the information of the first two moments of uncertainty in
future times. Unscented transform estimates the first two
moments of a random variable analytically by propagating
a set of realizations of uncertain variables known as Sigma
points. The advantage of the method is that the set of
realizations of uncertainty is very few as compared to
scenario based MPC.

Consider the mean of accumulated variable x̄ = E(x) with
variance E((x − x̄)2) = Px. We have x = N (0, Px) where
Px = diag(Σn,Σq,Σθ), and diag returns a block-diagonal
matrix with given matrices on the diagonal. We calculate
2l+1 sigma points with l being the length of x. The Sigma
points are defined as in Haykin (2001)

X0 = Ex,

Xi =

{
Ex+ [

√
(l + λ)Px]i i = 1, · · · , l

Ex− [
√

(l + λ)Px]i i = l + 1, · · · , 2l
(13)

where λ = ρ2(l + κ) − l is a scaling parameter and κ is
assumed zero in this work, ρ determines the spread of
sigma points around x̄ and β = 2 can be modified for
prior assumption of distribution of x. Furthermore, [M ]i
is the ith column of a matrix M and

√
. of a matrix is

calculated using Cholesky factorization.

Moreover, we define the following one dimensional weight
variables

W(m)
0 = λ/(λ+ l), (14)

W(c)
0 =W(m)

0 + (1 + ρ2 + β),

W(m)
i =W(c)

i =
1

2λ+ 2l
, i = 1, · · · , 2l.

We may separate the variable Xi = [Xni ,X
q
i ,X θi ], with

Xni ,X qi and X θi having respectively the same length as n,
q and θ.

We define the 1-step ahead predictor of the sigma points
by Xni (k + 1) = f(Xni (k), u(k),X qi ,X θi ), 2-step predictor
by Xni (k + 2) = f(Xni (k + 1), u(k),X qi ,X θi ), etc. Finally,
we arrive at the expectation

EGi(Xni (k)) =

2l∑
i=0

W(m)
i Gi(Xni (k)) (15)

and the estimated variance by

V ar(Gi) =

2l∑
i=0

W(c)
i (Gi(Xni (k))− EGi(Xni (k)))

(Gi(Xni (k))− EGi(Xni (k)))T (16)

Consequently, we have proposed a transformed MPC prob-
lem that was based on solving probabilistic optimization
problem defined in infinite dimensional probability space.
The transformed problem is deterministic and defined on
2l + 1 times the original dimension of MPC problem.

6. SIMULATION RESULTS

In this section, we provide the simulation results of the
proposed method for optimal distribution control of two
regions urban traffic control. The area under consideration
is down-town San Francisco. The Simulation of Urban Mo-
bility (SUMO) environment is used for micro-simulation.
The region is divided into two parts: a central part that
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Fig. 2. San Francisco downtown is used for macroscopic
modeling with a scale of 1km.
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Fig. 3. Stochastic and Nominal MFD of the two regions
are shown.

attracts more vehicles and the outer region that less de-
mand is observed. The area is shown in Fig. 2. The mico-
simulation is used to arrive at the MFDs of the central and
suburb region. Notice that the MFD is only dependent on
the configuration of the network and it is not dependent
on the demand. By simulating the network, we arrive at
two different MFDs as shown in Fig. 3.

We assume at initial time n11 = 2500, n12 = 2000, n21 =
1800, n22 = 2500. As a result, the initial accumulation of
two regions are n1 = n11 + n12 = 4500 and n2 = n21 +
n22 = 4300. It can be seen from the MFD of Fig. 3 that in
both regions, we are slightly congested initially. Noticing
that perimeter control corresponds to reducing average
allowed flow passing the boundary of regions, we assume
ulb = 0.1, uub = 0.9. Moreover, we assume ε = 0.05. Model
predictive control parameters are assumed as Control
Horizon of Hc = 3, prediction horizon N = Hp = 50. For
Stochastic MPC, Px is considered as identity for n and q
for θ, we consider ξ = (N (0, 1)[2.69e−8; 3.01e−4;−0.416])

Accumulation of the two regions for later times is driven
by demand. Deterministic demand is defined to model the
number of vehicles that request a trip in the specified
duration of time. However true demand does not follow
deterministic curve and the uncertain demand is further
considered for simulation study as shown in Fig. 4.

We simulate the model predictive controller and stochastic
model predictive control for various conditions. First, the
nominal model that matches exactly the MPC model is
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Fig. 5. Comparison of Total Production for nominal model
(top) and uncertainty in demand (second), uncer-
tainty in the MFD (third) and uncertainty in accumu-
lation (bottom). The arrows show direction of time.

used in simulation. Second, we consider the known de-
mand is disturbed with the uncertain variable given by the
distribution, and the nominal controller is not consistent
with the assumed demand profile. The simulation study
continues with consideration of not knowing the exact
MFD. The perturbed MFD is assumed given by a dis-
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Fig. 6. Comparison of Cumulative Trip Completion for
nominal model (top) and uncertainty in demand (sec-
ond), uncertainty in the MFD (third) and uncertainty
in accumulation (bottom).

tribution. Finally, accumulation measurement uncertainty
is considered.

One measure to compare the performance of a controller is
total production versus accumulation curve. Total produc-
tion rate describes the rate at which vehicle reach desti-
nation and accumulation measures the number of vehicles
inside a region given the demand and initial conditions
of both controllers are the same. Fig. 5 shows the per-
formance of both controllers in different conditions. More-
over, the trip completion rate can be summed cumulatively

by CTR(k) =
∑k
τ=0

∑
i∈RGi(ni(τ)). The cumulative trip

completion rates of different scenarios are shown in Fig. 6.
It can be observed that the SMPC arrives at similar results
to nominal MPC controller for exact matching condition
of controller and simulation model. One the other hand,
mismatch in the model results in congestion for nominal
MPC. On the other hand, SMPC can robustly counteract
the mismatch and arrive at higher trip completion rate.
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Simulation results shows that the nominal MPC is unable
to counteract the model mismatch and arrives at heavily
congested regions. It can be observed accordingly that
SMPC outperforms nominal MPC by higher trip comple-
tion rates. Cumulative trip completion rate is higher in
SMPC in all cases and the simulation will result in less
congested regions.

7. CONCLUSION

Stochastic predictive perimeter control was introduced for
uncertain two-regions urban traffic. Optimal trip comple-
tion rate was previously achieved by using model predic-
tive perimeter control, however, the controller was very
sensitive to model imperfections. Stochastic predictive
perimeter control is robust to uncertainty in Macroscopic
Fundamental Diagram, traffic demand and traffic accumu-
lation in different regions. Simulation results show that the
cumulative trip completion rate is almost similar for the
nominal case. Moreover, in the presence of uncertainty,
the proposed method increases the performance consid-
erably. It is suggested to consider estimation techniques
to describe the uncertainty more accurately. Moreover,
probabilistic constraints is left for future study.
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Appendix A. MPC: LINEAR PROGRAMMING
FORMULATION

In the following, we derive the MPC formulation by
considering the state space as in 1 and Ψ, Θ given in
Harati (2011). The MPC optimization problem maximizes
the following objective function for all regions as

J =

k+H∑
τ=k

∑
i∈R

Liyi(ni(τ)). (A.1)

The problem can be formulated as a linear programming
problem as follows

J =Ts[Li · · ·Li][yi(ni(k + 1)) · · · yi(ni(k +H))]T =

SΨn(k) +RTΘU(k) (A.2)

where Li is the average trip length for region i, S =
TsLi[1 · · · 1] and R = TsL̄i[1 · · · 1].
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